forked from phoenix/litellm-mirror
fix anthropic and together ai streaming
This commit is contained in:
parent
93e897da48
commit
9155ba068f
5 changed files with 105 additions and 28 deletions
Binary file not shown.
Binary file not shown.
|
@ -540,16 +540,9 @@ def completion(
|
|||
|
||||
## LOGGING
|
||||
logging.pre_call(input=prompt, api_key=TOGETHER_AI_TOKEN)
|
||||
if stream == True:
|
||||
return together_ai_completion_streaming(
|
||||
{
|
||||
"model": model,
|
||||
"prompt": prompt,
|
||||
"request_type": "language-model-inference",
|
||||
**optional_params,
|
||||
},
|
||||
headers=headers,
|
||||
)
|
||||
|
||||
print(f"TOGETHER_AI_TOKEN: {TOGETHER_AI_TOKEN}")
|
||||
|
||||
res = requests.post(
|
||||
endpoint,
|
||||
json={
|
||||
|
@ -560,6 +553,12 @@ def completion(
|
|||
},
|
||||
headers=headers,
|
||||
)
|
||||
|
||||
if "stream_tokens" in optional_params and optional_params["stream_tokens"] == True:
|
||||
response = CustomStreamWrapper(
|
||||
res.iter_lines(), model, custom_llm_provider="together_ai"
|
||||
)
|
||||
return response
|
||||
## LOGGING
|
||||
logging.post_call(
|
||||
input=prompt, api_key=TOGETHER_AI_TOKEN, original_response=res.text
|
||||
|
|
|
@ -9,13 +9,14 @@ sys.path.insert(
|
|||
) # Adds the parent directory to the system path
|
||||
import litellm
|
||||
from litellm import completion
|
||||
litellm.logging = True
|
||||
litellm.set_verbose = True
|
||||
litellm.logging = False
|
||||
litellm.set_verbose = False
|
||||
|
||||
score = 0
|
||||
|
||||
|
||||
def logger_fn(model_call_object: dict):
|
||||
return
|
||||
print(f"model call details: {model_call_object}")
|
||||
|
||||
|
||||
|
@ -81,17 +82,91 @@ except:
|
|||
|
||||
# # test on huggingface completion call
|
||||
# try:
|
||||
# start_time = time.time()
|
||||
# response = completion(
|
||||
# model="meta-llama/Llama-2-7b-chat-hf",
|
||||
# messages=messages,
|
||||
# custom_llm_provider="huggingface",
|
||||
# custom_api_base="https://s7c7gytn18vnu4tw.us-east-1.aws.endpoints.huggingface.cloud",
|
||||
# stream=True,
|
||||
# logger_fn=logger_fn,
|
||||
# model="gpt-3.5-turbo", messages=messages, stream=True, logger_fn=logger_fn
|
||||
# )
|
||||
# complete_response = ""
|
||||
# for chunk in response:
|
||||
# chunk_time = time.time()
|
||||
# print(f"time since initial request: {chunk_time - start_time:.2f}")
|
||||
# print(chunk["choices"][0]["delta"])
|
||||
# score += 1
|
||||
# complete_response += chunk["choices"][0]["delta"]["content"] if len(chunk["choices"][0]["delta"].keys()) > 0 else ""
|
||||
# if complete_response == "":
|
||||
# raise Exception("Empty response received")
|
||||
# except:
|
||||
# print(f"error occurred: {traceback.format_exc()}")
|
||||
# pass
|
||||
|
||||
# test on together ai completion call
|
||||
try:
|
||||
start_time = time.time()
|
||||
response = completion(
|
||||
model="Replit-Code-3B", messages=messages, logger_fn=logger_fn, stream= True
|
||||
)
|
||||
complete_response = ""
|
||||
print(f"returned response object: {response}")
|
||||
for chunk in response:
|
||||
chunk_time = time.time()
|
||||
print(f"time since initial request: {chunk_time - start_time:.2f}")
|
||||
print(chunk["choices"][0]["delta"])
|
||||
complete_response += chunk["choices"][0]["delta"]["content"] if len(chunk["choices"][0]["delta"].keys()) > 0 else ""
|
||||
if complete_response == "":
|
||||
raise Exception("Empty response received")
|
||||
except:
|
||||
print(f"error occurred: {traceback.format_exc()}")
|
||||
pass
|
||||
|
||||
|
||||
# # test on azure completion call
|
||||
# try:
|
||||
# response = completion(
|
||||
# model="azure/chatgpt-test", messages=messages, stream=True, logger_fn=logger_fn
|
||||
# )
|
||||
# response = ""
|
||||
# for chunk in response:
|
||||
# chunk_time = time.time()
|
||||
# print(f"time since initial request: {chunk_time - start_time:.2f}")
|
||||
# print(chunk["choices"][0]["delta"])
|
||||
# response += chunk["choices"][0]["delta"]
|
||||
# if response == "":
|
||||
# raise Exception("Empty response received")
|
||||
# except:
|
||||
# print(f"error occurred: {traceback.format_exc()}")
|
||||
# pass
|
||||
|
||||
|
||||
# # test on anthropic completion call
|
||||
# try:
|
||||
# response = completion(
|
||||
# model="claude-instant-1", messages=messages, stream=True, logger_fn=logger_fn
|
||||
# )
|
||||
# response = ""
|
||||
# for chunk in response:
|
||||
# chunk_time = time.time()
|
||||
# print(f"time since initial request: {chunk_time - start_time:.2f}")
|
||||
# print(chunk["choices"][0]["delta"])
|
||||
# response += chunk["choices"][0]["delta"]
|
||||
# if response == "":
|
||||
# raise Exception("Empty response received")
|
||||
# except:
|
||||
# print(f"error occurred: {traceback.format_exc()}")
|
||||
# pass
|
||||
|
||||
|
||||
# # # test on huggingface completion call
|
||||
# # try:
|
||||
# # response = completion(
|
||||
# # model="meta-llama/Llama-2-7b-chat-hf",
|
||||
# # messages=messages,
|
||||
# # custom_llm_provider="huggingface",
|
||||
# # custom_api_base="https://s7c7gytn18vnu4tw.us-east-1.aws.endpoints.huggingface.cloud",
|
||||
# # stream=True,
|
||||
# # logger_fn=logger_fn,
|
||||
# # )
|
||||
# # for chunk in response:
|
||||
# # print(chunk["choices"][0]["delta"])
|
||||
# # score += 1
|
||||
# # except:
|
||||
# # print(f"error occurred: {traceback.format_exc()}")
|
||||
# # pass
|
||||
|
|
|
@ -371,6 +371,8 @@ def client(original_function):
|
|||
)
|
||||
if "logger_fn" in kwargs:
|
||||
user_logger_fn = kwargs["logger_fn"]
|
||||
# LOG SUCCESS
|
||||
crash_reporting(*args, **kwargs)
|
||||
except: # DO NOT BLOCK running the function because of this
|
||||
print_verbose(f"[Non-Blocking] {traceback.format_exc()}")
|
||||
pass
|
||||
|
@ -444,26 +446,27 @@ def client(original_function):
|
|||
function_setup(*args, **kwargs)
|
||||
litellm_call_id = str(uuid.uuid4())
|
||||
kwargs["litellm_call_id"] = litellm_call_id
|
||||
# [OPTIONAL] CHECK CACHE
|
||||
start_time = datetime.datetime.now()
|
||||
# [OPTIONAL] CHECK CACHE
|
||||
if (litellm.caching or litellm.caching_with_models) and (
|
||||
cached_result := check_cache(*args, **kwargs)) is not None:
|
||||
result = cached_result
|
||||
else:
|
||||
# MODEL CALL
|
||||
result = original_function(*args, **kwargs)
|
||||
return result
|
||||
# MODEL CALL
|
||||
result = original_function(*args, **kwargs)
|
||||
if "stream" in kwargs and kwargs["stream"] == True:
|
||||
return result
|
||||
end_time = datetime.datetime.now()
|
||||
# Add response to CACHE
|
||||
if litellm.caching:
|
||||
# [OPTIONAL] ADD TO CACHE
|
||||
if (litellm.caching or litellm.caching_with_models):
|
||||
add_cache(result, *args, **kwargs)
|
||||
# LOG SUCCESS
|
||||
crash_reporting(*args, **kwargs)
|
||||
|
||||
my_thread = threading.Thread(
|
||||
target=handle_success,
|
||||
args=(args, kwargs, result, start_time,
|
||||
end_time)) # don't interrupt execution of main thread
|
||||
my_thread.start()
|
||||
# RETURN RESULT
|
||||
return result
|
||||
except Exception as e:
|
||||
|
||||
|
@ -1465,7 +1468,7 @@ class CustomStreamWrapper:
|
|||
if model in litellm.cohere_models:
|
||||
# cohere does not return an iterator, so we need to wrap it in one
|
||||
self.completion_stream = iter(completion_stream)
|
||||
elif model == "together_ai":
|
||||
elif custom_llm_provider == "together_ai":
|
||||
self.completion_stream = iter(completion_stream)
|
||||
else:
|
||||
self.completion_stream = completion_stream
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue