diff --git a/docs/my-website/docs/observability/argilla.md b/docs/my-website/docs/observability/argilla.md index 8d20b9daa..dad28ce90 100644 --- a/docs/my-website/docs/observability/argilla.md +++ b/docs/my-website/docs/observability/argilla.md @@ -4,24 +4,63 @@ import TabItem from '@theme/TabItem'; # Argilla -Argilla is a tool for annotating datasets. +Argilla is a collaborative annotation tool for AI engineers and domain experts who need to build high-quality datasets for their projects. +## Getting Started -## Usage +To log the data to Argilla, first you need to deploy the Argilla server. If you have not deployed the Argilla server, please follow the instructions [here](https://docs.argilla.io/latest/getting_started/quickstart/). + +Next, you will need to configure and create the Argilla dataset. + +```python +import argilla as rg + +client = rg.Argilla(api_url="", api_key="") + +settings = rg.Settings( + guidelines="These are some guidelines.", + fields=[ + rg.ChatField( + name="user_input", + ), + rg.TextField( + name="llm_output", + ), + ], + questions=[ + rg.RatingQuestion( + name="rating", + values=[1, 2, 3, 4, 5, 6, 7], + ), + ], +) + +dataset = rg.Dataset( + name="my_first_dataset", + settings=settings, +) + +dataset.create() +``` + +For further configuration, please refer to the [Argilla documentation](https://docs.argilla.io/latest/how_to_guides/dataset/). + + +## Usage ```python -from litellm import completion +import os import litellm -import os +from litellm import completion # add env vars os.environ["ARGILLA_API_KEY"]="argilla.apikey" os.environ["ARGILLA_BASE_URL"]="http://localhost:6900" -os.environ["ARGILLA_DATASET_NAME"]="my_second_dataset" +os.environ["ARGILLA_DATASET_NAME"]="my_first_dataset" os.environ["OPENAI_API_KEY"]="sk-proj-..." litellm.callbacks = ["argilla"]