forked from phoenix/litellm-mirror
(fix) Vertex Improve Performance when using image_url
(#6593)
* fix transformation vertex * test test_process_gemini_image * test_image_completion_request * testing fix - bedrock has deprecated cohere.command-text-v14 * fix vertex pdf
This commit is contained in:
parent
c047d51cc8
commit
96b0e324e3
2 changed files with 180 additions and 3 deletions
|
@ -51,6 +51,9 @@ from ..common_utils import (
|
|||
|
||||
|
||||
def _process_gemini_image(image_url: str) -> PartType:
|
||||
"""
|
||||
Given an image URL, return the appropriate PartType for Gemini
|
||||
"""
|
||||
try:
|
||||
# GCS URIs
|
||||
if "gs://" in image_url:
|
||||
|
@ -68,9 +71,14 @@ def _process_gemini_image(image_url: str) -> PartType:
|
|||
file_data = FileDataType(mime_type=mime_type, file_uri=image_url)
|
||||
|
||||
return PartType(file_data=file_data)
|
||||
|
||||
# Direct links
|
||||
elif "https:/" in image_url or "base64" in image_url:
|
||||
elif (
|
||||
"https://" in image_url
|
||||
and (image_type := _get_image_mime_type_from_url(image_url)) is not None
|
||||
):
|
||||
file_data = FileDataType(file_uri=image_url, mime_type=image_type)
|
||||
return PartType(file_data=file_data)
|
||||
elif "https://" in image_url or "base64" in image_url:
|
||||
# https links for unsupported mime types and base64 images
|
||||
image = convert_to_anthropic_image_obj(image_url)
|
||||
_blob = BlobType(data=image["data"], mime_type=image["media_type"])
|
||||
return PartType(inline_data=_blob)
|
||||
|
@ -79,6 +87,29 @@ def _process_gemini_image(image_url: str) -> PartType:
|
|||
raise e
|
||||
|
||||
|
||||
def _get_image_mime_type_from_url(url: str) -> Optional[str]:
|
||||
"""
|
||||
Get mime type for common image URLs
|
||||
See gemini mime types: https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/image-understanding#image-requirements
|
||||
|
||||
Supported by Gemini:
|
||||
- PNG (`image/png`)
|
||||
- JPEG (`image/jpeg`)
|
||||
- WebP (`image/webp`)
|
||||
Example:
|
||||
url = https://example.com/image.jpg
|
||||
Returns: image/jpeg
|
||||
"""
|
||||
url = url.lower()
|
||||
if url.endswith((".jpg", ".jpeg")):
|
||||
return "image/jpeg"
|
||||
elif url.endswith(".png"):
|
||||
return "image/png"
|
||||
elif url.endswith(".webp"):
|
||||
return "image/webp"
|
||||
return None
|
||||
|
||||
|
||||
def _gemini_convert_messages_with_history( # noqa: PLR0915
|
||||
messages: List[AllMessageValues],
|
||||
) -> List[ContentType]:
|
||||
|
|
|
@ -15,6 +15,7 @@ sys.path.insert(
|
|||
import pytest
|
||||
import litellm
|
||||
from litellm import get_optional_params
|
||||
from litellm.llms.custom_httpx.http_handler import HTTPHandler
|
||||
|
||||
|
||||
def test_completion_pydantic_obj_2():
|
||||
|
@ -1171,3 +1172,148 @@ def test_logprobs():
|
|||
print(resp)
|
||||
|
||||
assert resp.choices[0].logprobs is not None
|
||||
|
||||
|
||||
def test_process_gemini_image():
|
||||
"""Test the _process_gemini_image function for different image sources"""
|
||||
from litellm.llms.vertex_ai_and_google_ai_studio.gemini.transformation import (
|
||||
_process_gemini_image,
|
||||
)
|
||||
from litellm.types.llms.vertex_ai import PartType, FileDataType, BlobType
|
||||
|
||||
# Test GCS URI
|
||||
gcs_result = _process_gemini_image("gs://bucket/image.png")
|
||||
assert gcs_result["file_data"] == FileDataType(
|
||||
mime_type="image/png", file_uri="gs://bucket/image.png"
|
||||
)
|
||||
|
||||
# Test HTTPS JPG URL
|
||||
https_result = _process_gemini_image("https://example.com/image.jpg")
|
||||
print("https_result JPG", https_result)
|
||||
assert https_result["file_data"] == FileDataType(
|
||||
mime_type="image/jpeg", file_uri="https://example.com/image.jpg"
|
||||
)
|
||||
|
||||
# Test HTTPS PNG URL
|
||||
https_result = _process_gemini_image("https://example.com/image.png")
|
||||
print("https_result PNG", https_result)
|
||||
assert https_result["file_data"] == FileDataType(
|
||||
mime_type="image/png", file_uri="https://example.com/image.png"
|
||||
)
|
||||
|
||||
# Test base64 image
|
||||
base64_image = "..."
|
||||
base64_result = _process_gemini_image(base64_image)
|
||||
print("base64_result", base64_result)
|
||||
assert base64_result["inline_data"]["mime_type"] == "image/jpeg"
|
||||
assert base64_result["inline_data"]["data"] == "/9j/4AAQSkZJRg..."
|
||||
|
||||
|
||||
def test_get_image_mime_type_from_url():
|
||||
"""Test the _get_image_mime_type_from_url function for different image URLs"""
|
||||
from litellm.llms.vertex_ai_and_google_ai_studio.gemini.transformation import (
|
||||
_get_image_mime_type_from_url,
|
||||
)
|
||||
|
||||
# Test JPEG images
|
||||
assert (
|
||||
_get_image_mime_type_from_url("https://example.com/image.jpg") == "image/jpeg"
|
||||
)
|
||||
assert (
|
||||
_get_image_mime_type_from_url("https://example.com/image.jpeg") == "image/jpeg"
|
||||
)
|
||||
assert (
|
||||
_get_image_mime_type_from_url("https://example.com/IMAGE.JPG") == "image/jpeg"
|
||||
)
|
||||
|
||||
# Test PNG images
|
||||
assert _get_image_mime_type_from_url("https://example.com/image.png") == "image/png"
|
||||
assert _get_image_mime_type_from_url("https://example.com/IMAGE.PNG") == "image/png"
|
||||
|
||||
# Test WebP images
|
||||
assert (
|
||||
_get_image_mime_type_from_url("https://example.com/image.webp") == "image/webp"
|
||||
)
|
||||
assert (
|
||||
_get_image_mime_type_from_url("https://example.com/IMAGE.WEBP") == "image/webp"
|
||||
)
|
||||
|
||||
# Test unsupported formats
|
||||
assert _get_image_mime_type_from_url("https://example.com/image.gif") is None
|
||||
assert _get_image_mime_type_from_url("https://example.com/image.bmp") is None
|
||||
assert _get_image_mime_type_from_url("https://example.com/image") is None
|
||||
assert _get_image_mime_type_from_url("invalid_url") is None
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"image_url", ["https://example.com/image.jpg", "https://example.com/image.png"]
|
||||
)
|
||||
def test_image_completion_request(image_url):
|
||||
"""https:// .jpg, .png images are passed directly to the model"""
|
||||
from unittest.mock import patch, Mock
|
||||
import litellm
|
||||
from litellm.llms.vertex_ai_and_google_ai_studio.gemini.transformation import (
|
||||
_get_image_mime_type_from_url,
|
||||
)
|
||||
|
||||
# Mock response data
|
||||
mock_response = Mock()
|
||||
mock_response.json.return_value = {
|
||||
"candidates": [{"content": {"parts": [{"text": "This is a sunflower"}]}}],
|
||||
"usageMetadata": {
|
||||
"promptTokenCount": 11,
|
||||
"candidatesTokenCount": 50,
|
||||
"totalTokenCount": 61,
|
||||
},
|
||||
"modelVersion": "gemini-1.5-pro",
|
||||
}
|
||||
mock_response.raise_for_status = MagicMock()
|
||||
mock_response.status_code = 200
|
||||
|
||||
# Expected request body
|
||||
expected_request_body = {
|
||||
"contents": [
|
||||
{
|
||||
"role": "user",
|
||||
"parts": [
|
||||
{"text": "Whats in this image?"},
|
||||
{
|
||||
"file_data": {
|
||||
"file_uri": image_url,
|
||||
"mime_type": _get_image_mime_type_from_url(image_url),
|
||||
}
|
||||
},
|
||||
],
|
||||
}
|
||||
],
|
||||
"system_instruction": {"parts": [{"text": "Be a good bot"}]},
|
||||
"generationConfig": {},
|
||||
}
|
||||
|
||||
messages = [
|
||||
{"role": "system", "content": "Be a good bot"},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "Whats in this image?"},
|
||||
{"type": "image_url", "image_url": {"url": image_url}},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
client = HTTPHandler()
|
||||
with patch.object(client, "post", new=MagicMock()) as mock_post:
|
||||
mock_post.return_value = mock_response
|
||||
try:
|
||||
litellm.completion(
|
||||
model="gemini/gemini-1.5-pro",
|
||||
messages=messages,
|
||||
client=client,
|
||||
)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
# Assert the request body matches expected
|
||||
mock_post.assert_called_once()
|
||||
print("mock_post.call_args.kwargs['json']", mock_post.call_args.kwargs["json"])
|
||||
assert mock_post.call_args.kwargs["json"] == expected_request_body
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue