forked from phoenix/litellm-mirror
adding exception handling for together ai
This commit is contained in:
parent
35ecc91a71
commit
88bd1df3e0
8 changed files with 96 additions and 43 deletions
|
@ -286,10 +286,11 @@ from .utils import (
|
|||
)
|
||||
from .main import * # type: ignore
|
||||
from .integrations import *
|
||||
from openai.error import (
|
||||
from .exceptions import (
|
||||
AuthenticationError,
|
||||
InvalidRequestError,
|
||||
RateLimitError,
|
||||
ServiceUnavailableError,
|
||||
OpenAIError,
|
||||
ContextWindowExceededError
|
||||
)
|
||||
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -28,6 +28,17 @@ class InvalidRequestError(InvalidRequestError): # type: ignore
|
|||
self.message, f"{self.model}"
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
# sub class of invalid request error - meant to give more granularity for error handling context window exceeded errors
|
||||
class ContextWindowExceededError(InvalidRequestError): # type: ignore
|
||||
def __init__(self, message, model, llm_provider):
|
||||
self.status_code = 400
|
||||
self.message = message
|
||||
self.model = model
|
||||
self.llm_provider = llm_provider
|
||||
super().__init__(
|
||||
self.message, self.model, self.llm_provider
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
|
||||
class RateLimitError(RateLimitError): # type: ignore
|
||||
def __init__(self, message, llm_provider):
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
import os, openai, sys
|
||||
import os, openai, sys, json
|
||||
from typing import Any
|
||||
from functools import partial
|
||||
import dotenv, traceback, random, asyncio, time, contextvars
|
||||
|
@ -539,6 +539,7 @@ def completion(
|
|||
return response
|
||||
response = model_response
|
||||
elif custom_llm_provider == "together_ai" or ("togethercomputer" in model):
|
||||
custom_llm_provider = "together_ai"
|
||||
import requests
|
||||
|
||||
TOGETHER_AI_TOKEN = (
|
||||
|
@ -594,10 +595,10 @@ def completion(
|
|||
)
|
||||
# make this safe for reading, if output does not exist raise an error
|
||||
json_response = res.json()
|
||||
if "output" not in json_response:
|
||||
raise Exception(
|
||||
f"liteLLM: Error Making TogetherAI request, JSON Response {json_response}"
|
||||
)
|
||||
if "error" in json_response:
|
||||
raise Exception(json.dumps(json_response))
|
||||
elif "error" in json_response["output"]:
|
||||
raise Exception(json.dumps(json_response["output"]))
|
||||
completion_response = json_response["output"]["choices"][0]["text"]
|
||||
prompt_tokens = len(encoding.encode(prompt))
|
||||
completion_tokens = len(encoding.encode(completion_response))
|
||||
|
|
|
@ -12,6 +12,7 @@ from litellm import (
|
|||
completion,
|
||||
AuthenticationError,
|
||||
InvalidRequestError,
|
||||
ContextWindowExceededError,
|
||||
RateLimitError,
|
||||
ServiceUnavailableError,
|
||||
OpenAIError,
|
||||
|
@ -32,11 +33,12 @@ litellm.failure_callback = ["sentry"]
|
|||
# Approach: Run each model through the test -> assert if the correct error (always the same one) is triggered
|
||||
|
||||
# models = ["gpt-3.5-turbo", "chatgpt-test", "claude-instant-1", "command-nightly"]
|
||||
test_model = "claude-instant-1"
|
||||
models = ["claude-instant-1"]
|
||||
test_model = "togethercomputer/CodeLlama-34b-Python"
|
||||
models = ["togethercomputer/CodeLlama-34b-Python"]
|
||||
|
||||
|
||||
def logging_fn(model_call_dict):
|
||||
return
|
||||
if "model" in model_call_dict:
|
||||
print(f"model_call_dict: {model_call_dict['model']}")
|
||||
else:
|
||||
|
@ -49,15 +51,16 @@ def test_context_window(model):
|
|||
sample_text = "how does a court case get to the Supreme Court?" * 5000
|
||||
messages = [{"content": sample_text, "role": "user"}]
|
||||
try:
|
||||
model = "chatgpt-test"
|
||||
print(f"model: {model}")
|
||||
response = completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
custom_llm_provider="azure",
|
||||
logger_fn=logging_fn,
|
||||
)
|
||||
print(f"response: {response}")
|
||||
except ContextWindowExceededError as e:
|
||||
print(f"ContextWindowExceededError: {e.llm_provider}")
|
||||
return
|
||||
except InvalidRequestError as e:
|
||||
print(f"InvalidRequestError: {e.llm_provider}")
|
||||
return
|
||||
|
@ -95,6 +98,9 @@ def invalid_auth(model): # set the model key to an invalid key, depending on th
|
|||
elif model == "command-nightly":
|
||||
temporary_key = os.environ["COHERE_API_KEY"]
|
||||
os.environ["COHERE_API_KEY"] = "bad-key"
|
||||
elif "togethercomputer" in model:
|
||||
temporary_key = os.environ["TOGETHERAI_API_KEY"]
|
||||
os.environ["TOGETHERAI_API_KEY"] = "84060c79880fc49df126d3e87b53f8a463ff6e1c6d27fe64207cde25cdfcd1f24a"
|
||||
elif (
|
||||
model
|
||||
== "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1"
|
||||
|
@ -132,46 +138,48 @@ def invalid_auth(model): # set the model key to an invalid key, depending on th
|
|||
== "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1"
|
||||
):
|
||||
os.environ["REPLICATE_API_KEY"] = temporary_key
|
||||
elif ("togethercomputer" in model):
|
||||
os.environ["TOGETHERAI_API_KEY"] = temporary_key
|
||||
return
|
||||
|
||||
|
||||
invalid_auth(test_model)
|
||||
# # Test 3: Rate Limit Errors
|
||||
# def test_model(model):
|
||||
# try:
|
||||
# sample_text = "how does a court case get to the Supreme Court?" * 50000
|
||||
# messages = [{ "content": sample_text,"role": "user"}]
|
||||
# custom_llm_provider = None
|
||||
# if model == "chatgpt-test":
|
||||
# custom_llm_provider = "azure"
|
||||
# print(f"model: {model}")
|
||||
# response = completion(model=model, messages=messages, custom_llm_provider=custom_llm_provider)
|
||||
# except RateLimitError:
|
||||
# return True
|
||||
# except OpenAIError: # is at least an openai error -> in case of random model errors - e.g. overloaded server
|
||||
# return True
|
||||
# except Exception as e:
|
||||
# print(f"Uncaught Exception {model}: {type(e).__name__} - {e}")
|
||||
# pass
|
||||
# return False
|
||||
# Test 3: Rate Limit Errors
|
||||
def test_model(model):
|
||||
try:
|
||||
sample_text = "how does a court case get to the Supreme Court?" * 50000
|
||||
messages = [{ "content": sample_text,"role": "user"}]
|
||||
custom_llm_provider = None
|
||||
if model == "chatgpt-test":
|
||||
custom_llm_provider = "azure"
|
||||
print(f"model: {model}")
|
||||
response = completion(model=model, messages=messages, custom_llm_provider=custom_llm_provider)
|
||||
except RateLimitError:
|
||||
return True
|
||||
except OpenAIError: # is at least an openai error -> in case of random model errors - e.g. overloaded server
|
||||
return True
|
||||
except Exception as e:
|
||||
print(f"Uncaught Exception {model}: {type(e).__name__} - {e}")
|
||||
pass
|
||||
return False
|
||||
|
||||
# # Repeat each model 500 times
|
||||
# extended_models = [model for model in models for _ in range(250)]
|
||||
# Repeat each model 500 times
|
||||
extended_models = [model for model in models for _ in range(250)]
|
||||
|
||||
# def worker(model):
|
||||
# return test_model(model)
|
||||
def worker(model):
|
||||
return test_model(model)
|
||||
|
||||
# # Create a dictionary to store the results
|
||||
# counts = {True: 0, False: 0}
|
||||
# Create a dictionary to store the results
|
||||
counts = {True: 0, False: 0}
|
||||
|
||||
# # Use Thread Pool Executor
|
||||
# with ThreadPoolExecutor(max_workers=500) as executor:
|
||||
# # Use map to start the operation in thread pool
|
||||
# results = executor.map(worker, extended_models)
|
||||
# Use Thread Pool Executor
|
||||
with ThreadPoolExecutor(max_workers=500) as executor:
|
||||
# Use map to start the operation in thread pool
|
||||
results = executor.map(worker, extended_models)
|
||||
|
||||
# # Iterate over results and count True/False
|
||||
# for result in results:
|
||||
# counts[result] += 1
|
||||
# Iterate over results and count True/False
|
||||
for result in results:
|
||||
counts[result] += 1
|
||||
|
||||
# accuracy_score = counts[True]/(counts[True] + counts[False])
|
||||
# print(f"accuracy_score: {accuracy_score}")
|
||||
accuracy_score = counts[True]/(counts[True] + counts[False])
|
||||
print(f"accuracy_score: {accuracy_score}")
|
||||
|
|
|
@ -25,6 +25,7 @@ from .exceptions import (
|
|||
RateLimitError,
|
||||
ServiceUnavailableError,
|
||||
OpenAIError,
|
||||
ContextWindowExceededError
|
||||
)
|
||||
from typing import List, Dict, Union, Optional
|
||||
from .caching import Cache
|
||||
|
@ -1445,6 +1446,37 @@ def exception_type(model, original_exception, custom_llm_provider):
|
|||
message=f"HuggingfaceException - {original_exception.message}",
|
||||
llm_provider="huggingface",
|
||||
)
|
||||
elif custom_llm_provider == "together_ai":
|
||||
error_response = json.loads(error_str)
|
||||
if "error" in error_response and "`inputs` tokens + `max_new_tokens` must be <=" in error_response["error"]:
|
||||
exception_mapping_worked = True
|
||||
raise ContextWindowExceededError(
|
||||
message=error_response["error"],
|
||||
model=model,
|
||||
llm_provider="together_ai"
|
||||
)
|
||||
elif "error" in error_response and "invalid private key" in error_response["error"]:
|
||||
exception_mapping_worked = True
|
||||
raise AuthenticationError(
|
||||
message=error_response["error"],
|
||||
llm_provider="together_ai"
|
||||
)
|
||||
elif "error" in error_response and "INVALID_ARGUMENT" in error_response["error"]:
|
||||
exception_mapping_worked = True
|
||||
raise InvalidRequestError(
|
||||
message=error_response["error"],
|
||||
model=model,
|
||||
llm_provider="together_ai"
|
||||
)
|
||||
elif "error_type" in error_response and error_response["error_type"] == "validation":
|
||||
exception_mapping_worked = True
|
||||
raise InvalidRequestError(
|
||||
message=error_response["error"],
|
||||
model=model,
|
||||
llm_provider="together_ai"
|
||||
)
|
||||
print(f"error: {error_response}")
|
||||
print(f"e: {original_exception}")
|
||||
raise original_exception # base case - return the original exception
|
||||
else:
|
||||
raise original_exception
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue