forked from phoenix/litellm-mirror
(docs) add async success + fail custom logger
This commit is contained in:
parent
d814184bc3
commit
8cd9f18b61
1 changed files with 52 additions and 18 deletions
|
@ -1,7 +1,7 @@
|
|||
# Logging - Custom Callbacks, OpenTelemetry, Langfuse
|
||||
Log Proxy Input, Output, Exceptions using Custom Callbacks, Langfuse, OpenTelemetry
|
||||
|
||||
## Custom Callback Class
|
||||
## Custom Callback Class [Async]
|
||||
Use this when you want to run custom callbacks in `python`
|
||||
|
||||
### Step 1 - Create your custom `litellm` callback class
|
||||
|
@ -28,8 +28,14 @@ class MyCustomHandler(CustomLogger):
|
|||
print(f"On Stream")
|
||||
|
||||
def log_success_event(self, kwargs, response_obj, start_time, end_time):
|
||||
# Logging key details: key, user, model, prompt, response, tokens, cost
|
||||
print("\nOn Success")
|
||||
print("On Success")
|
||||
|
||||
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
||||
print(f"On Failure")
|
||||
|
||||
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
||||
print(f"On Async Success!")
|
||||
# log: key, user, model, prompt, response, tokens, cost
|
||||
# Access kwargs passed to litellm.completion()
|
||||
model = kwargs.get("model", None)
|
||||
messages = kwargs.get("messages", None)
|
||||
|
@ -37,11 +43,13 @@ class MyCustomHandler(CustomLogger):
|
|||
|
||||
# Access litellm_params passed to litellm.completion(), example access `metadata`
|
||||
litellm_params = kwargs.get("litellm_params", {})
|
||||
metadata = litellm_params.get("metadata", {}) # Headers passed to LiteLLM proxy
|
||||
metadata = litellm_params.get("metadata", {}) # headers passed to LiteLLM proxy, can be found here
|
||||
|
||||
# Calculate cost using litellm.completion_cost()
|
||||
# Calculate cost using litellm.completion_cost()
|
||||
cost = litellm.completion_cost(completion_response=response_obj)
|
||||
usage = response_obj["usage"] # Tokens used in response
|
||||
response = response_obj
|
||||
# tokens used in response
|
||||
usage = response_obj["usage"]
|
||||
|
||||
print(
|
||||
f"""
|
||||
|
@ -56,8 +64,41 @@ class MyCustomHandler(CustomLogger):
|
|||
)
|
||||
return
|
||||
|
||||
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
||||
print(f"On Failure")
|
||||
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
||||
try:
|
||||
print(f"On Async Failure !")
|
||||
print("\nkwargs", kwargs)
|
||||
# Access kwargs passed to litellm.completion()
|
||||
model = kwargs.get("model", None)
|
||||
messages = kwargs.get("messages", None)
|
||||
user = kwargs.get("user", None)
|
||||
|
||||
# Access litellm_params passed to litellm.completion(), example access `metadata`
|
||||
litellm_params = kwargs.get("litellm_params", {})
|
||||
metadata = litellm_params.get("metadata", {}) # headers passed to LiteLLM proxy, can be found here
|
||||
|
||||
# Acess Exceptions & Traceback
|
||||
exception_event = kwargs.get("exception", None)
|
||||
traceback_event = kwargs.get("traceback_exception", None)
|
||||
|
||||
# Calculate cost using litellm.completion_cost()
|
||||
cost = litellm.completion_cost(completion_response=response_obj)
|
||||
print("now checking response obj")
|
||||
|
||||
print(
|
||||
f"""
|
||||
Model: {model},
|
||||
Messages: {messages},
|
||||
User: {user},
|
||||
Cost: {cost},
|
||||
Response: {response_obj}
|
||||
Proxy Metadata: {metadata}
|
||||
Exception: {exception_event}
|
||||
Traceback: {traceback_event}
|
||||
"""
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Exception: {e}")
|
||||
|
||||
proxy_handler_instance = MyCustomHandler()
|
||||
|
||||
|
@ -119,7 +160,7 @@ On Success
|
|||
Response: {'id': 'chatcmpl-8S8avKJ1aVBg941y5xzGMSKrYCMvN', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'Good morning! How can I assist you today?', 'role': 'assistant'}}], 'created': 1701716913, 'model': 'gpt-3.5-turbo-0613', 'object': 'chat.completion', 'system_fingerprint': None, 'usage': {'completion_tokens': 10, 'prompt_tokens': 11, 'total_tokens': 21}}
|
||||
Proxy Metadata: {'user_api_key': None, 'headers': Headers({'host': '0.0.0.0:8000', 'user-agent': 'curl/7.88.1', 'accept': '*/*', 'authorization': 'Bearer sk-1234', 'content-length': '199', 'content-type': 'application/x-www-form-urlencoded'}), 'model_group': 'gpt-3.5-turbo', 'deployment': 'gpt-3.5-turbo-ModelID-gpt-3.5-turbo'}
|
||||
```
|
||||
|
||||
<!--
|
||||
## Async Custom Callback Functions
|
||||
Use this if you just want to use a function as a custom callback with the proxy. Set custom async functions for `litellm.success_callback` and `litellm.failure_callback`.
|
||||
|
||||
|
@ -253,16 +294,9 @@ curl --location 'http://0.0.0.0:8000/chat/completions' \
|
|||
|
||||
#### Resulting Log on Proxy
|
||||
```shell
|
||||
On Success
|
||||
Model: gpt-3.5-turbo,
|
||||
Messages: [{'role': 'user', 'content': 'good morning good sir'}],
|
||||
User: ishaan-app,
|
||||
Usage: {'completion_tokens': 10, 'prompt_tokens': 11, 'total_tokens': 21},
|
||||
Cost: 3.65e-05,
|
||||
Response: {'id': 'chatcmpl-8S8avKJ1aVBg941y5xzGMSKrYCMvN', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'Good morning! How can I assist you today?', 'role': 'assistant'}}], 'created': 1701716913, 'model': 'gpt-3.5-turbo-0613', 'object': 'chat.completion', 'system_fingerprint': None, 'usage': {'completion_tokens': 10, 'prompt_tokens': 11, 'total_tokens': 21}}
|
||||
Proxy Metadata: {'user_api_key': None, 'headers': Headers({'host': '0.0.0.0:8000', 'user-agent': 'curl/7.88.1', 'accept': '*/*', 'authorization': 'Bearer sk-1234', 'content-length': '199', 'content-type': 'application/x-www-form-urlencoded'}), 'model_group': 'gpt-3.5-turbo', 'deployment': 'gpt-3.5-turbo-ModelID-gpt-3.5-turbo'}
|
||||
```
|
||||
|
||||
```
|
||||
-->
|
||||
|
||||
|
||||
## OpenTelemetry, ElasticSearch
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue