forked from phoenix/litellm-mirror
fix(lowest_latency.py): allow setting a buffer for getting values within a certain latency threshold
if an endpoint is slow - it's completion time might not be updated till the call is completed. This prevents us from overloading those endpoints, in a simple way.
This commit is contained in:
parent
398d503590
commit
90cdfef1c1
2 changed files with 121 additions and 7 deletions
|
@ -4,6 +4,7 @@ from pydantic import BaseModel, Extra, Field, root_validator
|
||||||
import dotenv, os, requests, random
|
import dotenv, os, requests, random
|
||||||
from typing import Optional, Union, List, Dict
|
from typing import Optional, Union, List, Dict
|
||||||
from datetime import datetime, timedelta
|
from datetime import datetime, timedelta
|
||||||
|
import random
|
||||||
|
|
||||||
dotenv.load_dotenv() # Loading env variables using dotenv
|
dotenv.load_dotenv() # Loading env variables using dotenv
|
||||||
import traceback
|
import traceback
|
||||||
|
@ -29,6 +30,7 @@ class LiteLLMBase(BaseModel):
|
||||||
|
|
||||||
class RoutingArgs(LiteLLMBase):
|
class RoutingArgs(LiteLLMBase):
|
||||||
ttl: int = 1 * 60 * 60 # 1 hour
|
ttl: int = 1 * 60 * 60 # 1 hour
|
||||||
|
lowest_latency_buffer: float = 0
|
||||||
|
|
||||||
|
|
||||||
class LowestLatencyLoggingHandler(CustomLogger):
|
class LowestLatencyLoggingHandler(CustomLogger):
|
||||||
|
@ -314,8 +316,12 @@ class LowestLatencyLoggingHandler(CustomLogger):
|
||||||
|
|
||||||
# randomly sample from all_deployments, incase all deployments have latency=0.0
|
# randomly sample from all_deployments, incase all deployments have latency=0.0
|
||||||
_items = all_deployments.items()
|
_items = all_deployments.items()
|
||||||
|
|
||||||
all_deployments = random.sample(list(_items), len(_items))
|
all_deployments = random.sample(list(_items), len(_items))
|
||||||
all_deployments = dict(all_deployments)
|
all_deployments = dict(all_deployments)
|
||||||
|
### GET AVAILABLE DEPLOYMENTS ### filter out any deployments > tpm/rpm limits
|
||||||
|
|
||||||
|
potential_deployments = []
|
||||||
for item, item_map in all_deployments.items():
|
for item, item_map in all_deployments.items():
|
||||||
## get the item from model list
|
## get the item from model list
|
||||||
_deployment = None
|
_deployment = None
|
||||||
|
@ -364,17 +370,33 @@ class LowestLatencyLoggingHandler(CustomLogger):
|
||||||
# End of Debugging Logic
|
# End of Debugging Logic
|
||||||
# -------------- #
|
# -------------- #
|
||||||
|
|
||||||
if item_latency == 0:
|
if (
|
||||||
deployment = _deployment
|
|
||||||
break
|
|
||||||
elif (
|
|
||||||
item_tpm + input_tokens > _deployment_tpm
|
item_tpm + input_tokens > _deployment_tpm
|
||||||
or item_rpm + 1 > _deployment_rpm
|
or item_rpm + 1 > _deployment_rpm
|
||||||
): # if user passed in tpm / rpm in the model_list
|
): # if user passed in tpm / rpm in the model_list
|
||||||
continue
|
continue
|
||||||
elif item_latency < lowest_latency:
|
else:
|
||||||
lowest_latency = item_latency
|
potential_deployments.append((_deployment, item_latency))
|
||||||
deployment = _deployment
|
|
||||||
|
if len(potential_deployments) == 0:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Sort potential deployments by latency
|
||||||
|
sorted_deployments = sorted(potential_deployments, key=lambda x: x[1])
|
||||||
|
|
||||||
|
# Find lowest latency deployment
|
||||||
|
lowest_latency = sorted_deployments[0][1]
|
||||||
|
|
||||||
|
# Find deployments within buffer of lowest latency
|
||||||
|
buffer = self.routing_args.lowest_latency_buffer * lowest_latency
|
||||||
|
valid_deployments = [
|
||||||
|
x for x in sorted_deployments if x[1] <= lowest_latency + buffer
|
||||||
|
]
|
||||||
|
|
||||||
|
# Pick a random deployment from valid deployments
|
||||||
|
random_valid_deployment = random.choice(valid_deployments)
|
||||||
|
deployment = random_valid_deployment[0]
|
||||||
|
|
||||||
if request_kwargs is not None and "metadata" in request_kwargs:
|
if request_kwargs is not None and "metadata" in request_kwargs:
|
||||||
request_kwargs["metadata"][
|
request_kwargs["metadata"][
|
||||||
"_latency_per_deployment"
|
"_latency_per_deployment"
|
||||||
|
|
|
@ -631,3 +631,95 @@ async def test_lowest_latency_routing_first_pick():
|
||||||
|
|
||||||
# assert that len(deployments) >1
|
# assert that len(deployments) >1
|
||||||
assert len(deployments) > 1
|
assert len(deployments) > 1
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("buffer", [0, 1])
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_lowest_latency_routing_buffer(buffer):
|
||||||
|
"""
|
||||||
|
Allow shuffling calls within a certain latency buffer
|
||||||
|
"""
|
||||||
|
model_list = [
|
||||||
|
{
|
||||||
|
"model_name": "azure-model",
|
||||||
|
"litellm_params": {
|
||||||
|
"model": "azure/gpt-turbo",
|
||||||
|
"api_key": "os.environ/AZURE_FRANCE_API_KEY",
|
||||||
|
"api_base": "https://openai-france-1234.openai.azure.com",
|
||||||
|
"rpm": 1440,
|
||||||
|
},
|
||||||
|
"model_info": {"id": 1},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"model_name": "azure-model",
|
||||||
|
"litellm_params": {
|
||||||
|
"model": "azure/gpt-35-turbo",
|
||||||
|
"api_key": "os.environ/AZURE_EUROPE_API_KEY",
|
||||||
|
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com",
|
||||||
|
"rpm": 6,
|
||||||
|
},
|
||||||
|
"model_info": {"id": 2},
|
||||||
|
},
|
||||||
|
]
|
||||||
|
router = Router(
|
||||||
|
model_list=model_list,
|
||||||
|
routing_strategy="latency-based-routing",
|
||||||
|
set_verbose=False,
|
||||||
|
num_retries=3,
|
||||||
|
routing_strategy_args={"lowest_latency_buffer": buffer},
|
||||||
|
) # type: ignore
|
||||||
|
|
||||||
|
## DEPLOYMENT 1 ##
|
||||||
|
deployment_id = 1
|
||||||
|
kwargs = {
|
||||||
|
"litellm_params": {
|
||||||
|
"metadata": {
|
||||||
|
"model_group": "azure-model",
|
||||||
|
},
|
||||||
|
"model_info": {"id": 1},
|
||||||
|
}
|
||||||
|
}
|
||||||
|
start_time = time.time()
|
||||||
|
response_obj = {"usage": {"total_tokens": 50}}
|
||||||
|
time.sleep(3)
|
||||||
|
end_time = time.time()
|
||||||
|
router.lowestlatency_logger.log_success_event(
|
||||||
|
response_obj=response_obj,
|
||||||
|
kwargs=kwargs,
|
||||||
|
start_time=start_time,
|
||||||
|
end_time=end_time,
|
||||||
|
)
|
||||||
|
## DEPLOYMENT 2 ##
|
||||||
|
deployment_id = 2
|
||||||
|
kwargs = {
|
||||||
|
"litellm_params": {
|
||||||
|
"metadata": {
|
||||||
|
"model_group": "azure-model",
|
||||||
|
},
|
||||||
|
"model_info": {"id": 2},
|
||||||
|
}
|
||||||
|
}
|
||||||
|
start_time = time.time()
|
||||||
|
response_obj = {"usage": {"total_tokens": 20}}
|
||||||
|
time.sleep(2)
|
||||||
|
end_time = time.time()
|
||||||
|
router.lowestlatency_logger.log_success_event(
|
||||||
|
response_obj=response_obj,
|
||||||
|
kwargs=kwargs,
|
||||||
|
start_time=start_time,
|
||||||
|
end_time=end_time,
|
||||||
|
)
|
||||||
|
|
||||||
|
## CHECK WHAT'S SELECTED ##
|
||||||
|
# print(router.lowesttpm_logger.get_available_deployments(model_group="azure-model"))
|
||||||
|
selected_deployments = {}
|
||||||
|
for _ in range(50):
|
||||||
|
print(router.get_available_deployment(model="azure-model"))
|
||||||
|
selected_deployments[
|
||||||
|
router.get_available_deployment(model="azure-model")["model_info"]["id"]
|
||||||
|
] = 1
|
||||||
|
|
||||||
|
if buffer == 0:
|
||||||
|
assert len(selected_deployments.keys()) == 1
|
||||||
|
else:
|
||||||
|
assert len(selected_deployments.keys()) == 2
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue