docs logging to GCS

This commit is contained in:
Ishaan Jaff 2024-08-01 16:16:33 -07:00 committed by Krrish Dholakia
parent 7f3dd3072c
commit 950f803035
3 changed files with 130 additions and 62 deletions

View file

@ -0,0 +1,129 @@
# 🪣 Logging GCS, s3 Buckets
LiteLLM Supports Logging to the following Cloud Buckets
- (Enterprise) ✨ [Google Cloud Storage Buckets](#logging-proxy-inputoutput-to-google-cloud-storage-buckets)
- (Free OSS) [Amazon s3 Buckets](#logging-proxy-inputoutput---s3-buckets)
## Logging Proxy Input/Output to Google Cloud Storage Buckets
Log LLM Logs to [Google Cloud Storage Buckets](https://cloud.google.com/storage?hl=en)
:::info
✨ This is an Enterprise only feature [Get Started with Enterprise here](https://calendly.com/d/4mp-gd3-k5k/litellm-1-1-onboarding-chat)
:::
### Usage
1. Add `gcs_bucket` to LiteLLM Config.yaml
```yaml
model_list:
- litellm_params:
api_base: https://openai-function-calling-workers.tasslexyz.workers.dev/
api_key: my-fake-key
model: openai/my-fake-model
model_name: fake-openai-endpoint
litellm_settings:
callbacks: ["gcs_bucket"] # 👈 KEY CHANGE # 👈 KEY CHANGE
```
2. Set required env variables
```shell
GCS_BUCKET_NAME="<your-gcs-bucket-name>"
GCS_PATH_SERVICE_ACCOUNT="/Users/ishaanjaffer/Downloads/adroit-crow-413218-a956eef1a2a8.json" # Add path to service account.json
```
3. Start Proxy
```
litellm --config /path/to/config.yaml
```
4. Test it!
```bash
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "fake-openai-endpoint",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}
'
```
### Expected Logs on GCS Buckets
<Image img={require('../../img/gcs_bucket.png')} />
## Logging Proxy Input/Output - s3 Buckets
We will use the `--config` to set
- `litellm.success_callback = ["s3"]`
This will log all successfull LLM calls to s3 Bucket
**Step 1** Set AWS Credentials in .env
```shell
AWS_ACCESS_KEY_ID = ""
AWS_SECRET_ACCESS_KEY = ""
AWS_REGION_NAME = ""
```
**Step 2**: Create a `config.yaml` file and set `litellm_settings`: `success_callback`
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
litellm_settings:
success_callback: ["s3"]
s3_callback_params:
s3_bucket_name: logs-bucket-litellm # AWS Bucket Name for S3
s3_region_name: us-west-2 # AWS Region Name for S3
s3_aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID # us os.environ/<variable name> to pass environment variables. This is AWS Access Key ID for S3
s3_aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY # AWS Secret Access Key for S3
s3_path: my-test-path # [OPTIONAL] set path in bucket you want to write logs to
s3_endpoint_url: https://s3.amazonaws.com # [OPTIONAL] S3 endpoint URL, if you want to use Backblaze/cloudflare s3 buckets
```
**Step 3**: Start the proxy, make a test request
Start proxy
```shell
litellm --config config.yaml --debug
```
Test Request
```shell
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "Azure OpenAI GPT-4 East",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}'
```
Your logs should be available on the specified s3 Bucket

View file

@ -8,7 +8,6 @@ Log Proxy input, output, and exceptions using:
- Langsmith - Langsmith
- DataDog - DataDog
- DynamoDB - DynamoDB
- s3 Bucket
- etc. - etc.
import Image from '@theme/IdealImage'; import Image from '@theme/IdealImage';
@ -1379,66 +1378,6 @@ Expected output on Datadog
<Image img={require('../../img/dd_small1.png')} /> <Image img={require('../../img/dd_small1.png')} />
## Logging Proxy Input/Output - s3 Buckets
We will use the `--config` to set
- `litellm.success_callback = ["s3"]`
This will log all successfull LLM calls to s3 Bucket
**Step 1** Set AWS Credentials in .env
```shell
AWS_ACCESS_KEY_ID = ""
AWS_SECRET_ACCESS_KEY = ""
AWS_REGION_NAME = ""
```
**Step 2**: Create a `config.yaml` file and set `litellm_settings`: `success_callback`
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
litellm_settings:
success_callback: ["s3"]
s3_callback_params:
s3_bucket_name: logs-bucket-litellm # AWS Bucket Name for S3
s3_region_name: us-west-2 # AWS Region Name for S3
s3_aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID # us os.environ/<variable name> to pass environment variables. This is AWS Access Key ID for S3
s3_aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY # AWS Secret Access Key for S3
s3_path: my-test-path # [OPTIONAL] set path in bucket you want to write logs to
s3_endpoint_url: https://s3.amazonaws.com # [OPTIONAL] S3 endpoint URL, if you want to use Backblaze/cloudflare s3 buckets
```
**Step 3**: Start the proxy, make a test request
Start proxy
```shell
litellm --config config.yaml --debug
```
Test Request
```shell
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "Azure OpenAI GPT-4 East",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}'
```
Your logs should be available on the specified s3 Bucket
## Logging Proxy Input/Output - DynamoDB ## Logging Proxy Input/Output - DynamoDB
We will use the `--config` to set We will use the `--config` to set

View file

@ -47,7 +47,7 @@ const sidebars = {
{ {
type: "category", type: "category",
label: "🪢 Logging", label: "🪢 Logging",
items: ["proxy/logging", "proxy/streaming_logging"], items: ["proxy/logging", "proxy/bucket", "proxy/streaming_logging"],
}, },
"proxy/team_logging", "proxy/team_logging",
"proxy/guardrails", "proxy/guardrails",