forked from phoenix/litellm-mirror
add e2e tests for streaming vertex JS with tags
This commit is contained in:
parent
08db9fdc01
commit
8f43d8d436
2 changed files with 194 additions and 67 deletions
|
@ -120,73 +120,6 @@ async def test_basic_vertex_ai_pass_through_with_spendlog():
|
|||
pass
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_vertex_ai_direct_api_with_tags():
|
||||
"""
|
||||
e2e test that tags are added to the spend log
|
||||
|
||||
This is how vertex JS SDK interacts with the pass through endpoint
|
||||
|
||||
- Vertex JS SDK, Auth is sent with `x-litellm-api-key` header (JS SDK uses `Authorization` header, so need to send litellm api key as `x-litellm-api-key` header)
|
||||
- Tags are sent with `tags` header
|
||||
"""
|
||||
import requests
|
||||
import json
|
||||
|
||||
url = "http://localhost:4000/vertex_ai/publishers/google/models/gemini-1.0-pro:generateContent"
|
||||
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"x-litellm-api-key": "sk-1234",
|
||||
"tags": "vertex-js-sdk,pass-through-endpoint",
|
||||
}
|
||||
|
||||
payload = {
|
||||
"contents": [
|
||||
{"role": "user", "parts": [{"text": "Say 'hello test' and nothing else"}]}
|
||||
]
|
||||
}
|
||||
|
||||
# Make the request
|
||||
response = requests.post(url, headers=headers, json=payload)
|
||||
assert (
|
||||
response.status_code == 200
|
||||
), f"Expected 200 status code, got {response.status_code}"
|
||||
|
||||
# Get the litellm call ID from response headers
|
||||
litellm_call_id = response.headers.get("x-litellm-call-id")
|
||||
print(f"LiteLLM Call ID: {litellm_call_id}")
|
||||
|
||||
# Wait for spend to be logged
|
||||
await asyncio.sleep(15)
|
||||
|
||||
# Check spend logs for this specific request
|
||||
spend_response = requests.get(
|
||||
f"http://0.0.0.0:4000/spend/logs?request_id={litellm_call_id}",
|
||||
headers={"Authorization": "Bearer sk-1234"},
|
||||
)
|
||||
|
||||
spend_data = spend_response.json()
|
||||
print(f"Spend data: {spend_data}")
|
||||
assert spend_data is not None, "Should have spend data for the request"
|
||||
|
||||
log_entry = spend_data[0] # Get the first log entry
|
||||
|
||||
# Verify the response and metadata
|
||||
assert log_entry["request_id"] == litellm_call_id, "Request ID should match"
|
||||
assert (
|
||||
log_entry["call_type"] == "pass_through_endpoint"
|
||||
), "Call type should be pass_through_endpoint"
|
||||
assert log_entry["request_tags"] == [
|
||||
"vertex-js-sdk",
|
||||
"pass-through-endpoint",
|
||||
], "Tags should match input"
|
||||
assert (
|
||||
"user_api_key" in log_entry["metadata"]
|
||||
), "Should have user API key in metadata"
|
||||
assert "gemini" in log_entry["model"], "Model should be gemini"
|
||||
|
||||
|
||||
@pytest.mark.asyncio()
|
||||
async def test_basic_vertex_ai_pass_through_streaming_with_spendlog():
|
||||
|
||||
|
|
194
tests/pass_through_tests/test_vertex_with_spend.test.js
Normal file
194
tests/pass_through_tests/test_vertex_with_spend.test.js
Normal file
|
@ -0,0 +1,194 @@
|
|||
const { VertexAI, RequestOptions } = require('@google-cloud/vertexai');
|
||||
const fs = require('fs');
|
||||
const path = require('path');
|
||||
const os = require('os');
|
||||
const { writeFileSync } = require('fs');
|
||||
|
||||
|
||||
// Import fetch if the SDK uses it
|
||||
const originalFetch = global.fetch || require('node-fetch');
|
||||
|
||||
let lastCallId;
|
||||
|
||||
// Monkey-patch the fetch used internally
|
||||
global.fetch = async function patchedFetch(url, options) {
|
||||
// Modify the URL to use HTTP instead of HTTPS
|
||||
if (url.startsWith('https://127.0.0.1:4000')) {
|
||||
url = url.replace('https://', 'http://');
|
||||
}
|
||||
console.log('Patched fetch sending request to:', url);
|
||||
|
||||
const response = await originalFetch(url, options);
|
||||
|
||||
// Store the call ID if it exists
|
||||
lastCallId = response.headers.get('x-litellm-call-id');
|
||||
|
||||
return response;
|
||||
};
|
||||
|
||||
function loadVertexAiCredentials() {
|
||||
console.log("loading vertex ai credentials");
|
||||
const filepath = path.dirname(__filename);
|
||||
const vertexKeyPath = path.join(filepath, "vertex_key.json");
|
||||
|
||||
// Initialize default empty service account data
|
||||
let serviceAccountKeyData = {};
|
||||
|
||||
// Try to read existing vertex_key.json
|
||||
try {
|
||||
const content = fs.readFileSync(vertexKeyPath, 'utf8');
|
||||
if (content && content.trim()) {
|
||||
serviceAccountKeyData = JSON.parse(content);
|
||||
}
|
||||
} catch (error) {
|
||||
// File doesn't exist or is invalid, continue with empty object
|
||||
}
|
||||
|
||||
// Update with environment variables
|
||||
const privateKeyId = process.env.VERTEX_AI_PRIVATE_KEY_ID || "";
|
||||
const privateKey = (process.env.VERTEX_AI_PRIVATE_KEY || "").replace(/\\n/g, "\n");
|
||||
|
||||
serviceAccountKeyData.private_key_id = privateKeyId;
|
||||
serviceAccountKeyData.private_key = privateKey;
|
||||
|
||||
// Create temporary file
|
||||
const tempFilePath = path.join(os.tmpdir(), `vertex-credentials-${Date.now()}.json`);
|
||||
writeFileSync(tempFilePath, JSON.stringify(serviceAccountKeyData, null, 2));
|
||||
|
||||
// Set environment variable
|
||||
process.env.GOOGLE_APPLICATION_CREDENTIALS = tempFilePath;
|
||||
}
|
||||
|
||||
// Run credential loading before tests
|
||||
// beforeAll(() => {
|
||||
// loadVertexAiCredentials();
|
||||
// });
|
||||
|
||||
|
||||
|
||||
describe('Vertex AI Tests', () => {
|
||||
test('should successfully generate non-streaming content with tags', async () => {
|
||||
const vertexAI = new VertexAI({
|
||||
project: 'adroit-crow-413218',
|
||||
location: 'us-central1',
|
||||
apiEndpoint: "127.0.0.1:4000/vertex_ai"
|
||||
});
|
||||
|
||||
const customHeaders = new Headers({
|
||||
"x-litellm-api-key": "sk-1234",
|
||||
"tags": "vertex-js-sdk,pass-through-endpoint"
|
||||
});
|
||||
|
||||
const requestOptions = {
|
||||
customHeaders: customHeaders
|
||||
};
|
||||
|
||||
const generativeModel = vertexAI.getGenerativeModel(
|
||||
{ model: 'gemini-1.0-pro' },
|
||||
requestOptions
|
||||
);
|
||||
|
||||
const request = {
|
||||
contents: [{role: 'user', parts: [{text: 'Say "hello test" and nothing else'}]}]
|
||||
};
|
||||
|
||||
const result = await generativeModel.generateContent(request);
|
||||
expect(result).toBeDefined();
|
||||
|
||||
// Use the captured callId
|
||||
const callId = lastCallId;
|
||||
console.log("Captured Call ID:", callId);
|
||||
|
||||
// Wait for spend to be logged
|
||||
await new Promise(resolve => setTimeout(resolve, 15000));
|
||||
|
||||
// Check spend logs
|
||||
const spendResponse = await fetch(
|
||||
`http://127.0.0.1:4000/spend/logs?request_id=${callId}`,
|
||||
{
|
||||
headers: {
|
||||
'Authorization': 'Bearer sk-1234'
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
const spendData = await spendResponse.json();
|
||||
console.log("spendData", spendData)
|
||||
expect(spendData).toBeDefined();
|
||||
expect(spendData[0].request_id).toBe(callId);
|
||||
expect(spendData[0].call_type).toBe('pass_through_endpoint');
|
||||
expect(spendData[0].request_tags).toEqual(['vertex-js-sdk', 'pass-through-endpoint']);
|
||||
expect(spendData[0].metadata).toHaveProperty('user_api_key');
|
||||
expect(spendData[0].model).toContain('gemini');
|
||||
expect(spendData[0].spend).toBeGreaterThan(0);
|
||||
}, 25000);
|
||||
|
||||
test('should successfully generate streaming content with tags', async () => {
|
||||
const vertexAI = new VertexAI({
|
||||
project: 'adroit-crow-413218',
|
||||
location: 'us-central1',
|
||||
apiEndpoint: "127.0.0.1:4000/vertex_ai"
|
||||
});
|
||||
|
||||
const customHeaders = new Headers({
|
||||
"x-litellm-api-key": "sk-1234",
|
||||
"tags": "vertex-js-sdk,pass-through-endpoint"
|
||||
});
|
||||
|
||||
const requestOptions = {
|
||||
customHeaders: customHeaders
|
||||
};
|
||||
|
||||
const generativeModel = vertexAI.getGenerativeModel(
|
||||
{ model: 'gemini-1.0-pro' },
|
||||
requestOptions
|
||||
);
|
||||
|
||||
const request = {
|
||||
contents: [{role: 'user', parts: [{text: 'Say "hello test" and nothing else'}]}]
|
||||
};
|
||||
|
||||
const streamingResult = await generativeModel.generateContentStream(request);
|
||||
expect(streamingResult).toBeDefined();
|
||||
|
||||
|
||||
// Add some assertions
|
||||
expect(streamingResult).toBeDefined();
|
||||
|
||||
for await (const item of streamingResult.stream) {
|
||||
console.log('stream chunk:', JSON.stringify(item));
|
||||
expect(item).toBeDefined();
|
||||
}
|
||||
|
||||
const aggregatedResponse = await streamingResult.response;
|
||||
console.log('aggregated response:', JSON.stringify(aggregatedResponse));
|
||||
expect(aggregatedResponse).toBeDefined();
|
||||
|
||||
// Use the captured callId
|
||||
const callId = lastCallId;
|
||||
console.log("Captured Call ID:", callId);
|
||||
|
||||
// Wait for spend to be logged
|
||||
await new Promise(resolve => setTimeout(resolve, 15000));
|
||||
|
||||
// Check spend logs
|
||||
const spendResponse = await fetch(
|
||||
`http://127.0.0.1:4000/spend/logs?request_id=${callId}`,
|
||||
{
|
||||
headers: {
|
||||
'Authorization': 'Bearer sk-1234'
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
const spendData = await spendResponse.json();
|
||||
console.log("spendData", spendData)
|
||||
expect(spendData).toBeDefined();
|
||||
expect(spendData[0].request_id).toBe(callId);
|
||||
expect(spendData[0].call_type).toBe('pass_through_endpoint');
|
||||
expect(spendData[0].request_tags).toEqual(['vertex-js-sdk', 'pass-through-endpoint']);
|
||||
expect(spendData[0].metadata).toHaveProperty('user_api_key');
|
||||
expect(spendData[0].model).toContain('gemini');
|
||||
expect(spendData[0].spend).toBeGreaterThan(0);
|
||||
}, 25000);
|
||||
});
|
Loading…
Add table
Add a link
Reference in a new issue