forked from phoenix/litellm-mirror
LiteLLM Minor Fixes & Improvements (11/29/2024) (#6965)
* fix(factory.py): ensure tool call converts image url Fixes https://github.com/BerriAI/litellm/issues/6953 * fix(transformation.py): support mp4 + pdf url's for vertex ai Fixes https://github.com/BerriAI/litellm/issues/6936 * fix(http_handler.py): mask gemini api key in error logs Fixes https://github.com/BerriAI/litellm/issues/6963 * docs(prometheus.md): update prometheus FAQs * feat(auth_checks.py): ensure specific model access > wildcard model access if wildcard model is in access group, but specific model is not - deny access * fix(auth_checks.py): handle auth checks for team based model access groups handles scenario where model access group used for wildcard models * fix(internal_user_endpoints.py): support adding guardrails on `/user/update` Fixes https://github.com/BerriAI/litellm/issues/6942 * fix(key_management_endpoints.py): fix prepare_metadata_fields helper * fix: fix tests * build(requirements.txt): bump openai dep version fixes proxies argument * test: fix tests * fix(http_handler.py): fix error message masking * fix(bedrock_guardrails.py): pass in prepped data * test: fix test * test: fix nvidia nim test * fix(http_handler.py): return original response headers * fix: revert maskedhttpstatuserror * test: update tests * test: cleanup test * fix(key_management_endpoints.py): fix metadata field update logic * fix(key_management_endpoints.py): maintain initial order of guardrails in key update * fix(key_management_endpoints.py): handle prepare metadata * fix: fix linting errors * fix: fix linting errors * fix: fix linting errors * fix: fix key management errors * fix(key_management_endpoints.py): update metadata * test: update test * refactor: add more debug statements * test: skip flaky test * test: fix test * fix: fix test * fix: fix update metadata logic * fix: fix test * ci(config.yml): change db url for e2e ui testing
This commit is contained in:
parent
bd59f18809
commit
859b47f08b
37 changed files with 1040 additions and 714 deletions
270
tests/llm_translation/test_openai.py
Normal file
270
tests/llm_translation/test_openai.py
Normal file
|
@ -0,0 +1,270 @@
|
|||
import json
|
||||
import os
|
||||
import sys
|
||||
from datetime import datetime
|
||||
from unittest.mock import AsyncMock, patch
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
|
||||
|
||||
import httpx
|
||||
import pytest
|
||||
from respx import MockRouter
|
||||
|
||||
import litellm
|
||||
from litellm import Choices, Message, ModelResponse
|
||||
|
||||
|
||||
def test_openai_prediction_param():
|
||||
litellm.set_verbose = True
|
||||
code = """
|
||||
/// <summary>
|
||||
/// Represents a user with a first name, last name, and username.
|
||||
/// </summary>
|
||||
public class User
|
||||
{
|
||||
/// <summary>
|
||||
/// Gets or sets the user's first name.
|
||||
/// </summary>
|
||||
public string FirstName { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// Gets or sets the user's last name.
|
||||
/// </summary>
|
||||
public string LastName { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// Gets or sets the user's username.
|
||||
/// </summary>
|
||||
public string Username { get; set; }
|
||||
}
|
||||
"""
|
||||
|
||||
completion = litellm.completion(
|
||||
model="gpt-4o-mini",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
|
||||
},
|
||||
{"role": "user", "content": code},
|
||||
],
|
||||
prediction={"type": "content", "content": code},
|
||||
)
|
||||
|
||||
print(completion)
|
||||
|
||||
assert (
|
||||
completion.usage.completion_tokens_details.accepted_prediction_tokens > 0
|
||||
or completion.usage.completion_tokens_details.rejected_prediction_tokens > 0
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_openai_prediction_param_mock():
|
||||
"""
|
||||
Tests that prediction parameter is correctly passed to the API
|
||||
"""
|
||||
litellm.set_verbose = True
|
||||
|
||||
code = """
|
||||
/// <summary>
|
||||
/// Represents a user with a first name, last name, and username.
|
||||
/// </summary>
|
||||
public class User
|
||||
{
|
||||
/// <summary>
|
||||
/// Gets or sets the user's first name.
|
||||
/// </summary>
|
||||
public string FirstName { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// Gets or sets the user's last name.
|
||||
/// </summary>
|
||||
public string LastName { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// Gets or sets the user's username.
|
||||
/// </summary>
|
||||
public string Username { get; set; }
|
||||
}
|
||||
"""
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
client = AsyncOpenAI(api_key="fake-api-key")
|
||||
|
||||
with patch.object(
|
||||
client.chat.completions.with_raw_response, "create"
|
||||
) as mock_client:
|
||||
try:
|
||||
await litellm.acompletion(
|
||||
model="gpt-4o-mini",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
|
||||
},
|
||||
{"role": "user", "content": code},
|
||||
],
|
||||
prediction={"type": "content", "content": code},
|
||||
client=client,
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Error: {e}")
|
||||
|
||||
mock_client.assert_called_once()
|
||||
request_body = mock_client.call_args.kwargs
|
||||
|
||||
# Verify the request contains the prediction parameter
|
||||
assert "prediction" in request_body
|
||||
# verify prediction is correctly sent to the API
|
||||
assert request_body["prediction"] == {"type": "content", "content": code}
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_openai_prediction_param_with_caching():
|
||||
"""
|
||||
Tests using `prediction` parameter with caching
|
||||
"""
|
||||
from litellm.caching.caching import LiteLLMCacheType
|
||||
import logging
|
||||
from litellm._logging import verbose_logger
|
||||
|
||||
verbose_logger.setLevel(logging.DEBUG)
|
||||
import time
|
||||
|
||||
litellm.set_verbose = True
|
||||
litellm.cache = litellm.Cache(type=LiteLLMCacheType.LOCAL)
|
||||
code = """
|
||||
/// <summary>
|
||||
/// Represents a user with a first name, last name, and username.
|
||||
/// </summary>
|
||||
public class User
|
||||
{
|
||||
/// <summary>
|
||||
/// Gets or sets the user's first name.
|
||||
/// </summary>
|
||||
public string FirstName { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// Gets or sets the user's last name.
|
||||
/// </summary>
|
||||
public string LastName { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// Gets or sets the user's username.
|
||||
/// </summary>
|
||||
public string Username { get; set; }
|
||||
}
|
||||
"""
|
||||
|
||||
completion_response_1 = litellm.completion(
|
||||
model="gpt-4o-mini",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
|
||||
},
|
||||
{"role": "user", "content": code},
|
||||
],
|
||||
prediction={"type": "content", "content": code},
|
||||
)
|
||||
|
||||
time.sleep(0.5)
|
||||
|
||||
# cache hit
|
||||
completion_response_2 = litellm.completion(
|
||||
model="gpt-4o-mini",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
|
||||
},
|
||||
{"role": "user", "content": code},
|
||||
],
|
||||
prediction={"type": "content", "content": code},
|
||||
)
|
||||
|
||||
assert completion_response_1.id == completion_response_2.id
|
||||
|
||||
completion_response_3 = litellm.completion(
|
||||
model="gpt-4o-mini",
|
||||
messages=[
|
||||
{"role": "user", "content": "What is the first name of the user?"},
|
||||
],
|
||||
prediction={"type": "content", "content": code + "FirstName"},
|
||||
)
|
||||
|
||||
assert completion_response_3.id != completion_response_1.id
|
||||
|
||||
|
||||
@pytest.mark.asyncio()
|
||||
async def test_vision_with_custom_model():
|
||||
"""
|
||||
Tests that an OpenAI compatible endpoint when sent an image will receive the image in the request
|
||||
|
||||
"""
|
||||
import base64
|
||||
import requests
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
client = AsyncOpenAI(api_key="fake-api-key")
|
||||
|
||||
litellm.set_verbose = True
|
||||
api_base = "https://my-custom.api.openai.com"
|
||||
|
||||
# Fetch and encode a test image
|
||||
url = "https://dummyimage.com/100/100/fff&text=Test+image"
|
||||
response = requests.get(url)
|
||||
file_data = response.content
|
||||
encoded_file = base64.b64encode(file_data).decode("utf-8")
|
||||
base64_image = f"data:image/png;base64,{encoded_file}"
|
||||
|
||||
with patch.object(
|
||||
client.chat.completions.with_raw_response, "create"
|
||||
) as mock_client:
|
||||
try:
|
||||
response = await litellm.acompletion(
|
||||
model="openai/my-custom-model",
|
||||
max_tokens=10,
|
||||
api_base=api_base, # use the mock api
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What's in this image?"},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {"url": base64_image},
|
||||
},
|
||||
],
|
||||
}
|
||||
],
|
||||
client=client,
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Error: {e}")
|
||||
|
||||
mock_client.assert_called_once()
|
||||
request_body = mock_client.call_args.kwargs
|
||||
|
||||
print("request_body: ", request_body)
|
||||
|
||||
assert request_body["messages"] == [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What's in this image?"},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": ""
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
]
|
||||
assert request_body["model"] == "my-custom-model"
|
||||
assert request_body["max_tokens"] == 10
|
Loading…
Add table
Add a link
Reference in a new issue