forked from phoenix/litellm-mirror
working anthropic streaming logging
This commit is contained in:
parent
0f7caa1cdb
commit
8ce86e5159
2 changed files with 155 additions and 158 deletions
|
@ -1,6 +1,6 @@
|
|||
import json
|
||||
from datetime import datetime
|
||||
from typing import Union
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
|
||||
|
||||
import httpx
|
||||
|
||||
|
@ -10,8 +10,18 @@ from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLogging
|
|||
from litellm.litellm_core_utils.litellm_logging import (
|
||||
get_standard_logging_object_payload,
|
||||
)
|
||||
from litellm.llms.anthropic.chat.handler import (
|
||||
ModelResponseIterator as AnthropicModelResponseIterator,
|
||||
)
|
||||
from litellm.llms.anthropic.chat.transformation import AnthropicConfig
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..success_handler import PassThroughEndpointLogging
|
||||
from ..types import EndpointType
|
||||
else:
|
||||
PassThroughEndpointLogging = Any
|
||||
EndpointType = Any
|
||||
|
||||
|
||||
class AnthropicPassthroughLoggingHandler:
|
||||
|
||||
|
@ -106,3 +116,91 @@ class AnthropicPassthroughLoggingHandler:
|
|||
)
|
||||
kwargs["standard_logging_object"] = standard_logging_object
|
||||
return kwargs
|
||||
|
||||
@staticmethod
|
||||
async def _handle_logging_anthropic_collected_chunks(
|
||||
litellm_logging_obj: LiteLLMLoggingObj,
|
||||
passthrough_success_handler_obj: PassThroughEndpointLogging,
|
||||
url_route: str,
|
||||
request_body: dict,
|
||||
endpoint_type: EndpointType,
|
||||
start_time: datetime,
|
||||
all_chunks: List[str],
|
||||
end_time: datetime,
|
||||
):
|
||||
"""
|
||||
Takes raw chunks from Anthropic passthrough endpoint and logs them in litellm callbacks
|
||||
|
||||
- Builds complete response from chunks
|
||||
- Creates standard logging object
|
||||
- Logs in litellm callbacks
|
||||
"""
|
||||
model = request_body.get("model", "")
|
||||
complete_streaming_response = (
|
||||
AnthropicPassthroughLoggingHandler._build_complete_streaming_response(
|
||||
all_chunks=all_chunks,
|
||||
litellm_logging_obj=litellm_logging_obj,
|
||||
model=model,
|
||||
)
|
||||
)
|
||||
if complete_streaming_response is None:
|
||||
verbose_proxy_logger.error(
|
||||
"Unable to build complete streaming response for Anthropic passthrough endpoint, not logging..."
|
||||
)
|
||||
return
|
||||
kwargs = AnthropicPassthroughLoggingHandler._create_anthropic_response_logging_payload(
|
||||
litellm_model_response=complete_streaming_response,
|
||||
model=model,
|
||||
kwargs={},
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
logging_obj=litellm_logging_obj,
|
||||
)
|
||||
await litellm_logging_obj.async_success_handler(
|
||||
result=complete_streaming_response,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
cache_hit=False,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _build_complete_streaming_response(
|
||||
all_chunks: List[str],
|
||||
litellm_logging_obj: LiteLLMLoggingObj,
|
||||
model: str,
|
||||
) -> Optional[Union[litellm.ModelResponse, litellm.TextCompletionResponse]]:
|
||||
"""
|
||||
Builds complete response from raw Anthropic chunks
|
||||
|
||||
- Converts str chunks to generic chunks
|
||||
- Converts generic chunks to litellm chunks (OpenAI format)
|
||||
- Builds complete response from litellm chunks
|
||||
"""
|
||||
anthropic_model_response_iterator = AnthropicModelResponseIterator(
|
||||
streaming_response=None,
|
||||
sync_stream=False,
|
||||
)
|
||||
litellm_custom_stream_wrapper = litellm.CustomStreamWrapper(
|
||||
completion_stream=anthropic_model_response_iterator,
|
||||
model=model,
|
||||
logging_obj=litellm_logging_obj,
|
||||
custom_llm_provider="anthropic",
|
||||
)
|
||||
all_openai_chunks = []
|
||||
for _chunk_str in all_chunks:
|
||||
try:
|
||||
generic_chunk = anthropic_model_response_iterator.convert_str_chunk_to_generic_chunk(
|
||||
chunk=_chunk_str
|
||||
)
|
||||
litellm_chunk = litellm_custom_stream_wrapper.chunk_creator(
|
||||
chunk=generic_chunk
|
||||
)
|
||||
if litellm_chunk is not None:
|
||||
all_openai_chunks.append(litellm_chunk)
|
||||
except (StopIteration, StopAsyncIteration) as e:
|
||||
break
|
||||
complete_streaming_response = litellm.stream_chunk_builder(
|
||||
chunks=all_openai_chunks
|
||||
)
|
||||
return complete_streaming_response
|
||||
|
|
|
@ -24,26 +24,6 @@ from .success_handler import PassThroughEndpointLogging
|
|||
from .types import EndpointType
|
||||
|
||||
|
||||
def get_litellm_chunk(
|
||||
model_iterator: VertexAIIterator,
|
||||
custom_stream_wrapper: litellm.utils.CustomStreamWrapper,
|
||||
chunk_dict: Dict,
|
||||
) -> Optional[Dict]:
|
||||
|
||||
generic_chunk: GenericStreamingChunk = model_iterator.chunk_parser(chunk_dict)
|
||||
if generic_chunk:
|
||||
return custom_stream_wrapper.chunk_creator(chunk=generic_chunk)
|
||||
return None
|
||||
|
||||
|
||||
def get_iterator_class_from_endpoint_type(
|
||||
endpoint_type: EndpointType,
|
||||
) -> Optional[type]:
|
||||
if endpoint_type == EndpointType.VERTEX_AI:
|
||||
return VertexAIIterator
|
||||
return None
|
||||
|
||||
|
||||
async def chunk_processor(
|
||||
response: httpx.Response,
|
||||
request_body: Optional[dict],
|
||||
|
@ -52,156 +32,75 @@ async def chunk_processor(
|
|||
start_time: datetime,
|
||||
passthrough_success_handler_obj: PassThroughEndpointLogging,
|
||||
url_route: str,
|
||||
) -> AsyncIterable[Union[str, bytes]]:
|
||||
request_body = request_body or {}
|
||||
iteratorClass = get_iterator_class_from_endpoint_type(endpoint_type)
|
||||
aiter_bytes = response.aiter_bytes()
|
||||
aiter_lines = response.aiter_lines()
|
||||
all_chunks = []
|
||||
if iteratorClass is None:
|
||||
# Generic endpoint - litellm does not do any tracking / logging for this
|
||||
async for chunk in aiter_lines:
|
||||
yield chunk
|
||||
elif endpoint_type == EndpointType.ANTHROPIC:
|
||||
anthropic_iterator = AnthropicIterator(
|
||||
sync_stream=False,
|
||||
streaming_response=aiter_lines,
|
||||
json_mode=False,
|
||||
):
|
||||
"""
|
||||
- Yields chunks from the response
|
||||
- Collect non-empty chunks for post-processing (logging)
|
||||
"""
|
||||
collected_chunks: List[str] = [] # List to store all chunks
|
||||
try:
|
||||
async for chunk in response.aiter_lines():
|
||||
verbose_proxy_logger.debug(f"Processing chunk: {chunk}")
|
||||
if not chunk:
|
||||
continue
|
||||
|
||||
# Handle SSE format - pass through the raw SSE format
|
||||
chunk = chunk.decode("utf-8") if isinstance(chunk, bytes) else chunk
|
||||
|
||||
# Store the chunk for post-processing
|
||||
if chunk.strip(): # Only store non-empty chunks
|
||||
collected_chunks.append(chunk)
|
||||
yield f"{chunk}\n"
|
||||
|
||||
# After all chunks are processed, handle post-processing
|
||||
end_time = datetime.now()
|
||||
|
||||
await _route_streaming_logging_to_handler(
|
||||
litellm_logging_obj=litellm_logging_obj,
|
||||
passthrough_success_handler_obj=passthrough_success_handler_obj,
|
||||
url_route=url_route,
|
||||
request_body=request_body or {},
|
||||
endpoint_type=endpoint_type,
|
||||
start_time=start_time,
|
||||
all_chunks=collected_chunks,
|
||||
end_time=end_time,
|
||||
)
|
||||
custom_stream_wrapper = litellm.utils.CustomStreamWrapper(
|
||||
completion_stream=aiter_bytes,
|
||||
model=None,
|
||||
logging_obj=litellm_logging_obj,
|
||||
custom_llm_provider="anthropic",
|
||||
)
|
||||
async for chunk in aiter_lines:
|
||||
try:
|
||||
generic_chunk = anthropic_iterator.convert_str_chunk_to_generic_chunk(
|
||||
chunk
|
||||
)
|
||||
litellm_chunk = custom_stream_wrapper.chunk_creator(chunk=generic_chunk)
|
||||
if litellm_chunk:
|
||||
all_chunks.append(litellm_chunk)
|
||||
except Exception as e:
|
||||
verbose_proxy_logger.error(
|
||||
f"Error parsing chunk: {e},\nReceived chunk: {chunk}"
|
||||
)
|
||||
finally:
|
||||
yield chunk
|
||||
else:
|
||||
# known streaming endpoint - litellm will do tracking / logging for this
|
||||
model_iterator = iteratorClass(
|
||||
sync_stream=False, streaming_response=aiter_bytes
|
||||
)
|
||||
custom_stream_wrapper = litellm.utils.CustomStreamWrapper(
|
||||
completion_stream=aiter_bytes, model=None, logging_obj=litellm_logging_obj
|
||||
)
|
||||
buffer = b""
|
||||
async for chunk in aiter_bytes:
|
||||
buffer += chunk
|
||||
try:
|
||||
_decoded_chunk = chunk.decode("utf-8")
|
||||
_chunk_dict = json.loads(_decoded_chunk)
|
||||
litellm_chunk = get_litellm_chunk(
|
||||
model_iterator, custom_stream_wrapper, _chunk_dict
|
||||
)
|
||||
if litellm_chunk:
|
||||
all_chunks.append(litellm_chunk)
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
finally:
|
||||
yield chunk # Yield the original bytes
|
||||
|
||||
# Process any remaining data in the buffer
|
||||
if buffer:
|
||||
try:
|
||||
_chunk_dict = json.loads(buffer.decode("utf-8"))
|
||||
|
||||
if isinstance(_chunk_dict, list):
|
||||
for _chunk in _chunk_dict:
|
||||
litellm_chunk = get_litellm_chunk(
|
||||
model_iterator, custom_stream_wrapper, _chunk
|
||||
)
|
||||
if litellm_chunk:
|
||||
all_chunks.append(litellm_chunk)
|
||||
elif isinstance(_chunk_dict, dict):
|
||||
litellm_chunk = get_litellm_chunk(
|
||||
model_iterator, custom_stream_wrapper, _chunk_dict
|
||||
)
|
||||
if litellm_chunk:
|
||||
all_chunks.append(litellm_chunk)
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
await _handle_logging_collected_chunks(
|
||||
litellm_logging_obj=litellm_logging_obj,
|
||||
passthrough_success_handler_obj=passthrough_success_handler_obj,
|
||||
url_route=url_route,
|
||||
request_body=request_body,
|
||||
endpoint_type=endpoint_type,
|
||||
start_time=start_time,
|
||||
end_time=datetime.now(),
|
||||
all_chunks=all_chunks,
|
||||
)
|
||||
except Exception as e:
|
||||
verbose_proxy_logger.error(f"Error in chunk_processor: {str(e)}")
|
||||
raise
|
||||
|
||||
|
||||
async def _handle_logging_collected_chunks(
|
||||
async def _route_streaming_logging_to_handler(
|
||||
litellm_logging_obj: LiteLLMLoggingObj,
|
||||
passthrough_success_handler_obj: PassThroughEndpointLogging,
|
||||
url_route: str,
|
||||
request_body: dict,
|
||||
endpoint_type: EndpointType,
|
||||
start_time: datetime,
|
||||
all_chunks: List[Dict],
|
||||
all_chunks: List[str],
|
||||
end_time: datetime,
|
||||
):
|
||||
"""
|
||||
Build the complete response and handle the logging
|
||||
Route the logging for the collected chunks to the appropriate handler
|
||||
|
||||
This gets triggered once all the chunks are collected
|
||||
Supported endpoint types:
|
||||
- Anthropic
|
||||
- Vertex AI
|
||||
"""
|
||||
try:
|
||||
complete_streaming_response: Optional[
|
||||
Union[litellm.ModelResponse, litellm.TextCompletionResponse]
|
||||
] = litellm.stream_chunk_builder(chunks=all_chunks)
|
||||
if complete_streaming_response is None:
|
||||
complete_streaming_response = litellm.ModelResponse()
|
||||
end_time = datetime.now()
|
||||
verbose_proxy_logger.debug(
|
||||
"complete_streaming_response %s", complete_streaming_response
|
||||
if endpoint_type == EndpointType.ANTHROPIC:
|
||||
await AnthropicPassthroughLoggingHandler._handle_logging_anthropic_collected_chunks(
|
||||
litellm_logging_obj=litellm_logging_obj,
|
||||
passthrough_success_handler_obj=passthrough_success_handler_obj,
|
||||
url_route=url_route,
|
||||
request_body=request_body,
|
||||
endpoint_type=endpoint_type,
|
||||
start_time=start_time,
|
||||
all_chunks=all_chunks,
|
||||
end_time=end_time,
|
||||
)
|
||||
kwargs = {}
|
||||
|
||||
if passthrough_success_handler_obj.is_vertex_route(url_route):
|
||||
_model = passthrough_success_handler_obj.extract_model_from_url(url_route)
|
||||
complete_streaming_response.model = _model
|
||||
litellm_logging_obj.model = _model
|
||||
litellm_logging_obj.model_call_details["model"] = _model
|
||||
elif endpoint_type == EndpointType.ANTHROPIC:
|
||||
model = request_body.get("model", "")
|
||||
kwargs = AnthropicPassthroughLoggingHandler._create_anthropic_response_logging_payload(
|
||||
litellm_model_response=complete_streaming_response,
|
||||
model=model,
|
||||
kwargs=litellm_logging_obj.model_call_details,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
logging_obj=litellm_logging_obj,
|
||||
)
|
||||
litellm_logging_obj.model = model
|
||||
complete_streaming_response.model = model
|
||||
litellm_logging_obj.model_call_details["model"] = model
|
||||
# Remove start_time and end_time from kwargs since they'll be passed explicitly
|
||||
kwargs.pop("start_time", None)
|
||||
kwargs.pop("end_time", None)
|
||||
litellm_logging_obj.model_call_details.update(kwargs)
|
||||
|
||||
asyncio.create_task(
|
||||
litellm_logging_obj.async_success_handler(
|
||||
result=complete_streaming_response,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
**kwargs,
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
verbose_proxy_logger.error(f"Error handling logging collected chunks: {e}")
|
||||
elif endpoint_type == EndpointType.VERTEX_AI:
|
||||
pass
|
||||
elif endpoint_type == EndpointType.GENERIC:
|
||||
# No logging is supported for generic streaming endpoints
|
||||
pass
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue