Merge branch 'main' into litellm_region_based_routing

This commit is contained in:
Krish Dholakia 2024-05-08 22:19:51 -07:00 committed by GitHub
commit 8ad979cdfe
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
85 changed files with 793 additions and 448 deletions

View file

@ -16,11 +16,11 @@ repos:
name: Check if files match
entry: python3 ci_cd/check_files_match.py
language: system
- repo: local
hooks:
- id: mypy
name: mypy
entry: python3 -m mypy --ignore-missing-imports
language: system
types: [python]
files: ^litellm/
# - repo: local
# hooks:
# - id: mypy
# name: mypy
# entry: python3 -m mypy --ignore-missing-imports
# language: system
# types: [python]
# files: ^litellm/

View file

@ -291,7 +291,7 @@ def _create_clickhouse_aggregate_tables(client=None, table_names=[]):
def _forecast_daily_cost(data: list):
import requests
import requests # type: ignore
from datetime import datetime, timedelta
if len(data) == 0:

View file

@ -10,8 +10,8 @@
# s/o [@Frank Colson](https://www.linkedin.com/in/frank-colson-422b9b183/) for this redis implementation
import os
import inspect
import redis, litellm
import redis.asyncio as async_redis
import redis, litellm # type: ignore
import redis.asyncio as async_redis # type: ignore
from typing import List, Optional

View file

@ -10,7 +10,7 @@
import os, json, time
import litellm
from litellm.utils import ModelResponse
import requests, threading
import requests, threading # type: ignore
from typing import Optional, Union, Literal

View file

@ -1,7 +1,6 @@
#### What this does ####
# On success + failure, log events to aispend.io
import dotenv, os
import requests
dotenv.load_dotenv() # Loading env variables using dotenv
import traceback

View file

@ -4,18 +4,30 @@ import datetime
class AthinaLogger:
def __init__(self):
import os
self.athina_api_key = os.getenv("ATHINA_API_KEY")
self.headers = {
"athina-api-key": self.athina_api_key,
"Content-Type": "application/json"
"Content-Type": "application/json",
}
self.athina_logging_url = "https://log.athina.ai/api/v1/log/inference"
self.additional_keys = ["environment", "prompt_slug", "customer_id", "customer_user_id", "session_id", "external_reference_id", "context", "expected_response", "user_query"]
self.additional_keys = [
"environment",
"prompt_slug",
"customer_id",
"customer_user_id",
"session_id",
"external_reference_id",
"context",
"expected_response",
"user_query",
]
def log_event(self, kwargs, response_obj, start_time, end_time, print_verbose):
import requests
import requests # type: ignore
import json
import traceback
try:
response_json = response_obj.model_dump() if response_obj else {}
data = {
@ -23,32 +35,51 @@ class AthinaLogger:
"request": kwargs,
"response": response_json,
"prompt_tokens": response_json.get("usage", {}).get("prompt_tokens"),
"completion_tokens": response_json.get("usage", {}).get("completion_tokens"),
"completion_tokens": response_json.get("usage", {}).get(
"completion_tokens"
),
"total_tokens": response_json.get("usage", {}).get("total_tokens"),
}
if type(end_time) == datetime.datetime and type(start_time) == datetime.datetime:
data["response_time"] = int((end_time - start_time).total_seconds() * 1000)
if (
type(end_time) == datetime.datetime
and type(start_time) == datetime.datetime
):
data["response_time"] = int(
(end_time - start_time).total_seconds() * 1000
)
if "messages" in kwargs:
data["prompt"] = kwargs.get("messages", None)
# Directly add tools or functions if present
optional_params = kwargs.get("optional_params", {})
data.update((k, v) for k, v in optional_params.items() if k in ["tools", "functions"])
data.update(
(k, v)
for k, v in optional_params.items()
if k in ["tools", "functions"]
)
# Add additional metadata keys
metadata = kwargs.get("litellm_params", {}).get("metadata", {})
metadata = kwargs.get("litellm_params", {}).get("metadata", {})
if metadata:
for key in self.additional_keys:
if key in metadata:
data[key] = metadata[key]
response = requests.post(self.athina_logging_url, headers=self.headers, data=json.dumps(data, default=str))
response = requests.post(
self.athina_logging_url,
headers=self.headers,
data=json.dumps(data, default=str),
)
if response.status_code != 200:
print_verbose(f"Athina Logger Error - {response.text}, {response.status_code}")
print_verbose(
f"Athina Logger Error - {response.text}, {response.status_code}"
)
else:
print_verbose(f"Athina Logger Succeeded - {response.text}")
except Exception as e:
print_verbose(f"Athina Logger Error - {e}, Stack trace: {traceback.format_exc()}")
pass
print_verbose(
f"Athina Logger Error - {e}, Stack trace: {traceback.format_exc()}"
)
pass

View file

@ -1,7 +1,7 @@
#### What this does ####
# On success + failure, log events to aispend.io
import dotenv, os
import requests
import requests # type: ignore
dotenv.load_dotenv() # Loading env variables using dotenv
import traceback

View file

@ -3,7 +3,6 @@
#### What this does ####
# On success, logs events to Promptlayer
import dotenv, os
import requests
from litellm.proxy._types import UserAPIKeyAuth
from litellm.caching import DualCache

View file

@ -1,7 +1,6 @@
#### What this does ####
# On success, logs events to Promptlayer
import dotenv, os
import requests
from litellm.proxy._types import UserAPIKeyAuth
from litellm.caching import DualCache

View file

@ -2,7 +2,7 @@
# On success + failure, log events to Supabase
import dotenv, os
import requests
import requests # type: ignore
dotenv.load_dotenv() # Loading env variables using dotenv
import traceback

View file

@ -2,7 +2,7 @@
# On success + failure, log events to Supabase
import dotenv, os
import requests
import requests # type: ignore
dotenv.load_dotenv() # Loading env variables using dotenv
import traceback

View file

@ -1,15 +1,17 @@
import requests
import requests # type: ignore
import json
import traceback
from datetime import datetime, timezone
class GreenscaleLogger:
def __init__(self):
import os
self.greenscale_api_key = os.getenv("GREENSCALE_API_KEY")
self.headers = {
"api-key": self.greenscale_api_key,
"Content-Type": "application/json"
"Content-Type": "application/json",
}
self.greenscale_logging_url = os.getenv("GREENSCALE_ENDPOINT")
@ -19,33 +21,48 @@ class GreenscaleLogger:
data = {
"modelId": kwargs.get("model"),
"inputTokenCount": response_json.get("usage", {}).get("prompt_tokens"),
"outputTokenCount": response_json.get("usage", {}).get("completion_tokens"),
"outputTokenCount": response_json.get("usage", {}).get(
"completion_tokens"
),
}
data["timestamp"] = datetime.now(timezone.utc).strftime('%Y-%m-%dT%H:%M:%SZ')
if type(end_time) == datetime and type(start_time) == datetime:
data["invocationLatency"] = int((end_time - start_time).total_seconds() * 1000)
data["timestamp"] = datetime.now(timezone.utc).strftime(
"%Y-%m-%dT%H:%M:%SZ"
)
if type(end_time) == datetime and type(start_time) == datetime:
data["invocationLatency"] = int(
(end_time - start_time).total_seconds() * 1000
)
# Add additional metadata keys to tags
tags = []
metadata = kwargs.get("litellm_params", {}).get("metadata", {})
for key, value in metadata.items():
if key.startswith("greenscale"):
if key.startswith("greenscale"):
if key == "greenscale_project":
data["project"] = value
elif key == "greenscale_application":
data["application"] = value
else:
tags.append({"key": key.replace("greenscale_", ""), "value": str(value)})
tags.append(
{"key": key.replace("greenscale_", ""), "value": str(value)}
)
data["tags"] = tags
response = requests.post(self.greenscale_logging_url, headers=self.headers, data=json.dumps(data, default=str))
response = requests.post(
self.greenscale_logging_url,
headers=self.headers,
data=json.dumps(data, default=str),
)
if response.status_code != 200:
print_verbose(f"Greenscale Logger Error - {response.text}, {response.status_code}")
print_verbose(
f"Greenscale Logger Error - {response.text}, {response.status_code}"
)
else:
print_verbose(f"Greenscale Logger Succeeded - {response.text}")
except Exception as e:
print_verbose(f"Greenscale Logger Error - {e}, Stack trace: {traceback.format_exc()}")
pass
print_verbose(
f"Greenscale Logger Error - {e}, Stack trace: {traceback.format_exc()}"
)
pass

View file

@ -1,7 +1,7 @@
#### What this does ####
# On success, logs events to Helicone
import dotenv, os
import requests
import requests # type: ignore
import litellm
dotenv.load_dotenv() # Loading env variables using dotenv

View file

@ -1,15 +1,14 @@
#### What this does ####
# On success, logs events to Langsmith
import dotenv, os
import requests
import requests
import dotenv, os # type: ignore
import requests # type: ignore
from datetime import datetime
dotenv.load_dotenv() # Loading env variables using dotenv
import traceback
import asyncio
import types
from pydantic import BaseModel
from pydantic import BaseModel # type: ignore
def is_serializable(value):
@ -79,8 +78,6 @@ class LangsmithLogger:
except:
response_obj = response_obj.dict() # type: ignore
print(f"response_obj: {response_obj}")
data = {
"name": run_name,
"run_type": "llm", # this should always be llm, since litellm always logs llm calls. Langsmith allow us to log "chain"
@ -90,7 +87,6 @@ class LangsmithLogger:
"start_time": start_time,
"end_time": end_time,
}
print(f"data: {data}")
response = requests.post(
"https://api.smith.langchain.com/runs",

View file

@ -2,7 +2,6 @@
## On Success events log cost to OpenMeter - https://github.com/BerriAI/litellm/issues/1268
import dotenv, os, json
import requests
import litellm
dotenv.load_dotenv() # Loading env variables using dotenv
@ -60,7 +59,7 @@ class OpenMeterLogger(CustomLogger):
"total_tokens": response_obj["usage"].get("total_tokens"),
}
subject = kwargs.get("user", None), # end-user passed in via 'user' param
subject = (kwargs.get("user", None),) # end-user passed in via 'user' param
if not subject:
raise Exception("OpenMeter: user is required")

View file

@ -3,7 +3,7 @@
# On success, log events to Prometheus
import dotenv, os
import requests
import requests # type: ignore
dotenv.load_dotenv() # Loading env variables using dotenv
import traceback
@ -19,7 +19,6 @@ class PrometheusLogger:
**kwargs,
):
try:
print(f"in init prometheus metrics")
from prometheus_client import Counter
self.litellm_llm_api_failed_requests_metric = Counter(

View file

@ -4,7 +4,7 @@
import dotenv, os
import requests
import requests # type: ignore
dotenv.load_dotenv() # Loading env variables using dotenv
import traceback
@ -183,7 +183,6 @@ class PrometheusServicesLogger:
)
async def async_service_failure_hook(self, payload: ServiceLoggerPayload):
print(f"received error payload: {payload.error}")
if self.mock_testing:
self.mock_testing_failure_calls += 1

View file

@ -1,12 +1,13 @@
#### What this does ####
# On success, logs events to Promptlayer
import dotenv, os
import requests
import requests # type: ignore
from pydantic import BaseModel
dotenv.load_dotenv() # Loading env variables using dotenv
import traceback
class PromptLayerLogger:
# Class variables or attributes
def __init__(self):
@ -32,7 +33,11 @@ class PromptLayerLogger:
tags = kwargs["litellm_params"]["metadata"]["pl_tags"]
# Remove "pl_tags" from metadata
metadata = {k:v for k, v in kwargs["litellm_params"]["metadata"].items() if k != "pl_tags"}
metadata = {
k: v
for k, v in kwargs["litellm_params"]["metadata"].items()
if k != "pl_tags"
}
print_verbose(
f"Prompt Layer Logging - Enters logging function for model kwargs: {new_kwargs}\n, response: {response_obj}"

View file

@ -2,7 +2,6 @@
# On success + failure, log events to Supabase
import dotenv, os
import requests
dotenv.load_dotenv() # Loading env variables using dotenv
import traceback

View file

@ -2,7 +2,7 @@
# On success + failure, log events to Supabase
import dotenv, os
import requests
import requests # type: ignore
dotenv.load_dotenv() # Loading env variables using dotenv
import traceback

View file

@ -1,8 +1,8 @@
import os, types, traceback
import json
from enum import Enum
import requests
import time, httpx
import requests # type: ignore
import time, httpx # type: ignore
from typing import Callable, Optional
from litellm.utils import ModelResponse, Choices, Message
import litellm

View file

@ -1,12 +1,12 @@
import os, types
import json
from enum import Enum
import requests
import requests # type: ignore
import time
from typing import Callable, Optional
import litellm
from litellm.utils import ModelResponse, Choices, Message, Usage
import httpx
import httpx # type: ignore
class AlephAlphaError(Exception):

View file

@ -1,7 +1,7 @@
import os, types
import json
from enum import Enum
import requests, copy
import requests, copy # type: ignore
import time
from typing import Callable, Optional, List
from litellm.utils import ModelResponse, Usage, map_finish_reason, CustomStreamWrapper
@ -9,7 +9,7 @@ import litellm
from .prompt_templates.factory import prompt_factory, custom_prompt
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
from .base import BaseLLM
import httpx
import httpx # type: ignore
class AnthropicConstants(Enum):

View file

@ -12,7 +12,7 @@ from litellm.utils import (
from typing import Callable, Optional, BinaryIO
from litellm import OpenAIConfig
import litellm, json
import httpx
import httpx # type: ignore
from .custom_httpx.azure_dall_e_2 import CustomHTTPTransport, AsyncCustomHTTPTransport
from openai import AzureOpenAI, AsyncAzureOpenAI
import uuid

View file

@ -1,5 +1,5 @@
from typing import Optional, Union, Any
import types, requests
import types, requests # type: ignore
from .base import BaseLLM
from litellm.utils import (
ModelResponse,

View file

@ -1,7 +1,7 @@
import os
import json
from enum import Enum
import requests
import requests # type: ignore
import time
from typing import Callable
from litellm.utils import ModelResponse, Usage

View file

@ -163,10 +163,9 @@ class AmazonAnthropicClaude3Config:
"stop",
"temperature",
"top_p",
"extra_headers"
"extra_headers",
]
def map_openai_params(self, non_default_params: dict, optional_params: dict):
for param, value in non_default_params.items():
if param == "max_tokens":
@ -534,10 +533,12 @@ class AmazonStabilityConfig:
def add_custom_header(headers):
"""Closure to capture the headers and add them."""
def callback(request, **kwargs):
"""Actual callback function that Boto3 will call."""
for header_name, header_value in headers.items():
request.headers.add_header(header_name, header_value)
return callback
@ -672,7 +673,9 @@ def init_bedrock_client(
config=config,
)
if extra_headers:
client.meta.events.register('before-sign.bedrock-runtime.*', add_custom_header(extra_headers))
client.meta.events.register(
"before-sign.bedrock-runtime.*", add_custom_header(extra_headers)
)
return client
@ -1224,7 +1227,7 @@ def _embedding_func_single(
"input_type", "search_document"
) # aws bedrock example default - https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers?model=cohere.embed-english-v3
data = {"texts": [input], **inference_params} # type: ignore
body = json.dumps(data).encode("utf-8")
body = json.dumps(data).encode("utf-8") # type: ignore
## LOGGING
request_str = f"""
response = client.invoke_model(
@ -1416,7 +1419,7 @@ def image_generation(
## LOGGING
request_str = f"""
response = client.invoke_model(
body={body},
body={body}, # type: ignore
modelId={modelId},
accept="application/json",
contentType="application/json",

View file

@ -1,11 +1,11 @@
import os, types
import json
from enum import Enum
import requests
import requests # type: ignore
import time
from typing import Callable, Optional
import litellm
import httpx
import httpx # type: ignore
from litellm.utils import ModelResponse, Usage
from .prompt_templates.factory import prompt_factory, custom_prompt

View file

@ -1,12 +1,12 @@
import os, types
import json
from enum import Enum
import requests
import requests # type: ignore
import time, traceback
from typing import Callable, Optional
from litellm.utils import ModelResponse, Choices, Message, Usage
import litellm
import httpx
import httpx # type: ignore
class CohereError(Exception):

View file

@ -1,12 +1,12 @@
import os, types
import json
from enum import Enum
import requests
import requests # type: ignore
import time, traceback
from typing import Callable, Optional
from litellm.utils import ModelResponse, Choices, Message, Usage
import litellm
import httpx
import httpx # type: ignore
from .prompt_templates.factory import cohere_message_pt

View file

@ -1,7 +1,7 @@
import os, types
import json
from enum import Enum
import requests
import requests # type: ignore
import time, traceback
from typing import Callable, Optional, List
from litellm.utils import ModelResponse, Choices, Message, Usage

View file

@ -1,7 +1,7 @@
import os, types
import json
from enum import Enum
import requests
import requests # type: ignore
import time
from typing import Callable, Optional
import litellm

View file

@ -1,10 +1,10 @@
from itertools import chain
import requests, types, time
import requests, types, time # type: ignore
import json, uuid
import traceback
from typing import Optional
import litellm
import httpx, aiohttp, asyncio
import httpx, aiohttp, asyncio # type: ignore
from .prompt_templates.factory import prompt_factory, custom_prompt
@ -220,7 +220,10 @@ def get_ollama_response(
tool_calls=[
{
"id": f"call_{str(uuid.uuid4())}",
"function": {"name": function_call["name"], "arguments": json.dumps(function_call["arguments"])},
"function": {
"name": function_call["name"],
"arguments": json.dumps(function_call["arguments"]),
},
"type": "function",
}
],
@ -232,7 +235,9 @@ def get_ollama_response(
model_response["created"] = int(time.time())
model_response["model"] = "ollama/" + model
prompt_tokens = response_json.get("prompt_eval_count", len(encoding.encode(prompt, disallowed_special=()))) # type: ignore
completion_tokens = response_json.get("eval_count", len(response_json.get("message",dict()).get("content", "")))
completion_tokens = response_json.get(
"eval_count", len(response_json.get("message", dict()).get("content", ""))
)
model_response["usage"] = litellm.Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
@ -273,7 +278,10 @@ def ollama_completion_stream(url, data, logging_obj):
tool_calls=[
{
"id": f"call_{str(uuid.uuid4())}",
"function": {"name": function_call["name"], "arguments": json.dumps(function_call["arguments"])},
"function": {
"name": function_call["name"],
"arguments": json.dumps(function_call["arguments"]),
},
"type": "function",
}
],
@ -314,9 +322,10 @@ async def ollama_async_streaming(url, data, model_response, encoding, logging_ob
first_chunk_content = first_chunk.choices[0].delta.content or ""
response_content = first_chunk_content + "".join(
[
chunk.choices[0].delta.content
async for chunk in streamwrapper
if chunk.choices[0].delta.content]
chunk.choices[0].delta.content
async for chunk in streamwrapper
if chunk.choices[0].delta.content
]
)
function_call = json.loads(response_content)
delta = litellm.utils.Delta(
@ -324,7 +333,10 @@ async def ollama_async_streaming(url, data, model_response, encoding, logging_ob
tool_calls=[
{
"id": f"call_{str(uuid.uuid4())}",
"function": {"name": function_call["name"], "arguments": json.dumps(function_call["arguments"])},
"function": {
"name": function_call["name"],
"arguments": json.dumps(function_call["arguments"]),
},
"type": "function",
}
],
@ -373,7 +385,10 @@ async def ollama_acompletion(url, data, model_response, encoding, logging_obj):
tool_calls=[
{
"id": f"call_{str(uuid.uuid4())}",
"function": {"name": function_call["name"], "arguments": json.dumps(function_call["arguments"])},
"function": {
"name": function_call["name"],
"arguments": json.dumps(function_call["arguments"]),
},
"type": "function",
}
],
@ -387,7 +402,10 @@ async def ollama_acompletion(url, data, model_response, encoding, logging_obj):
model_response["created"] = int(time.time())
model_response["model"] = "ollama/" + data["model"]
prompt_tokens = response_json.get("prompt_eval_count", len(encoding.encode(data["prompt"], disallowed_special=()))) # type: ignore
completion_tokens = response_json.get("eval_count", len(response_json.get("message",dict()).get("content", "")))
completion_tokens = response_json.get(
"eval_count",
len(response_json.get("message", dict()).get("content", "")),
)
model_response["usage"] = litellm.Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
@ -475,6 +493,7 @@ async def ollama_aembeddings(
}
return model_response
def ollama_embeddings(
api_base: str,
model: str,
@ -492,5 +511,6 @@ def ollama_embeddings(
optional_params,
logging_obj,
model_response,
encoding)
encoding,
)
)

View file

@ -1,7 +1,7 @@
import os
import json
from enum import Enum
import requests
import requests # type: ignore
import time
from typing import Callable, Optional
from litellm.utils import ModelResponse, Usage

View file

@ -22,7 +22,6 @@ from litellm.utils import (
TextCompletionResponse,
)
from typing import Callable, Optional
import aiohttp, requests
import litellm
from .prompt_templates.factory import prompt_factory, custom_prompt
from openai import OpenAI, AsyncOpenAI

View file

@ -1,7 +1,7 @@
import os, types
import json
from enum import Enum
import requests
import requests # type: ignore
import time
from typing import Callable, Optional
import litellm

View file

@ -487,7 +487,7 @@ def format_prompt_togetherai(messages, prompt_format, chat_template):
def ibm_granite_pt(messages: list):
"""
IBM's Granite models uses the template:
IBM's Granite chat models uses the template:
<|system|> {system_message} <|user|> {user_message} <|assistant|> {assistant_message}
See: https://www.ibm.com/docs/en/watsonx-as-a-service?topic=solutions-supported-foundation-models
@ -503,12 +503,13 @@ def ibm_granite_pt(messages: list):
"pre_message": "<|user|>\n",
"post_message": "\n",
},
"assistant": {
"pre_message": "<|assistant|>\n",
"post_message": "\n",
'assistant': {
'pre_message': '<|assistant|>\n',
'post_message': '\n',
},
},
).strip()
final_prompt_value='<|assistant|>\n',
)
### ANTHROPIC ###
@ -981,7 +982,7 @@ def anthropic_messages_pt(messages: list):
# add role=tool support to allow function call result/error submission
user_message_types = {"user", "tool", "function"}
# reformat messages to ensure user/assistant are alternating, if there's either 2 consecutive 'user' messages or 2 consecutive 'assistant' message, merge them.
new_messages = []
new_messages: list = []
msg_i = 0
tool_use_param = False
while msg_i < len(messages):
@ -1524,24 +1525,9 @@ def prompt_factory(
return mistral_instruct_pt(messages=messages)
elif "meta-llama/llama-3" in model and "instruct" in model:
# https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3/
return custom_prompt(
role_dict={
"system": {
"pre_message": "<|start_header_id|>system<|end_header_id|>\n",
"post_message": "<|eot_id|>",
},
"user": {
"pre_message": "<|start_header_id|>user<|end_header_id|>\n",
"post_message": "<|eot_id|>",
},
"assistant": {
"pre_message": "<|start_header_id|>assistant<|end_header_id|>\n",
"post_message": "<|eot_id|>",
},
},
return hf_chat_template(
model="meta-llama/Meta-Llama-3-8B-Instruct",
messages=messages,
initial_prompt_value="<|begin_of_text|>",
final_prompt_value="<|start_header_id|>assistant<|end_header_id|>\n",
)
try:
if "meta-llama/llama-2" in model and "chat" in model:

View file

@ -1,11 +1,11 @@
import os, types
import json
import requests
import requests # type: ignore
import time
from typing import Callable, Optional
from litellm.utils import ModelResponse, Usage
import litellm
import httpx
import httpx # type: ignore
from .prompt_templates.factory import prompt_factory, custom_prompt

View file

@ -1,14 +1,14 @@
import os, types, traceback
from enum import Enum
import json
import requests
import requests # type: ignore
import time
from typing import Callable, Optional, Any
import litellm
from litellm.utils import ModelResponse, EmbeddingResponse, get_secret, Usage
import sys
from copy import deepcopy
import httpx
import httpx # type: ignore
from .prompt_templates.factory import prompt_factory, custom_prompt
@ -295,7 +295,7 @@ def completion(
EndpointName={model},
InferenceComponentName={model_id},
ContentType="application/json",
Body={data},
Body={data}, # type: ignore
CustomAttributes="accept_eula=true",
)
""" # type: ignore
@ -321,7 +321,7 @@ def completion(
response = client.invoke_endpoint(
EndpointName={model},
ContentType="application/json",
Body={data},
Body={data}, # type: ignore
CustomAttributes="accept_eula=true",
)
""" # type: ignore
@ -688,7 +688,7 @@ def embedding(
response = client.invoke_endpoint(
EndpointName={model},
ContentType="application/json",
Body={data},
Body={data}, # type: ignore
CustomAttributes="accept_eula=true",
)""" # type: ignore
logging_obj.pre_call(

View file

@ -6,11 +6,11 @@ Reference: https://docs.together.ai/docs/openai-api-compatibility
import os, types
import json
from enum import Enum
import requests
import requests # type: ignore
import time
from typing import Callable, Optional
import litellm
import httpx
import httpx # type: ignore
from litellm.utils import ModelResponse, Usage
from .prompt_templates.factory import prompt_factory, custom_prompt

View file

@ -1,12 +1,12 @@
import os, types
import json
from enum import Enum
import requests
import requests # type: ignore
import time
from typing import Callable, Optional, Union, List
from litellm.utils import ModelResponse, Usage, CustomStreamWrapper, map_finish_reason
import litellm, uuid
import httpx, inspect
import httpx, inspect # type: ignore
class VertexAIError(Exception):

View file

@ -3,7 +3,7 @@
import os, types
import json
from enum import Enum
import requests, copy
import requests, copy # type: ignore
import time, uuid
from typing import Callable, Optional, List
from litellm.utils import ModelResponse, Usage, map_finish_reason, CustomStreamWrapper
@ -17,7 +17,7 @@ from .prompt_templates.factory import (
extract_between_tags,
parse_xml_params,
)
import httpx
import httpx # type: ignore
class VertexAIError(Exception):

View file

@ -1,8 +1,8 @@
import os
import json
from enum import Enum
import requests
import time, httpx
import requests # type: ignore
import time, httpx # type: ignore
from typing import Callable, Any
from litellm.utils import ModelResponse, Usage
from .prompt_templates.factory import prompt_factory, custom_prompt

View file

@ -1,12 +1,13 @@
from enum import Enum
import json, types, time # noqa: E401
from contextlib import contextmanager
from typing import Callable, Dict, Optional, Any, Union, List
from contextlib import asynccontextmanager, contextmanager
from typing import AsyncGenerator, Callable, Dict, Generator, Optional, Any, Union, List
import httpx
import requests
import httpx # type: ignore
import requests # type: ignore
import litellm
from litellm.utils import ModelResponse, get_secret, Usage
from litellm.utils import Logging, ModelResponse, Usage, get_secret
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
from .base import BaseLLM
from .prompt_templates import factory as ptf
@ -192,7 +193,7 @@ class WatsonXAIEndpoint(str, Enum):
class IBMWatsonXAI(BaseLLM):
"""
Class to interface with IBM Watsonx.ai API for text generation and embeddings.
Class to interface with IBM watsonx.ai API for text generation and embeddings.
Reference: https://cloud.ibm.com/apidocs/watsonx-ai
"""
@ -343,7 +344,7 @@ class IBMWatsonXAI(BaseLLM):
)
if token is None and api_key is not None:
# generate the auth token
if print_verbose:
if print_verbose is not None:
print_verbose("Generating IAM token for Watsonx.ai")
token = self.generate_iam_token(api_key)
elif token is None and api_key is None:
@ -377,8 +378,9 @@ class IBMWatsonXAI(BaseLLM):
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
optional_params: dict,
logging_obj: Logging,
optional_params: Optional[dict] = None,
acompletion: bool = None,
litellm_params: Optional[dict] = None,
logger_fn=None,
timeout: Optional[float] = None,
@ -401,13 +403,15 @@ class IBMWatsonXAI(BaseLLM):
prompt = convert_messages_to_prompt(
model, messages, provider, custom_prompt_dict
)
manage_response = self._make_response_manager(async_=(acompletion is True), logging_obj=logging_obj)
def process_text_request(request_params: dict) -> ModelResponse:
with self._manage_response(
request_params, logging_obj=logging_obj, input=prompt, timeout=timeout
) as resp:
json_resp = resp.json()
def process_text_gen_response(json_resp: dict) -> ModelResponse:
if "results" not in json_resp:
raise WatsonXAIError(
status_code=500,
message=f"Error: Invalid response from Watsonx.ai API: {json_resp}",
)
generated_text = json_resp["results"][0]["generated_text"]
prompt_tokens = json_resp["results"][0]["input_token_count"]
completion_tokens = json_resp["results"][0]["generated_token_count"]
@ -426,25 +430,52 @@ class IBMWatsonXAI(BaseLLM):
)
return model_response
def process_stream_request(
def handle_text_request(request_params: dict) -> ModelResponse:
with manage_response(
request_params, input=prompt, timeout=timeout,
) as resp:
json_resp = resp.json()
return process_text_gen_response(json_resp)
async def handle_text_request_async(request_params: dict) -> ModelResponse:
async with manage_response(
request_params, input=prompt, timeout=timeout,
) as resp:
json_resp = resp.json()
return process_text_gen_response(json_resp)
def handle_stream_request(
request_params: dict,
) -> litellm.CustomStreamWrapper:
# stream the response - generated chunks will be handled
# by litellm.utils.CustomStreamWrapper.handle_watsonx_stream
with self._manage_response(
request_params,
logging_obj=logging_obj,
stream=True,
input=prompt,
timeout=timeout,
with manage_response(
request_params, stream=True, input=prompt, timeout=timeout,
) as resp:
response = litellm.CustomStreamWrapper(
streamwrapper = litellm.CustomStreamWrapper(
resp.iter_lines(),
model=model,
custom_llm_provider="watsonx",
logging_obj=logging_obj,
)
return response
return streamwrapper
async def handle_stream_request_async(
request_params: dict,
) -> litellm.CustomStreamWrapper:
# stream the response - generated chunks will be handled
# by litellm.utils.CustomStreamWrapper.handle_watsonx_stream
async with manage_response(
request_params, stream=True, input=prompt, timeout=timeout,
) as resp:
streamwrapper = litellm.CustomStreamWrapper(
resp.aiter_lines(),
model=model,
custom_llm_provider="watsonx",
logging_obj=logging_obj,
)
return streamwrapper
try:
## Get the response from the model
@ -455,10 +486,18 @@ class IBMWatsonXAI(BaseLLM):
optional_params=optional_params,
print_verbose=print_verbose,
)
if stream:
return process_stream_request(req_params)
if stream and acompletion:
# stream and async text generation
return handle_stream_request_async(req_params)
elif stream:
# streaming text generation
return handle_stream_request(req_params)
elif acompletion:
# async text generation
return handle_text_request_async(req_params)
else:
return process_text_request(req_params)
# regular text generation
return handle_text_request(req_params)
except WatsonXAIError as e:
raise e
except Exception as e:
@ -473,6 +512,7 @@ class IBMWatsonXAI(BaseLLM):
model_response=None,
optional_params=None,
encoding=None,
aembedding=None,
):
"""
Send a text embedding request to the IBM Watsonx.ai API.
@ -507,9 +547,6 @@ class IBMWatsonXAI(BaseLLM):
}
request_params = dict(version=api_params["api_version"])
url = api_params["url"].rstrip("/") + WatsonXAIEndpoint.EMBEDDINGS
# request = httpx.Request(
# "POST", url, headers=headers, json=payload, params=request_params
# )
req_params = {
"method": "POST",
"url": url,
@ -517,25 +554,47 @@ class IBMWatsonXAI(BaseLLM):
"json": payload,
"params": request_params,
}
with self._manage_response(
req_params, logging_obj=logging_obj, input=input
) as resp:
json_resp = resp.json()
results = json_resp.get("results", [])
embedding_response = []
for idx, result in enumerate(results):
embedding_response.append(
{"object": "embedding", "index": idx, "embedding": result["embedding"]}
manage_response = self._make_response_manager(async_=(aembedding is True), logging_obj=logging_obj)
def process_embedding_response(json_resp: dict) -> ModelResponse:
results = json_resp.get("results", [])
embedding_response = []
for idx, result in enumerate(results):
embedding_response.append(
{"object": "embedding", "index": idx, "embedding": result["embedding"]}
)
model_response["object"] = "list"
model_response["data"] = embedding_response
model_response["model"] = model
input_tokens = json_resp.get("input_token_count", 0)
model_response.usage = Usage(
prompt_tokens=input_tokens, completion_tokens=0, total_tokens=input_tokens
)
model_response["object"] = "list"
model_response["data"] = embedding_response
model_response["model"] = model
input_tokens = json_resp.get("input_token_count", 0)
model_response.usage = Usage(
prompt_tokens=input_tokens, completion_tokens=0, total_tokens=input_tokens
)
return model_response
return model_response
def handle_embedding_request(request_params: dict) -> ModelResponse:
with manage_response(
request_params, input=input
) as resp:
json_resp = resp.json()
return process_embedding_response(json_resp)
async def handle_embedding_request_async(request_params: dict) -> ModelResponse:
async with manage_response(
request_params, input=input
) as resp:
json_resp = resp.json()
return process_embedding_response(json_resp)
try:
if aembedding:
return handle_embedding_request_async(req_params)
else:
return handle_embedding_request(req_params)
except WatsonXAIError as e:
raise e
except Exception as e:
raise WatsonXAIError(status_code=500, message=str(e))
def generate_iam_token(self, api_key=None, **params):
headers = {}
@ -557,53 +616,116 @@ class IBMWatsonXAI(BaseLLM):
iam_access_token = json_data["access_token"]
self.token = iam_access_token
return iam_access_token
def _make_response_manager(
self,
async_: bool,
logging_obj: Logging
) -> Callable[..., Generator[Union[requests.Response, httpx.Response], None, None]]:
"""
Returns a context manager that manages the response from the request.
if async_ is True, returns an async context manager, otherwise returns a regular context manager.
@contextmanager
def _manage_response(
self,
request_params: dict,
logging_obj: Any,
stream: bool = False,
input: Optional[Any] = None,
timeout: Optional[float] = None,
):
request_str = (
f"response = {request_params['method']}(\n"
f"\turl={request_params['url']},\n"
f"\tjson={request_params['json']},\n"
f")"
)
logging_obj.pre_call(
input=input,
api_key=request_params["headers"].get("Authorization"),
additional_args={
"complete_input_dict": request_params["json"],
"request_str": request_str,
},
)
if timeout:
request_params["timeout"] = timeout
try:
if stream:
resp = requests.request(
**request_params,
stream=True,
)
resp.raise_for_status()
yield resp
else:
resp = requests.request(**request_params)
resp.raise_for_status()
yield resp
except Exception as e:
raise WatsonXAIError(status_code=500, message=str(e))
if not stream:
Usage:
```python
manage_response = self._make_response_manager(async_=True, logging_obj=logging_obj)
async with manage_response(request_params) as resp:
...
# or
manage_response = self._make_response_manager(async_=False, logging_obj=logging_obj)
with manage_response(request_params) as resp:
...
```
"""
def pre_call(
request_params: dict,
input:Optional[Any]=None,
):
request_str = (
f"response = {'await ' if async_ else ''}{request_params['method']}(\n"
f"\turl={request_params['url']},\n"
f"\tjson={request_params['json']},\n"
f")"
)
logging_obj.pre_call(
input=input,
api_key=request_params["headers"].get("Authorization"),
additional_args={
"complete_input_dict": request_params["json"],
"request_str": request_str,
},
)
def post_call(resp, request_params):
logging_obj.post_call(
input=input,
api_key=request_params["headers"].get("Authorization"),
original_response=json.dumps(resp.json()),
additional_args={
"status_code": resp.status_code,
"complete_input_dict": request_params["json"],
"complete_input_dict": request_params.get("data", request_params.get("json")),
},
)
@contextmanager
def _manage_response(
request_params: dict,
stream: bool = False,
input: Optional[Any] = None,
timeout: float = None,
) -> Generator[requests.Response, None, None]:
"""
Returns a context manager that yields the response from the request.
"""
pre_call(request_params, input)
if timeout:
request_params["timeout"] = timeout
if stream:
request_params["stream"] = stream
try:
resp = requests.request(**request_params)
resp.raise_for_status()
yield resp
except Exception as e:
raise WatsonXAIError(status_code=500, message=str(e))
if not stream:
post_call(resp, request_params)
@asynccontextmanager
async def _manage_response_async(
request_params: dict,
stream: bool = False,
input: Optional[Any] = None,
timeout: float = None,
) -> AsyncGenerator[httpx.Response, None]:
pre_call(request_params, input)
if timeout:
request_params["timeout"] = timeout
if stream:
request_params["stream"] = stream
try:
# async with AsyncHTTPHandler(timeout=timeout) as client:
self.async_handler = AsyncHTTPHandler(
timeout=httpx.Timeout(timeout=request_params.pop("timeout", 600.0), connect=5.0),
)
# async_handler.client.verify = False
if "json" in request_params:
request_params['data'] = json.dumps(request_params.pop("json", {}))
method = request_params.pop("method")
if method.upper() == "POST":
resp = await self.async_handler.post(**request_params)
else:
resp = await self.async_handler.get(**request_params)
yield resp
# await async_handler.close()
except Exception as e:
raise WatsonXAIError(status_code=500, message=str(e))
if not stream:
post_call(resp, request_params)
if async_:
return _manage_response_async
else:
return _manage_response

View file

@ -73,6 +73,7 @@ from .llms.azure_text import AzureTextCompletion
from .llms.anthropic import AnthropicChatCompletion
from .llms.anthropic_text import AnthropicTextCompletion
from .llms.huggingface_restapi import Huggingface
from .llms.watsonx import IBMWatsonXAI
from .llms.prompt_templates.factory import (
prompt_factory,
custom_prompt,
@ -109,6 +110,7 @@ anthropic_text_completions = AnthropicTextCompletion()
azure_chat_completions = AzureChatCompletion()
azure_text_completions = AzureTextCompletion()
huggingface = Huggingface()
watsonxai = IBMWatsonXAI()
####### COMPLETION ENDPOINTS ################
@ -313,6 +315,7 @@ async def acompletion(
or custom_llm_provider == "gemini"
or custom_llm_provider == "sagemaker"
or custom_llm_provider == "anthropic"
or custom_llm_provider == "watsonx"
or custom_llm_provider in litellm.openai_compatible_providers
): # currently implemented aiohttp calls for just azure, openai, hf, ollama, vertex ai soon all.
init_response = await loop.run_in_executor(None, func_with_context)
@ -1908,7 +1911,7 @@ def completion(
response = response
elif custom_llm_provider == "watsonx":
custom_prompt_dict = custom_prompt_dict or litellm.custom_prompt_dict
response = watsonx.IBMWatsonXAI().completion(
response = watsonxai.completion(
model=model,
messages=messages,
custom_prompt_dict=custom_prompt_dict,
@ -1919,7 +1922,8 @@ def completion(
logger_fn=logger_fn,
encoding=encoding,
logging_obj=logging,
timeout=timeout, # type: ignore
acompletion=acompletion,
timeout=timeout,
)
if (
"stream" in optional_params
@ -2572,6 +2576,7 @@ async def aembedding(*args, **kwargs):
or custom_llm_provider == "fireworks_ai"
or custom_llm_provider == "ollama"
or custom_llm_provider == "vertex_ai"
or custom_llm_provider == "watsonx"
): # currently implemented aiohttp calls for just azure and openai, soon all.
# Await normally
init_response = await loop.run_in_executor(None, func_with_context)
@ -3029,13 +3034,14 @@ def embedding(
aembedding=aembedding,
)
elif custom_llm_provider == "watsonx":
response = watsonx.IBMWatsonXAI().embedding(
response = watsonxai.embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
aembedding=aembedding,
)
else:
args = locals()

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -1 +0,0 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[185],{11837:function(n,e,t){Promise.resolve().then(t.t.bind(t,99646,23)),Promise.resolve().then(t.t.bind(t,63385,23))},63385:function(){},99646:function(n){n.exports={style:{fontFamily:"'__Inter_12bbc4', '__Inter_Fallback_12bbc4'",fontStyle:"normal"},className:"__className_12bbc4"}}},function(n){n.O(0,[971,69,744],function(){return n(n.s=11837)}),_N_E=n.O()}]);

View file

@ -0,0 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[185],{87421:function(n,e,t){Promise.resolve().then(t.t.bind(t,99646,23)),Promise.resolve().then(t.t.bind(t,63385,23))},63385:function(){},99646:function(n){n.exports={style:{fontFamily:"'__Inter_c23dc8', '__Inter_Fallback_c23dc8'",fontStyle:"normal"},className:"__className_c23dc8"}}},function(n){n.O(0,[971,69,744],function(){return n(n.s=87421)}),_N_E=n.O()}]);

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -1 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[744],{70377:function(e,n,t){Promise.resolve().then(t.t.bind(t,47690,23)),Promise.resolve().then(t.t.bind(t,48955,23)),Promise.resolve().then(t.t.bind(t,5613,23)),Promise.resolve().then(t.t.bind(t,11902,23)),Promise.resolve().then(t.t.bind(t,31778,23)),Promise.resolve().then(t.t.bind(t,77831,23))}},function(e){var n=function(n){return e(e.s=n)};e.O(0,[971,69],function(){return n(35317),n(70377)}),_N_E=e.O()}]);
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[744],{32028:function(e,n,t){Promise.resolve().then(t.t.bind(t,47690,23)),Promise.resolve().then(t.t.bind(t,48955,23)),Promise.resolve().then(t.t.bind(t,5613,23)),Promise.resolve().then(t.t.bind(t,11902,23)),Promise.resolve().then(t.t.bind(t,31778,23)),Promise.resolve().then(t.t.bind(t,77831,23))}},function(e){var n=function(n){return e(e.s=n)};e.O(0,[971,69],function(){return n(35317),n(32028)}),_N_E=e.O()}]);

View file

@ -1 +1 @@
!function(){"use strict";var e,t,n,r,o,u,i,c,f,a={},l={};function d(e){var t=l[e];if(void 0!==t)return t.exports;var n=l[e]={id:e,loaded:!1,exports:{}},r=!0;try{a[e](n,n.exports,d),r=!1}finally{r&&delete l[e]}return n.loaded=!0,n.exports}d.m=a,e=[],d.O=function(t,n,r,o){if(n){o=o||0;for(var u=e.length;u>0&&e[u-1][2]>o;u--)e[u]=e[u-1];e[u]=[n,r,o];return}for(var i=1/0,u=0;u<e.length;u++){for(var n=e[u][0],r=e[u][1],o=e[u][2],c=!0,f=0;f<n.length;f++)i>=o&&Object.keys(d.O).every(function(e){return d.O[e](n[f])})?n.splice(f--,1):(c=!1,o<i&&(i=o));if(c){e.splice(u--,1);var a=r();void 0!==a&&(t=a)}}return t},d.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return d.d(t,{a:t}),t},n=Object.getPrototypeOf?function(e){return Object.getPrototypeOf(e)}:function(e){return e.__proto__},d.t=function(e,r){if(1&r&&(e=this(e)),8&r||"object"==typeof e&&e&&(4&r&&e.__esModule||16&r&&"function"==typeof e.then))return e;var o=Object.create(null);d.r(o);var u={};t=t||[null,n({}),n([]),n(n)];for(var i=2&r&&e;"object"==typeof i&&!~t.indexOf(i);i=n(i))Object.getOwnPropertyNames(i).forEach(function(t){u[t]=function(){return e[t]}});return u.default=function(){return e},d.d(o,u),o},d.d=function(e,t){for(var n in t)d.o(t,n)&&!d.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:t[n]})},d.f={},d.e=function(e){return Promise.all(Object.keys(d.f).reduce(function(t,n){return d.f[n](e,t),t},[]))},d.u=function(e){},d.miniCssF=function(e){return"static/css/7de0c97d470f519f.css"},d.g=function(){if("object"==typeof globalThis)return globalThis;try{return this||Function("return this")()}catch(e){if("object"==typeof window)return window}}(),d.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},r={},o="_N_E:",d.l=function(e,t,n,u){if(r[e]){r[e].push(t);return}if(void 0!==n)for(var i,c,f=document.getElementsByTagName("script"),a=0;a<f.length;a++){var l=f[a];if(l.getAttribute("src")==e||l.getAttribute("data-webpack")==o+n){i=l;break}}i||(c=!0,(i=document.createElement("script")).charset="utf-8",i.timeout=120,d.nc&&i.setAttribute("nonce",d.nc),i.setAttribute("data-webpack",o+n),i.src=d.tu(e)),r[e]=[t];var s=function(t,n){i.onerror=i.onload=null,clearTimeout(p);var o=r[e];if(delete r[e],i.parentNode&&i.parentNode.removeChild(i),o&&o.forEach(function(e){return e(n)}),t)return t(n)},p=setTimeout(s.bind(null,void 0,{type:"timeout",target:i}),12e4);i.onerror=s.bind(null,i.onerror),i.onload=s.bind(null,i.onload),c&&document.head.appendChild(i)},d.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},d.nmd=function(e){return e.paths=[],e.children||(e.children=[]),e},d.tt=function(){return void 0===u&&(u={createScriptURL:function(e){return e}},"undefined"!=typeof trustedTypes&&trustedTypes.createPolicy&&(u=trustedTypes.createPolicy("nextjs#bundler",u))),u},d.tu=function(e){return d.tt().createScriptURL(e)},d.p="/ui/_next/",i={272:0},d.f.j=function(e,t){var n=d.o(i,e)?i[e]:void 0;if(0!==n){if(n)t.push(n[2]);else if(272!=e){var r=new Promise(function(t,r){n=i[e]=[t,r]});t.push(n[2]=r);var o=d.p+d.u(e),u=Error();d.l(o,function(t){if(d.o(i,e)&&(0!==(n=i[e])&&(i[e]=void 0),n)){var r=t&&("load"===t.type?"missing":t.type),o=t&&t.target&&t.target.src;u.message="Loading chunk "+e+" failed.\n("+r+": "+o+")",u.name="ChunkLoadError",u.type=r,u.request=o,n[1](u)}},"chunk-"+e,e)}else i[e]=0}},d.O.j=function(e){return 0===i[e]},c=function(e,t){var n,r,o=t[0],u=t[1],c=t[2],f=0;if(o.some(function(e){return 0!==i[e]})){for(n in u)d.o(u,n)&&(d.m[n]=u[n]);if(c)var a=c(d)}for(e&&e(t);f<o.length;f++)r=o[f],d.o(i,r)&&i[r]&&i[r][0](),i[r]=0;return d.O(a)},(f=self.webpackChunk_N_E=self.webpackChunk_N_E||[]).forEach(c.bind(null,0)),f.push=c.bind(null,f.push.bind(f))}();
!function(){"use strict";var e,t,n,r,o,u,i,c,f,a={},l={};function d(e){var t=l[e];if(void 0!==t)return t.exports;var n=l[e]={id:e,loaded:!1,exports:{}},r=!0;try{a[e](n,n.exports,d),r=!1}finally{r&&delete l[e]}return n.loaded=!0,n.exports}d.m=a,e=[],d.O=function(t,n,r,o){if(n){o=o||0;for(var u=e.length;u>0&&e[u-1][2]>o;u--)e[u]=e[u-1];e[u]=[n,r,o];return}for(var i=1/0,u=0;u<e.length;u++){for(var n=e[u][0],r=e[u][1],o=e[u][2],c=!0,f=0;f<n.length;f++)i>=o&&Object.keys(d.O).every(function(e){return d.O[e](n[f])})?n.splice(f--,1):(c=!1,o<i&&(i=o));if(c){e.splice(u--,1);var a=r();void 0!==a&&(t=a)}}return t},d.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return d.d(t,{a:t}),t},n=Object.getPrototypeOf?function(e){return Object.getPrototypeOf(e)}:function(e){return e.__proto__},d.t=function(e,r){if(1&r&&(e=this(e)),8&r||"object"==typeof e&&e&&(4&r&&e.__esModule||16&r&&"function"==typeof e.then))return e;var o=Object.create(null);d.r(o);var u={};t=t||[null,n({}),n([]),n(n)];for(var i=2&r&&e;"object"==typeof i&&!~t.indexOf(i);i=n(i))Object.getOwnPropertyNames(i).forEach(function(t){u[t]=function(){return e[t]}});return u.default=function(){return e},d.d(o,u),o},d.d=function(e,t){for(var n in t)d.o(t,n)&&!d.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:t[n]})},d.f={},d.e=function(e){return Promise.all(Object.keys(d.f).reduce(function(t,n){return d.f[n](e,t),t},[]))},d.u=function(e){},d.miniCssF=function(e){return"static/css/a1602eb39f799143.css"},d.g=function(){if("object"==typeof globalThis)return globalThis;try{return this||Function("return this")()}catch(e){if("object"==typeof window)return window}}(),d.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},r={},o="_N_E:",d.l=function(e,t,n,u){if(r[e]){r[e].push(t);return}if(void 0!==n)for(var i,c,f=document.getElementsByTagName("script"),a=0;a<f.length;a++){var l=f[a];if(l.getAttribute("src")==e||l.getAttribute("data-webpack")==o+n){i=l;break}}i||(c=!0,(i=document.createElement("script")).charset="utf-8",i.timeout=120,d.nc&&i.setAttribute("nonce",d.nc),i.setAttribute("data-webpack",o+n),i.src=d.tu(e)),r[e]=[t];var s=function(t,n){i.onerror=i.onload=null,clearTimeout(p);var o=r[e];if(delete r[e],i.parentNode&&i.parentNode.removeChild(i),o&&o.forEach(function(e){return e(n)}),t)return t(n)},p=setTimeout(s.bind(null,void 0,{type:"timeout",target:i}),12e4);i.onerror=s.bind(null,i.onerror),i.onload=s.bind(null,i.onload),c&&document.head.appendChild(i)},d.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},d.nmd=function(e){return e.paths=[],e.children||(e.children=[]),e},d.tt=function(){return void 0===u&&(u={createScriptURL:function(e){return e}},"undefined"!=typeof trustedTypes&&trustedTypes.createPolicy&&(u=trustedTypes.createPolicy("nextjs#bundler",u))),u},d.tu=function(e){return d.tt().createScriptURL(e)},d.p="/ui/_next/",i={272:0},d.f.j=function(e,t){var n=d.o(i,e)?i[e]:void 0;if(0!==n){if(n)t.push(n[2]);else if(272!=e){var r=new Promise(function(t,r){n=i[e]=[t,r]});t.push(n[2]=r);var o=d.p+d.u(e),u=Error();d.l(o,function(t){if(d.o(i,e)&&(0!==(n=i[e])&&(i[e]=void 0),n)){var r=t&&("load"===t.type?"missing":t.type),o=t&&t.target&&t.target.src;u.message="Loading chunk "+e+" failed.\n("+r+": "+o+")",u.name="ChunkLoadError",u.type=r,u.request=o,n[1](u)}},"chunk-"+e,e)}else i[e]=0}},d.O.j=function(e){return 0===i[e]},c=function(e,t){var n,r,o=t[0],u=t[1],c=t[2],f=0;if(o.some(function(e){return 0!==i[e]})){for(n in u)d.o(u,n)&&(d.m[n]=u[n]);if(c)var a=c(d)}for(e&&e(t);f<o.length;f++)r=o[f],d.o(i,r)&&i[r]&&i[r][0](),i[r]=0;return d.O(a)},(f=self.webpackChunk_N_E=self.webpackChunk_N_E||[]).forEach(c.bind(null,0)),f.push=c.bind(null,f.push.bind(f))}();

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -1 +1 @@
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-d85d62a2bbfac48f.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-dafd44dfa2da140c.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-e49705773ae41779.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-096338c8e1915716.js" async="" crossorigin=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-d85d62a2bbfac48f.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/7de0c97d470f519f.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[18889,[\"936\",\"static/chunks/2f6dbc85-17d29013b8ff3da5.js\",\"319\",\"static/chunks/319-4467f3d35ad11cf1.js\",\"931\",\"static/chunks/app/page-f32196ae7cd3d914.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/7de0c97d470f519f.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"OcLXYgLcgQyjMd6bH1bqU\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_12bbc4\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-5b257e1ab47d4b4a.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-dafd44dfa2da140c.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-e49705773ae41779.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-9b4fb13a7db53edf.js" async="" crossorigin=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-5b257e1ab47d4b4a.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/a1602eb39f799143.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[25539,[\"936\",\"static/chunks/2f6dbc85-17d29013b8ff3da5.js\",\"566\",\"static/chunks/566-ccd699ab19124658.js\",\"931\",\"static/chunks/app/page-c804e862b63be987.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/a1602eb39f799143.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"K8KXTbmuI2ArWjjdMi2iq\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_c23dc8\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>

View file

@ -1,7 +1,7 @@
2:I[77831,[],""]
3:I[18889,["936","static/chunks/2f6dbc85-17d29013b8ff3da5.js","319","static/chunks/319-4467f3d35ad11cf1.js","931","static/chunks/app/page-f32196ae7cd3d914.js"],""]
3:I[25539,["936","static/chunks/2f6dbc85-17d29013b8ff3da5.js","566","static/chunks/566-ccd699ab19124658.js","931","static/chunks/app/page-c804e862b63be987.js"],""]
4:I[5613,[],""]
5:I[31778,[],""]
0:["OcLXYgLcgQyjMd6bH1bqU",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_12bbc4","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/7de0c97d470f519f.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
0:["K8KXTbmuI2ArWjjdMi2iq",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_c23dc8","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/a1602eb39f799143.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]]
1:null

View file

@ -515,6 +515,8 @@ class NewTeamRequest(TeamBase):
class GlobalEndUsersSpend(LiteLLMBase):
api_key: Optional[str] = None
startTime: Optional[datetime] = None
endTime: Optional[datetime] = None
class TeamMemberAddRequest(LiteLLMBase):

View file

@ -252,7 +252,7 @@ def run_server(
if model and "ollama" in model and api_base is None:
run_ollama_serve()
if test_async is True:
import requests, concurrent, time
import requests, concurrent, time # type: ignore
api_base = f"http://{host}:{port}"
@ -418,7 +418,7 @@ def run_server(
read from there and save it to os.env['DATABASE_URL']
"""
try:
import yaml, asyncio
import yaml, asyncio # type: ignore
except:
raise ImportError(
"yaml needs to be imported. Run - `pip install 'litellm[proxy]'`"

View file

@ -30,7 +30,7 @@ sys.path.insert(
try:
import fastapi
import backoff
import yaml
import yaml # type: ignore
import orjson
import logging
from apscheduler.schedulers.asyncio import AsyncIOScheduler
@ -3731,6 +3731,7 @@ async def chat_completion(
"x-litellm-model-id": model_id,
"x-litellm-cache-key": cache_key,
"x-litellm-model-api-base": api_base,
"x-litellm-version": version,
}
selected_data_generator = select_data_generator(
response=response,
@ -3746,6 +3747,7 @@ async def chat_completion(
fastapi_response.headers["x-litellm-model-id"] = model_id
fastapi_response.headers["x-litellm-cache-key"] = cache_key
fastapi_response.headers["x-litellm-model-api-base"] = api_base
fastapi_response.headers["x-litellm-version"] = version
### CALL HOOKS ### - modify outgoing data
response = await proxy_logging_obj.post_call_success_hook(
@ -3902,14 +3904,10 @@ async def completion(
},
)
if hasattr(response, "_hidden_params"):
model_id = response._hidden_params.get("model_id", None) or ""
original_response = (
response._hidden_params.get("original_response", None) or ""
)
else:
model_id = ""
original_response = ""
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
verbose_proxy_logger.debug("final response: %s", response)
if (
@ -3917,6 +3915,9 @@ async def completion(
): # use generate_responses to stream responses
custom_headers = {
"x-litellm-model-id": model_id,
"x-litellm-cache-key": cache_key,
"x-litellm-model-api-base": api_base,
"x-litellm-version": version,
}
selected_data_generator = select_data_generator(
response=response,
@ -3931,6 +3932,10 @@ async def completion(
)
fastapi_response.headers["x-litellm-model-id"] = model_id
fastapi_response.headers["x-litellm-cache-key"] = cache_key
fastapi_response.headers["x-litellm-model-api-base"] = api_base
fastapi_response.headers["x-litellm-version"] = version
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
@ -3970,6 +3975,7 @@ async def completion(
) # azure compatible endpoint
async def embeddings(
request: Request,
fastapi_response: Response,
model: Optional[str] = None,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
@ -4116,6 +4122,17 @@ async def embeddings(
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
fastapi_response.headers["x-litellm-model-id"] = model_id
fastapi_response.headers["x-litellm-cache-key"] = cache_key
fastapi_response.headers["x-litellm-model-api-base"] = api_base
fastapi_response.headers["x-litellm-version"] = version
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
@ -4154,6 +4171,7 @@ async def embeddings(
)
async def image_generation(
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
global proxy_logging_obj
@ -4273,6 +4291,17 @@ async def image_generation(
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
fastapi_response.headers["x-litellm-model-id"] = model_id
fastapi_response.headers["x-litellm-cache-key"] = cache_key
fastapi_response.headers["x-litellm-model-api-base"] = api_base
fastapi_response.headers["x-litellm-version"] = version
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
@ -4309,6 +4338,7 @@ async def image_generation(
)
async def audio_transcriptions(
request: Request,
fastapi_response: Response,
file: UploadFile = File(...),
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
@ -4453,6 +4483,18 @@ async def audio_transcriptions(
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
fastapi_response.headers["x-litellm-model-id"] = model_id
fastapi_response.headers["x-litellm-cache-key"] = cache_key
fastapi_response.headers["x-litellm-model-api-base"] = api_base
fastapi_response.headers["x-litellm-version"] = version
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
@ -4492,6 +4534,7 @@ async def audio_transcriptions(
)
async def moderations(
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
@ -4616,6 +4659,17 @@ async def moderations(
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
fastapi_response.headers["x-litellm-model-id"] = model_id
fastapi_response.headers["x-litellm-cache-key"] = cache_key
fastapi_response.headers["x-litellm-model-api-base"] = api_base
fastapi_response.headers["x-litellm-version"] = version
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
@ -5821,35 +5875,38 @@ async def global_spend_end_users(data: Optional[GlobalEndUsersSpend] = None):
if prisma_client is None:
raise HTTPException(status_code=500, detail={"error": "No db connected"})
if data is None:
sql_query = f"""SELECT * FROM "Last30dTopEndUsersSpend";"""
"""
Gets the top 100 end-users for a given api key
"""
startTime = None
endTime = None
selected_api_key = None
if data is not None:
startTime = data.startTime
endTime = data.endTime
selected_api_key = data.api_key
response = await prisma_client.db.query_raw(query=sql_query)
else:
"""
Gets the top 100 end-users for a given api key
"""
current_date = datetime.now()
past_date = current_date - timedelta(days=30)
response = await prisma_client.db.litellm_spendlogs.group_by( # type: ignore
by=["end_user"],
where={
"AND": [{"startTime": {"gte": past_date}}, {"api_key": data.api_key}] # type: ignore
},
sum={"spend": True},
order={"_sum": {"spend": "desc"}}, # type: ignore
take=100,
count=True,
)
if response is not None and isinstance(response, list):
new_response = []
for r in response:
new_r = r
new_r["total_spend"] = r["_sum"]["spend"]
new_r["total_count"] = r["_count"]["_all"]
new_r.pop("_sum")
new_r.pop("_count")
new_response.append(new_r)
startTime = startTime or datetime.now() - timedelta(days=30)
endTime = endTime or datetime.now()
sql_query = """
SELECT end_user, COUNT(*) AS total_count, SUM(spend) AS total_spend
FROM "LiteLLM_SpendLogs"
WHERE "startTime" >= $1::timestamp
AND "startTime" < $2::timestamp
AND (
CASE
WHEN $3::TEXT IS NULL THEN TRUE
ELSE api_key = $3
END
)
GROUP BY end_user
ORDER BY total_spend DESC
LIMIT 100
"""
response = await prisma_client.db.query_raw(
sql_query, startTime, endTime, selected_api_key
)
return response

View file

@ -1689,12 +1689,12 @@ def get_instance_fn(value: str, config_file_path: Optional[str] = None) -> Any:
module_file_path = os.path.join(directory, *module_name.split("."))
module_file_path += ".py"
spec = importlib.util.spec_from_file_location(module_name, module_file_path)
spec = importlib.util.spec_from_file_location(module_name, module_file_path) # type: ignore
if spec is None:
raise ImportError(
f"Could not find a module specification for {module_file_path}"
)
module = importlib.util.module_from_spec(spec)
module = importlib.util.module_from_spec(spec) # type: ignore
spec.loader.exec_module(module) # type: ignore
else:
# Dynamically import the module

View file

@ -6,7 +6,7 @@
# - use litellm.success + failure callbacks to log when a request completed
# - in get_available_deployment, for a given model group name -> pick based on traffic
import dotenv, os, requests, random
import dotenv, os, requests, random # type: ignore
from typing import Optional
dotenv.load_dotenv() # Loading env variables using dotenv

View file

@ -1,7 +1,7 @@
#### What this does ####
# picks based on response time (for streaming, this is time to first token)
from pydantic import BaseModel, Extra, Field, root_validator
import dotenv, os, requests, random
import dotenv, os, requests, random # type: ignore
from typing import Optional, Union, List, Dict
from datetime import datetime, timedelta
import random

View file

@ -1,7 +1,7 @@
#### What this does ####
# picks based on response time (for streaming, this is time to first token)
from pydantic import BaseModel, Extra, Field, root_validator
import dotenv, os, requests, random
from pydantic import BaseModel, Extra, Field, root_validator # type: ignore
import dotenv, os, requests, random # type: ignore
from typing import Optional, Union, List, Dict
from datetime import datetime, timedelta
import random

View file

@ -231,14 +231,17 @@ def test_cost_bedrock_pricing():
assert cost == predicted_cost
@pytest.mark.skip(reason="AWS disabled our access")
def test_cost_bedrock_pricing_actual_calls():
litellm.set_verbose = True
model = "anthropic.claude-instant-v1"
messages = [{"role": "user", "content": "Hey, how's it going?"}]
response = litellm.completion(model=model, messages=messages)
assert response._hidden_params["region_name"] is not None
response = litellm.completion(
model=model, messages=messages, mock_response="hello cool one"
)
print("response", response)
cost = litellm.completion_cost(
model="bedrock/anthropic.claude-instant-v1",
completion_response=response,
messages=[{"role": "user", "content": "Hey, how's it going?"}],
)

View file

@ -14,7 +14,7 @@ import subprocess, os
from os.path import abspath, join, dirname
import litellm, openai
import itertools
import random, uuid, requests
import random, uuid, requests # type: ignore
from functools import wraps
import datetime, time
import tiktoken
@ -36,7 +36,7 @@ import litellm._service_logger # for storing API inputs, outputs, and metadata
try:
# this works in python 3.8
import pkg_resources
import pkg_resources # type: ignore
filename = pkg_resources.resource_filename(__name__, "llms/tokenizers")
# try:
@ -4161,8 +4161,30 @@ def cost_per_token(
model_with_provider_and_region in model_cost_ref
): # use region based pricing, if it's available
model_with_provider = model_with_provider_and_region
if model_with_provider in model_cost_ref:
model_without_prefix = model
model_parts = model.split("/")
if len(model_parts) > 1:
model_without_prefix = model_parts[1]
else:
model_without_prefix = model
"""
Code block that formats model to lookup in litellm.model_cost
Option1. model = "bedrock/ap-northeast-1/anthropic.claude-instant-v1". This is the most accurate since it is region based. Should always be option 1
Option2. model = "openai/gpt-4" - model = provider/model
Option3. model = "anthropic.claude-3" - model = model
"""
if (
model_with_provider in model_cost_ref
): # Option 2. use model with provider, model = "openai/gpt-4"
model = model_with_provider
elif model in model_cost_ref: # Option 1. use model passed, model="gpt-4"
model = model
elif (
model_without_prefix in model_cost_ref
): # Option 3. if user passed model="bedrock/anthropic.claude-3", use model="anthropic.claude-3"
model = model_without_prefix
# see this https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models
print_verbose(f"Looking up model={model} in model_cost_map")
if model in model_cost_ref:
@ -7766,11 +7788,11 @@ def _calculate_retry_after(
try:
retry_after = int(retry_header)
except Exception:
retry_date_tuple = email.utils.parsedate_tz(retry_header)
retry_date_tuple = email.utils.parsedate_tz(retry_header) # type: ignore
if retry_date_tuple is None:
retry_after = -1
else:
retry_date = email.utils.mktime_tz(retry_date_tuple)
retry_date = email.utils.mktime_tz(retry_date_tuple) # type: ignore
retry_after = int(retry_date - time.time())
else:
retry_after = -1
@ -10545,6 +10567,18 @@ class CustomStreamWrapper:
elif self.custom_llm_provider == "watsonx":
response_obj = self.handle_watsonx_stream(chunk)
completion_obj["content"] = response_obj["text"]
print_verbose(f"completion obj content: {completion_obj['content']}")
if getattr(model_response, "usage", None) is None:
model_response.usage = Usage()
if response_obj.get("prompt_tokens") is not None:
prompt_token_count = getattr(model_response.usage, "prompt_tokens", 0)
model_response.usage.prompt_tokens = (prompt_token_count+response_obj["prompt_tokens"])
if response_obj.get("completion_tokens") is not None:
model_response.usage.completion_tokens = response_obj["completion_tokens"]
model_response.usage.total_tokens = (
getattr(model_response.usage, "prompt_tokens", 0)
+ getattr(model_response.usage, "completion_tokens", 0)
)
if response_obj["is_finished"]:
self.received_finish_reason = response_obj["finish_reason"]
elif self.custom_llm_provider == "text-completion-openai":
@ -10949,6 +10983,7 @@ class CustomStreamWrapper:
or self.custom_llm_provider == "sagemaker"
or self.custom_llm_provider == "gemini"
or self.custom_llm_provider == "cached_response"
or self.custom_llm_provider == "watsonx"
or self.custom_llm_provider in litellm.openai_compatible_endpoints
):
async for chunk in self.completion_stream:

View file

@ -1,6 +1,6 @@
[tool.poetry]
name = "litellm"
version = "1.36.3"
version = "1.36.4"
description = "Library to easily interface with LLM API providers"
authors = ["BerriAI"]
license = "MIT"
@ -80,7 +80,7 @@ requires = ["poetry-core", "wheel"]
build-backend = "poetry.core.masonry.api"
[tool.commitizen]
version = "1.36.3"
version = "1.36.4"
version_files = [
"pyproject.toml:^version"
]

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1 @@
self.__BUILD_MANIFEST={__rewrites:{afterFiles:[],beforeFiles:[],fallback:[]},"/_error":["static/chunks/pages/_error-d6107f1aac0c574c.js"],sortedPages:["/_app","/_error"]},self.__BUILD_MANIFEST_CB&&self.__BUILD_MANIFEST_CB();

View file

@ -0,0 +1 @@
self.__SSG_MANIFEST=new Set([]);self.__SSG_MANIFEST_CB&&self.__SSG_MANIFEST_CB()

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[185],{87421:function(n,e,t){Promise.resolve().then(t.t.bind(t,99646,23)),Promise.resolve().then(t.t.bind(t,63385,23))},63385:function(){},99646:function(n){n.exports={style:{fontFamily:"'__Inter_c23dc8', '__Inter_Fallback_c23dc8'",fontStyle:"normal"},className:"__className_c23dc8"}}},function(n){n.O(0,[971,69,744],function(){return n(n.s=87421)}),_N_E=n.O()}]);

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[744],{32028:function(e,n,t){Promise.resolve().then(t.t.bind(t,47690,23)),Promise.resolve().then(t.t.bind(t,48955,23)),Promise.resolve().then(t.t.bind(t,5613,23)),Promise.resolve().then(t.t.bind(t,11902,23)),Promise.resolve().then(t.t.bind(t,31778,23)),Promise.resolve().then(t.t.bind(t,77831,23))}},function(e){var n=function(n){return e(e.s=n)};e.O(0,[971,69],function(){return n(35317),n(32028)}),_N_E=e.O()}]);

View file

@ -0,0 +1 @@
!function(){"use strict";var e,t,n,r,o,u,i,c,f,a={},l={};function d(e){var t=l[e];if(void 0!==t)return t.exports;var n=l[e]={id:e,loaded:!1,exports:{}},r=!0;try{a[e](n,n.exports,d),r=!1}finally{r&&delete l[e]}return n.loaded=!0,n.exports}d.m=a,e=[],d.O=function(t,n,r,o){if(n){o=o||0;for(var u=e.length;u>0&&e[u-1][2]>o;u--)e[u]=e[u-1];e[u]=[n,r,o];return}for(var i=1/0,u=0;u<e.length;u++){for(var n=e[u][0],r=e[u][1],o=e[u][2],c=!0,f=0;f<n.length;f++)i>=o&&Object.keys(d.O).every(function(e){return d.O[e](n[f])})?n.splice(f--,1):(c=!1,o<i&&(i=o));if(c){e.splice(u--,1);var a=r();void 0!==a&&(t=a)}}return t},d.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return d.d(t,{a:t}),t},n=Object.getPrototypeOf?function(e){return Object.getPrototypeOf(e)}:function(e){return e.__proto__},d.t=function(e,r){if(1&r&&(e=this(e)),8&r||"object"==typeof e&&e&&(4&r&&e.__esModule||16&r&&"function"==typeof e.then))return e;var o=Object.create(null);d.r(o);var u={};t=t||[null,n({}),n([]),n(n)];for(var i=2&r&&e;"object"==typeof i&&!~t.indexOf(i);i=n(i))Object.getOwnPropertyNames(i).forEach(function(t){u[t]=function(){return e[t]}});return u.default=function(){return e},d.d(o,u),o},d.d=function(e,t){for(var n in t)d.o(t,n)&&!d.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:t[n]})},d.f={},d.e=function(e){return Promise.all(Object.keys(d.f).reduce(function(t,n){return d.f[n](e,t),t},[]))},d.u=function(e){},d.miniCssF=function(e){return"static/css/a1602eb39f799143.css"},d.g=function(){if("object"==typeof globalThis)return globalThis;try{return this||Function("return this")()}catch(e){if("object"==typeof window)return window}}(),d.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},r={},o="_N_E:",d.l=function(e,t,n,u){if(r[e]){r[e].push(t);return}if(void 0!==n)for(var i,c,f=document.getElementsByTagName("script"),a=0;a<f.length;a++){var l=f[a];if(l.getAttribute("src")==e||l.getAttribute("data-webpack")==o+n){i=l;break}}i||(c=!0,(i=document.createElement("script")).charset="utf-8",i.timeout=120,d.nc&&i.setAttribute("nonce",d.nc),i.setAttribute("data-webpack",o+n),i.src=d.tu(e)),r[e]=[t];var s=function(t,n){i.onerror=i.onload=null,clearTimeout(p);var o=r[e];if(delete r[e],i.parentNode&&i.parentNode.removeChild(i),o&&o.forEach(function(e){return e(n)}),t)return t(n)},p=setTimeout(s.bind(null,void 0,{type:"timeout",target:i}),12e4);i.onerror=s.bind(null,i.onerror),i.onload=s.bind(null,i.onload),c&&document.head.appendChild(i)},d.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},d.nmd=function(e){return e.paths=[],e.children||(e.children=[]),e},d.tt=function(){return void 0===u&&(u={createScriptURL:function(e){return e}},"undefined"!=typeof trustedTypes&&trustedTypes.createPolicy&&(u=trustedTypes.createPolicy("nextjs#bundler",u))),u},d.tu=function(e){return d.tt().createScriptURL(e)},d.p="/ui/_next/",i={272:0},d.f.j=function(e,t){var n=d.o(i,e)?i[e]:void 0;if(0!==n){if(n)t.push(n[2]);else if(272!=e){var r=new Promise(function(t,r){n=i[e]=[t,r]});t.push(n[2]=r);var o=d.p+d.u(e),u=Error();d.l(o,function(t){if(d.o(i,e)&&(0!==(n=i[e])&&(i[e]=void 0),n)){var r=t&&("load"===t.type?"missing":t.type),o=t&&t.target&&t.target.src;u.message="Loading chunk "+e+" failed.\n("+r+": "+o+")",u.name="ChunkLoadError",u.type=r,u.request=o,n[1](u)}},"chunk-"+e,e)}else i[e]=0}},d.O.j=function(e){return 0===i[e]},c=function(e,t){var n,r,o=t[0],u=t[1],c=t[2],f=0;if(o.some(function(e){return 0!==i[e]})){for(n in u)d.o(u,n)&&(d.m[n]=u[n]);if(c)var a=c(d)}for(e&&e(t);f<o.length;f++)r=o[f],d.o(i,r)&&i[r]&&i[r][0](),i[r]=0;return d.O(a)},(f=self.webpackChunk_N_E=self.webpackChunk_N_E||[]).forEach(c.bind(null,0)),f.push=c.bind(null,f.push.bind(f))}();

File diff suppressed because one or more lines are too long

View file

@ -1 +1 @@
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-d85d62a2bbfac48f.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-dafd44dfa2da140c.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-e49705773ae41779.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-096338c8e1915716.js" async="" crossorigin=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-d85d62a2bbfac48f.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/7de0c97d470f519f.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[18889,[\"936\",\"static/chunks/2f6dbc85-17d29013b8ff3da5.js\",\"319\",\"static/chunks/319-4467f3d35ad11cf1.js\",\"931\",\"static/chunks/app/page-f32196ae7cd3d914.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/7de0c97d470f519f.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"OcLXYgLcgQyjMd6bH1bqU\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_12bbc4\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-5b257e1ab47d4b4a.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-dafd44dfa2da140c.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-e49705773ae41779.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-9b4fb13a7db53edf.js" async="" crossorigin=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-5b257e1ab47d4b4a.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/a1602eb39f799143.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[25539,[\"936\",\"static/chunks/2f6dbc85-17d29013b8ff3da5.js\",\"566\",\"static/chunks/566-ccd699ab19124658.js\",\"931\",\"static/chunks/app/page-c804e862b63be987.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/a1602eb39f799143.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"K8KXTbmuI2ArWjjdMi2iq\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_c23dc8\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>

View file

@ -1,7 +1,7 @@
2:I[77831,[],""]
3:I[18889,["936","static/chunks/2f6dbc85-17d29013b8ff3da5.js","319","static/chunks/319-4467f3d35ad11cf1.js","931","static/chunks/app/page-f32196ae7cd3d914.js"],""]
3:I[25539,["936","static/chunks/2f6dbc85-17d29013b8ff3da5.js","566","static/chunks/566-ccd699ab19124658.js","931","static/chunks/app/page-c804e862b63be987.js"],""]
4:I[5613,[],""]
5:I[31778,[],""]
0:["OcLXYgLcgQyjMd6bH1bqU",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_12bbc4","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/7de0c97d470f519f.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
0:["K8KXTbmuI2ArWjjdMi2iq",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_c23dc8","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/a1602eb39f799143.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]]
1:null

View file

@ -189,6 +189,7 @@ const CreateKeyPage = () => {
userRole={userRole}
token={token}
accessToken={accessToken}
keys={keys}
/>
)}
</div>

View file

@ -786,7 +786,9 @@ export const adminTopKeysCall = async (accessToken: String) => {
export const adminTopEndUsersCall = async (
accessToken: String,
keyToken: String | null
keyToken: String | null,
startTime: String | undefined,
endTime: String | undefined
) => {
try {
let url = proxyBaseUrl
@ -795,8 +797,11 @@ export const adminTopEndUsersCall = async (
let body = "";
if (keyToken) {
body = JSON.stringify({ api_key: keyToken });
body = JSON.stringify({ api_key: keyToken, startTime: startTime, endTime: endTime });
} else {
body = JSON.stringify({ startTime: startTime, endTime: endTime });
}
//message.info("Making top end users request");
// Define requestOptions with body as an optional property
@ -815,9 +820,7 @@ export const adminTopEndUsersCall = async (
},
};
if (keyToken) {
requestOptions.body = JSON.stringify({ api_key: keyToken });
}
requestOptions.body = body;
const response = await fetch(url, requestOptions);
if (!response.ok) {

View file

@ -3,13 +3,14 @@ import { BarChart, BarList, Card, Title, Table, TableHead, TableHeaderCell, Tabl
import React, { useState, useEffect } from "react";
import ViewUserSpend from "./view_user_spend";
import { Grid, Col, Text, LineChart, TabPanel, TabPanels, TabGroup, TabList, Tab, Select, SelectItem } from "@tremor/react";
import { Grid, Col, Text, LineChart, TabPanel, TabPanels, TabGroup, TabList, Tab, Select, SelectItem, DateRangePicker, DateRangePickerValue } from "@tremor/react";
import {
userSpendLogsCall,
keyInfoCall,
adminSpendLogsCall,
adminTopKeysCall,
adminTopModelsCall,
adminTopEndUsersCall,
teamSpendLogsCall,
tagsSpendLogsCall,
modelMetricsCall,
@ -23,6 +24,7 @@ interface UsagePageProps {
token: string | null;
userRole: string | null;
userID: string | null;
keys: any[] | null;
}
type CustomTooltipTypeBar = {
@ -95,47 +97,14 @@ function getTopKeys(data: Array<{ [key: string]: unknown }>): any[] {
}
type DataDict = { [key: string]: unknown };
type UserData = { user_id: string; spend: number };
function getTopUsers(data: Array<DataDict>): UserData[] {
const userSpend: { [key: string]: number } = {};
data.forEach((dict) => {
const payload: DataDict = dict["users"] as DataDict;
Object.entries(payload).forEach(([user_id, value]) => {
if (
user_id === "" ||
user_id === undefined ||
user_id === null ||
user_id == "None"
) {
return;
}
if (!userSpend[user_id]) {
userSpend[user_id] = 0;
}
userSpend[user_id] += value as number;
});
});
const spendUsers: UserData[] = Object.entries(userSpend).map(
([user_id, spend]) => ({
user_id,
spend,
})
);
spendUsers.sort((a, b) => b.spend - a.spend);
const topKeys = spendUsers.slice(0, 5);
console.log(`topKeys: ${Object.values(topKeys[0])}`);
return topKeys;
}
const UsagePage: React.FC<UsagePageProps> = ({
accessToken,
token,
userRole,
userID,
keys,
}) => {
const currentDate = new Date();
const [keySpendData, setKeySpendData] = useState<any[]>([]);
@ -146,6 +115,11 @@ const UsagePage: React.FC<UsagePageProps> = ({
const [topTagsData, setTopTagsData] = useState<any[]>([]);
const [uniqueTeamIds, setUniqueTeamIds] = useState<any[]>([]);
const [totalSpendPerTeam, setTotalSpendPerTeam] = useState<any[]>([]);
const [selectedKeyID, setSelectedKeyID] = useState<string | null>("");
const [dateValue, setDateValue] = useState<DateRangePickerValue>({
from: new Date(Date.now() - 7 * 24 * 60 * 60 * 1000),
to: new Date(),
});
const firstDay = new Date(
currentDate.getFullYear(),
@ -161,6 +135,26 @@ const UsagePage: React.FC<UsagePageProps> = ({
let startTime = formatDate(firstDay);
let endTime = formatDate(lastDay);
console.log("keys in usage", keys);
const updateEndUserData = async (startTime: Date | undefined, endTime: Date | undefined, uiSelectedKey: string | null) => {
if (!startTime || !endTime || !accessToken) {
return;
}
console.log("uiSelectedKey", uiSelectedKey);
let newTopUserData = await adminTopEndUsersCall(
accessToken,
uiSelectedKey,
startTime.toISOString(),
endTime.toISOString()
)
console.log("End user data updated successfully", newTopUserData);
setTopUsers(newTopUserData);
}
function formatDate(date: Date) {
const year = date.getFullYear();
let month = date.getMonth() + 1; // JS month index starts from 0
@ -227,6 +221,12 @@ const UsagePage: React.FC<UsagePageProps> = ({
const top_tags = await tagsSpendLogsCall(accessToken);
setTopTagsData(top_tags.top_10_tags);
// get spend per end-user
let spend_user_call = await adminTopEndUsersCall(accessToken, null, undefined, undefined);
setTopUsers(spend_user_call);
console.log("spend/user result", spend_user_call);
} else if (userRole == "App Owner") {
await userSpendLogsCall(
accessToken,
@ -258,7 +258,6 @@ const UsagePage: React.FC<UsagePageProps> = ({
spend: k["spend"],
}));
setTopKeys(filtered_keys);
setTopUsers(getTopUsers(response));
setKeySpendData(response);
}
});
@ -286,6 +285,7 @@ const UsagePage: React.FC<UsagePageProps> = ({
<TabList className="mt-2">
<Tab>All Up</Tab>
<Tab>Team Based Usage</Tab>
<Tab>End User Usage</Tab>
<Tab>Tag Based Usage</Tab>
</TabList>
<TabPanels>
@ -324,23 +324,7 @@ const UsagePage: React.FC<UsagePageProps> = ({
</Card>
</Col>
<Col numColSpan={1}>
<Card>
<Title>Top Users</Title>
<BarChart
className="mt-4 h-40"
data={topUsers}
index="user_id"
categories={["spend"]}
colors={["blue"]}
yAxisWidth={200}
layout="vertical"
showXAxis={false}
showLegend={false}
/>
</Card>
</Col>
<Col numColSpan={1}>
<Card>
<Card>
<Title>Top Models</Title>
<BarChart
className="mt-4 h-40"
@ -354,6 +338,10 @@ const UsagePage: React.FC<UsagePageProps> = ({
showLegend={false}
/>
</Card>
</Col>
<Col numColSpan={1}>
</Col>
</Grid>
</TabPanel>
@ -385,6 +373,88 @@ const UsagePage: React.FC<UsagePageProps> = ({
<Col numColSpan={2}>
</Col>
</Grid>
</TabPanel>
<TabPanel>
<p className="mb-2 text-gray-500 italic text-[12px]">End-Users of your LLM API calls. Tracked when a `user` param is passed in your LLM calls <a className="text-blue-500" href="https://docs.litellm.ai/docs/proxy/users" target="_blank">docs here</a></p>
<Grid numItems={2}>
<Col>
<Text>Select Time Range</Text>
<DateRangePicker
enableSelect={true}
value={dateValue}
onValueChange={(value) => {
setDateValue(value);
updateEndUserData(value.from, value.to, null); // Call updateModelMetrics with the new date range
}}
/>
</Col>
<Col>
<Text>Select Key</Text>
<Select defaultValue="all-keys">
<SelectItem
key="all-keys"
value="all-keys"
onClick={() => {
updateEndUserData(dateValue.from, dateValue.to, null);
}}
>
All Keys
</SelectItem>
{keys?.map((key: any, index: number) => {
if (
key &&
key["key_alias"] !== null &&
key["key_alias"].length > 0
) {
return (
<SelectItem
key={index}
value={String(index)}
onClick={() => {
updateEndUserData(dateValue.from, dateValue.to, key["token"]);
}}
>
{key["key_alias"]}
</SelectItem>
);
}
return null; // Add this line to handle the case when the condition is not met
})}
</Select>
</Col>
</Grid>
<Card className="mt-4">
<Table className="max-h-[70vh] min-h-[500px]">
<TableHead>
<TableRow>
<TableHeaderCell>End User</TableHeaderCell>
<TableHeaderCell>Spend</TableHeaderCell>
<TableHeaderCell>Total Events</TableHeaderCell>
</TableRow>
</TableHead>
<TableBody>
{topUsers?.map((user: any, index: number) => (
<TableRow key={index}>
<TableCell>{user.end_user}</TableCell>
<TableCell>{user.total_spend?.toFixed(4)}</TableCell>
<TableCell>{user.total_count}</TableCell>
</TableRow>
))}
</TableBody>
</Table>
</Card>
</TabPanel>
<TabPanel>
<Grid numItems={2} className="gap-2 h-[75vh] w-full mb-4">

View file

@ -24,7 +24,7 @@ import {
Icon,
TextInput,
} from "@tremor/react";
import { userInfoCall, adminTopEndUsersCall } from "./networking";
import { userInfoCall } from "./networking";
import { Badge, BadgeDelta, Button } from "@tremor/react";
import RequestAccess from "./request_model_access";
import CreateUser from "./create_user_button";
@ -83,22 +83,7 @@ const ViewUserDashboard: React.FC<ViewUserDashboardProps> = ({
fetchData();
}
const fetchEndUserSpend = async () => {
try {
const topEndUsers = await adminTopEndUsersCall(accessToken, null);
console.log("user data response:", topEndUsers);
setEndUsers(topEndUsers);
} catch (error) {
console.error("There was an error fetching the model data", error);
}
};
if (
userRole &&
(userRole == "Admin" || userRole == "Admin Viewer") &&
!endUsers
) {
fetchEndUserSpend();
}
}, [accessToken, token, userRole, userID, currentPage]);
if (!userData) {
@ -109,16 +94,6 @@ const ViewUserDashboard: React.FC<ViewUserDashboardProps> = ({
return <div>Loading...</div>;
}
const onKeyClick = async (keyToken: String) => {
try {
const topEndUsers = await adminTopEndUsersCall(accessToken, keyToken);
console.log("user data response:", topEndUsers);
setEndUsers(topEndUsers);
} catch (error) {
console.error("There was an error fetching the model data", error);
}
};
function renderPagination() {
if (!userData) return null;
@ -157,14 +132,11 @@ const ViewUserDashboard: React.FC<ViewUserDashboardProps> = ({
<CreateUser userID={userID} accessToken={accessToken} teams={teams}/>
<Card className="w-full mx-auto flex-auto overflow-y-auto max-h-[80vh] mb-4">
<div className="mb-4 mt-1">
<Text><b>Key Owners: </b> Users on LiteLLM that created API Keys. Automatically tracked by LiteLLM</Text>
<Text className="mt-1"><b>End Users: </b>End Users of your LLM API calls. Tracked When a `user` param is passed in your LLM calls</Text>
<Text>These are Users on LiteLLM that created API Keys. Automatically tracked by LiteLLM</Text>
</div>
<TabGroup>
<TabList variant="line" defaultValue="1">
<Tab value="1">Key Owners</Tab>
<Tab value="2">End-Users</Tab>
</TabList>
<TabPanels>
<TabPanel>
@ -190,7 +162,7 @@ const ViewUserDashboard: React.FC<ViewUserDashboardProps> = ({
? user.models
: "All Models"}
</TableCell>
<TableCell>{user.spend ? user.spend : 0}</TableCell>
<TableCell>{user.spend ? user.spend?.toFixed(2) : 0}</TableCell>
<TableCell>
{user.max_budget ? user.max_budget : "Unlimited"}
</TableCell>
@ -220,29 +192,10 @@ const ViewUserDashboard: React.FC<ViewUserDashboardProps> = ({
<div className="flex items-center">
<div className="flex-1"></div>
<div className="flex-1 flex justify-between items-center">
<Text className="w-1/4 mr-2 text-right">Key</Text>
<Select defaultValue="1" className="w-3/4">
{keys?.map((key: any, index: number) => {
if (
key &&
key["key_alias"] !== null &&
key["key_alias"].length > 0
) {
return (
<SelectItem
key={index}
value={String(index)}
onClick={() => onKeyClick(key["token"])}
>
{key["key_alias"]}
</SelectItem>
);
}
})}
</Select>
</div>
</div>
<Table className="max-h-[70vh] min-h-[500px]">
{/* <Table className="max-h-[70vh] min-h-[500px]">
<TableHead>
<TableRow>
<TableHeaderCell>End User</TableHeaderCell>
@ -260,7 +213,7 @@ const ViewUserDashboard: React.FC<ViewUserDashboardProps> = ({
</TableRow>
))}
</TableBody>
</Table>
</Table> */}
</TabPanel>
</TabPanels>
</TabGroup>