add VertexAIModelGardenModels

This commit is contained in:
Ishaan Jaff 2024-11-15 10:00:23 -08:00
parent 3f8a9167ae
commit 8d28003099
2 changed files with 159 additions and 0 deletions

View file

@ -0,0 +1,134 @@
# What is this?
## API Handler for calling Vertex AI Partner Models
import types
from enum import Enum
from typing import Callable, Literal, Optional, Union
import httpx # type: ignore
import litellm
from litellm.utils import ModelResponse
from ..common_utils import VertexAIError
from ..vertex_llm_base import VertexBase
def create_vertex_url(
vertex_location: str,
vertex_project: str,
stream: Optional[bool],
model: str,
api_base: Optional[str] = None,
) -> str:
"""Return the base url for the vertex partner models"""
# f"https://{self.endpoint.location}-aiplatform.googleapis.com/v1beta1/projects/{PROJECT_ID}/locations/{self.endpoint.location}"
return f"https://{vertex_location}-aiplatform.googleapis.com/v1beta1/projects/{vertex_project}/locations/{vertex_location}/endpoints/{model}"
class VertexAIModelGardenModels(VertexBase):
def __init__(self) -> None:
pass
def completion(
self,
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
api_base: Optional[str],
optional_params: dict,
custom_prompt_dict: dict,
headers: Optional[dict],
timeout: Union[float, httpx.Timeout],
litellm_params: dict,
vertex_project=None,
vertex_location=None,
vertex_credentials=None,
logger_fn=None,
acompletion: bool = False,
client=None,
):
try:
import vertexai
from google.cloud import aiplatform
from litellm.llms.anthropic.chat import AnthropicChatCompletion
from litellm.llms.databricks.chat import DatabricksChatCompletion
from litellm.llms.OpenAI.openai import OpenAIChatCompletion
from litellm.llms.text_completion_codestral import CodestralTextCompletion
from litellm.llms.vertex_ai_and_google_ai_studio.gemini.vertex_and_google_ai_studio_gemini import (
VertexLLM,
)
except Exception:
raise VertexAIError(
status_code=400,
message="""vertexai import failed please run `pip install -U "google-cloud-aiplatform>=1.38"`""",
)
if not (
hasattr(vertexai, "preview") or hasattr(vertexai.preview, "language_models")
):
raise VertexAIError(
status_code=400,
message="""Upgrade vertex ai. Run `pip install "google-cloud-aiplatform>=1.38"`""",
)
try:
vertex_httpx_logic = VertexLLM()
access_token, project_id = vertex_httpx_logic._ensure_access_token(
credentials=vertex_credentials,
project_id=vertex_project,
custom_llm_provider="vertex_ai",
)
openai_like_chat_completions = DatabricksChatCompletion()
## CONSTRUCT API BASE
stream: bool = optional_params.get("stream", False) or False
optional_params["stream"] = stream
default_api_base = create_vertex_url(
vertex_location=vertex_location or "us-central1",
vertex_project=vertex_project or project_id,
stream=stream,
model=model,
)
if len(default_api_base.split(":")) > 1:
endpoint = default_api_base.split(":")[-1]
else:
endpoint = ""
_, api_base = self._check_custom_proxy(
api_base=api_base,
custom_llm_provider="vertex_ai",
gemini_api_key=None,
endpoint=endpoint,
stream=stream,
auth_header=None,
url=default_api_base,
)
return openai_like_chat_completions.completion(
model=model,
messages=messages,
api_base=api_base,
api_key=access_token,
custom_prompt_dict=custom_prompt_dict,
model_response=model_response,
print_verbose=print_verbose,
logging_obj=logging_obj,
optional_params=optional_params,
acompletion=acompletion,
litellm_params=litellm_params,
logger_fn=logger_fn,
client=client,
timeout=timeout,
encoding=encoding,
custom_llm_provider="vertex_ai",
)
except Exception as e:
raise VertexAIError(status_code=500, message=str(e))

View file

@ -158,6 +158,9 @@ from .llms.vertex_ai_and_google_ai_studio.vertex_ai_partner_models.main import (
from .llms.vertex_ai_and_google_ai_studio.vertex_embeddings.embedding_handler import (
VertexEmbedding,
)
from .llms.vertex_ai_and_google_ai_studio.vertex_model_garden.main import (
VertexAIModelGardenModels,
)
from .llms.watsonx.chat.handler import WatsonXChatHandler
from .llms.watsonx.completion.handler import IBMWatsonXAI
from .types.llms.openai import (
@ -221,6 +224,7 @@ vertex_multimodal_embedding = VertexMultimodalEmbedding()
vertex_image_generation = VertexImageGeneration()
google_batch_embeddings = GoogleBatchEmbeddings()
vertex_partner_models_chat_completion = VertexAIPartnerModels()
vertex_model_garden_chat_completion = VertexAIModelGardenModels()
vertex_text_to_speech = VertexTextToSpeechAPI()
watsonxai = IBMWatsonXAI()
sagemaker_llm = SagemakerLLM()
@ -2355,6 +2359,27 @@ def completion( # type: ignore # noqa: PLR0915
api_base=api_base,
extra_headers=extra_headers,
)
elif model.isdigit():
model_response = vertex_model_garden_chat_completion.completion(
model=model,
messages=messages,
model_response=model_response,
print_verbose=print_verbose,
optional_params=new_params,
litellm_params=litellm_params, # type: ignore
logger_fn=logger_fn,
encoding=encoding,
api_base=api_base,
vertex_location=vertex_ai_location,
vertex_project=vertex_ai_project,
vertex_credentials=vertex_credentials,
logging_obj=logging,
acompletion=acompletion,
headers=headers,
custom_prompt_dict=custom_prompt_dict,
timeout=timeout,
client=client,
)
else:
model_response = vertex_ai_non_gemini.completion(
model=model,