forked from phoenix/litellm-mirror
(docs) proxy - get model_info,server_request
This commit is contained in:
parent
76d0c50523
commit
977bfaaab9
1 changed files with 50 additions and 123 deletions
|
@ -160,144 +160,71 @@ On Success
|
|||
Response: {'id': 'chatcmpl-8S8avKJ1aVBg941y5xzGMSKrYCMvN', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'Good morning! How can I assist you today?', 'role': 'assistant'}}], 'created': 1701716913, 'model': 'gpt-3.5-turbo-0613', 'object': 'chat.completion', 'system_fingerprint': None, 'usage': {'completion_tokens': 10, 'prompt_tokens': 11, 'total_tokens': 21}}
|
||||
Proxy Metadata: {'user_api_key': None, 'headers': Headers({'host': '0.0.0.0:8000', 'user-agent': 'curl/7.88.1', 'accept': '*/*', 'authorization': 'Bearer sk-1234', 'content-length': '199', 'content-type': 'application/x-www-form-urlencoded'}), 'model_group': 'gpt-3.5-turbo', 'deployment': 'gpt-3.5-turbo-ModelID-gpt-3.5-turbo'}
|
||||
```
|
||||
<!--
|
||||
## Async Custom Callback Functions
|
||||
Use this if you just want to use a function as a custom callback with the proxy. Set custom async functions for `litellm.success_callback` and `litellm.failure_callback`.
|
||||
|
||||
### Step 1 Define Custom Callback functions
|
||||
### Logging Proxy Request Object, Header, Url
|
||||
|
||||
Define your custom callback functions in a python file.
|
||||
|
||||
We create a file called `custom_callbacks.py` and define `async_on_succes_logger()` and `async_on_fail_logger`
|
||||
|
||||
Example on success callback
|
||||
```python
|
||||
async def async_on_succes_logger(kwargs, response_obj, start_time, end_time):
|
||||
print(f"On Async Success!")
|
||||
# log: key, user, model, prompt, response, tokens, cost
|
||||
print("\nOn Success")
|
||||
# Access kwargs passed to litellm.completion()
|
||||
model = kwargs.get("model", None)
|
||||
messages = kwargs.get("messages", None)
|
||||
user = kwargs.get("user", None)
|
||||
|
||||
# Access litellm_params passed to litellm.completion(), example access `metadata`
|
||||
litellm_params = kwargs.get("litellm_params", {})
|
||||
metadata = litellm_params.get("metadata", {}) # headers passed to LiteLLM proxy, can be found here
|
||||
|
||||
# Calculate cost using litellm.completion_cost()
|
||||
cost = litellm.completion_cost(completion_response=response_obj)
|
||||
response = response_obj
|
||||
# tokens used in response
|
||||
usage = response_obj["usage"]
|
||||
|
||||
print(
|
||||
f"""
|
||||
Model: {model},
|
||||
Messages: {messages},
|
||||
User: {user},
|
||||
Usage: {usage},
|
||||
Cost: {cost},
|
||||
Response: {response}
|
||||
Proxy Metadata: {metadata}
|
||||
"""
|
||||
)
|
||||
return
|
||||
```
|
||||
|
||||
|
||||
Example on fail callback
|
||||
Here's how you can access the `url`, `headers`, `request body` sent to the proxy for each request
|
||||
|
||||
```python
|
||||
async def async_on_fail_logger(kwargs, response_obj, start_time, end_time):
|
||||
print(f"On Async Failure!")
|
||||
class MyCustomHandler(CustomLogger):
|
||||
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
||||
print(f"On Async Success!")
|
||||
|
||||
# Access kwargs passed to litellm.completion()
|
||||
model = kwargs.get("model", None)
|
||||
messages = kwargs.get("messages", None)
|
||||
user = kwargs.get("user", None)
|
||||
|
||||
# Access litellm_params passed to litellm.completion(), example access `metadata`
|
||||
litellm_params = kwargs.get("litellm_params", {})
|
||||
metadata = litellm_params.get("metadata", {}) # headers passed to LiteLLM proxy, can be found here
|
||||
|
||||
# Acess Exceptions & Traceback
|
||||
exception_event = kwargs.get("exception", None)
|
||||
traceback_event = kwargs.get("traceback_exception", None)
|
||||
|
||||
# Calculate cost using litellm.completion_cost()
|
||||
cost = litellm.completion_cost(completion_response=response_obj)
|
||||
response = response_obj
|
||||
# tokens used in response
|
||||
usage = response_obj.get("usage", {})
|
||||
|
||||
print(
|
||||
f"""
|
||||
Model: {model},
|
||||
Messages: {messages},
|
||||
User: {user},
|
||||
Usage: {usage},
|
||||
Cost: {cost},
|
||||
Response: {response}
|
||||
Proxy Metadata: {metadata}
|
||||
Exception: {exception_event}
|
||||
Traceback: {traceback_event}
|
||||
"""
|
||||
)
|
||||
litellm_params = kwargs.get("litellm_params", None)
|
||||
proxy_server_request = litellm_params.get("proxy_server_request")
|
||||
print(proxy_server_request)
|
||||
```
|
||||
|
||||
### Step 2 - Pass your custom callback functions in `config.yaml`
|
||||
We pass the custom callback functions defined in **Step1** to the config.yaml.
|
||||
Set `success_callback` and `failure_callback` to `python_filename.function_name`
|
||||
|
||||
In the config below, we pass
|
||||
- python_filename: `custom_callbacks.py`
|
||||
- function_name: `async_on_succes_logger` and `async_on_fail_logger` This is defined in Step 1
|
||||
|
||||
`success_callback: [custom_callbacks.async_on_succes_logger]`
|
||||
|
||||
`failure_callback: [custom_callbacks.async_on_fail_logger]`
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: gpt-3.5-turbo
|
||||
|
||||
litellm_settings:
|
||||
# setting a callback function for success and failure
|
||||
success_callback: [custom_callbacks.async_on_succes_logger]
|
||||
failure_callback: [custom_callbacks.async_on_fail_logger]
|
||||
|
||||
```
|
||||
|
||||
### Step 3 - Start proxy + test request
|
||||
```shell
|
||||
litellm --config proxy_config.yaml
|
||||
```
|
||||
**Expected Output**
|
||||
|
||||
```shell
|
||||
curl --location 'http://0.0.0.0:8000/chat/completions' \
|
||||
--header 'Authorization: Bearer sk-1234' \
|
||||
--data ' {
|
||||
"model": "gpt-3.5-turbo",
|
||||
{
|
||||
"url": "http://testserver/chat/completions",
|
||||
"method": "POST",
|
||||
"headers": {
|
||||
"host": "testserver",
|
||||
"accept": "*/*",
|
||||
"accept-encoding": "gzip, deflate",
|
||||
"connection": "keep-alive",
|
||||
"user-agent": "testclient",
|
||||
"authorization": "Bearer None",
|
||||
"content-length": "105",
|
||||
"content-type": "application/json"
|
||||
},
|
||||
"body": {
|
||||
"model": "Azure OpenAI GPT-4 Canada",
|
||||
"messages": [
|
||||
{
|
||||
{
|
||||
"role": "user",
|
||||
"content": "good morning good sir"
|
||||
}
|
||||
"content": "hi"
|
||||
}
|
||||
],
|
||||
"user": "ishaan-app",
|
||||
"temperature": 0.2
|
||||
}'
|
||||
```
|
||||
|
||||
#### Resulting Log on Proxy
|
||||
```shell
|
||||
"max_tokens": 10
|
||||
}
|
||||
}
|
||||
|
||||
```
|
||||
-->
|
||||
|
||||
### Logging `model_info` set in config.yaml
|
||||
|
||||
Here is how to log the `model_info` set in your proxy `config.yaml`. Information on setting `model_info` on [config.yaml](https://docs.litellm.ai/docs/proxy/configs)
|
||||
|
||||
```python
|
||||
class MyCustomHandler(CustomLogger):
|
||||
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
||||
print(f"On Async Success!")
|
||||
|
||||
litellm_params = kwargs.get("litellm_params", None)
|
||||
model_info = litellm_params.get("model_info")
|
||||
print(model_info)
|
||||
```
|
||||
|
||||
**Expected Output**
|
||||
```json
|
||||
{'mode': 'embedding', 'input_cost_per_token': 0.002}
|
||||
```
|
||||
|
||||
### Logging LLM Responses
|
||||
|
||||
## OpenTelemetry, ElasticSearch
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue