forked from phoenix/litellm-mirror
(docs) proxy - get model_info,server_request
This commit is contained in:
parent
76d0c50523
commit
977bfaaab9
1 changed files with 50 additions and 123 deletions
|
@ -160,144 +160,71 @@ On Success
|
||||||
Response: {'id': 'chatcmpl-8S8avKJ1aVBg941y5xzGMSKrYCMvN', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'Good morning! How can I assist you today?', 'role': 'assistant'}}], 'created': 1701716913, 'model': 'gpt-3.5-turbo-0613', 'object': 'chat.completion', 'system_fingerprint': None, 'usage': {'completion_tokens': 10, 'prompt_tokens': 11, 'total_tokens': 21}}
|
Response: {'id': 'chatcmpl-8S8avKJ1aVBg941y5xzGMSKrYCMvN', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'Good morning! How can I assist you today?', 'role': 'assistant'}}], 'created': 1701716913, 'model': 'gpt-3.5-turbo-0613', 'object': 'chat.completion', 'system_fingerprint': None, 'usage': {'completion_tokens': 10, 'prompt_tokens': 11, 'total_tokens': 21}}
|
||||||
Proxy Metadata: {'user_api_key': None, 'headers': Headers({'host': '0.0.0.0:8000', 'user-agent': 'curl/7.88.1', 'accept': '*/*', 'authorization': 'Bearer sk-1234', 'content-length': '199', 'content-type': 'application/x-www-form-urlencoded'}), 'model_group': 'gpt-3.5-turbo', 'deployment': 'gpt-3.5-turbo-ModelID-gpt-3.5-turbo'}
|
Proxy Metadata: {'user_api_key': None, 'headers': Headers({'host': '0.0.0.0:8000', 'user-agent': 'curl/7.88.1', 'accept': '*/*', 'authorization': 'Bearer sk-1234', 'content-length': '199', 'content-type': 'application/x-www-form-urlencoded'}), 'model_group': 'gpt-3.5-turbo', 'deployment': 'gpt-3.5-turbo-ModelID-gpt-3.5-turbo'}
|
||||||
```
|
```
|
||||||
<!--
|
|
||||||
## Async Custom Callback Functions
|
|
||||||
Use this if you just want to use a function as a custom callback with the proxy. Set custom async functions for `litellm.success_callback` and `litellm.failure_callback`.
|
|
||||||
|
|
||||||
### Step 1 Define Custom Callback functions
|
### Logging Proxy Request Object, Header, Url
|
||||||
|
|
||||||
Define your custom callback functions in a python file.
|
Here's how you can access the `url`, `headers`, `request body` sent to the proxy for each request
|
||||||
|
|
||||||
We create a file called `custom_callbacks.py` and define `async_on_succes_logger()` and `async_on_fail_logger`
|
|
||||||
|
|
||||||
Example on success callback
|
|
||||||
```python
|
|
||||||
async def async_on_succes_logger(kwargs, response_obj, start_time, end_time):
|
|
||||||
print(f"On Async Success!")
|
|
||||||
# log: key, user, model, prompt, response, tokens, cost
|
|
||||||
print("\nOn Success")
|
|
||||||
# Access kwargs passed to litellm.completion()
|
|
||||||
model = kwargs.get("model", None)
|
|
||||||
messages = kwargs.get("messages", None)
|
|
||||||
user = kwargs.get("user", None)
|
|
||||||
|
|
||||||
# Access litellm_params passed to litellm.completion(), example access `metadata`
|
|
||||||
litellm_params = kwargs.get("litellm_params", {})
|
|
||||||
metadata = litellm_params.get("metadata", {}) # headers passed to LiteLLM proxy, can be found here
|
|
||||||
|
|
||||||
# Calculate cost using litellm.completion_cost()
|
|
||||||
cost = litellm.completion_cost(completion_response=response_obj)
|
|
||||||
response = response_obj
|
|
||||||
# tokens used in response
|
|
||||||
usage = response_obj["usage"]
|
|
||||||
|
|
||||||
print(
|
|
||||||
f"""
|
|
||||||
Model: {model},
|
|
||||||
Messages: {messages},
|
|
||||||
User: {user},
|
|
||||||
Usage: {usage},
|
|
||||||
Cost: {cost},
|
|
||||||
Response: {response}
|
|
||||||
Proxy Metadata: {metadata}
|
|
||||||
"""
|
|
||||||
)
|
|
||||||
return
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
Example on fail callback
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
async def async_on_fail_logger(kwargs, response_obj, start_time, end_time):
|
class MyCustomHandler(CustomLogger):
|
||||||
print(f"On Async Failure!")
|
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
||||||
|
print(f"On Async Success!")
|
||||||
|
|
||||||
# Access kwargs passed to litellm.completion()
|
litellm_params = kwargs.get("litellm_params", None)
|
||||||
model = kwargs.get("model", None)
|
proxy_server_request = litellm_params.get("proxy_server_request")
|
||||||
messages = kwargs.get("messages", None)
|
print(proxy_server_request)
|
||||||
user = kwargs.get("user", None)
|
|
||||||
|
|
||||||
# Access litellm_params passed to litellm.completion(), example access `metadata`
|
|
||||||
litellm_params = kwargs.get("litellm_params", {})
|
|
||||||
metadata = litellm_params.get("metadata", {}) # headers passed to LiteLLM proxy, can be found here
|
|
||||||
|
|
||||||
# Acess Exceptions & Traceback
|
|
||||||
exception_event = kwargs.get("exception", None)
|
|
||||||
traceback_event = kwargs.get("traceback_exception", None)
|
|
||||||
|
|
||||||
# Calculate cost using litellm.completion_cost()
|
|
||||||
cost = litellm.completion_cost(completion_response=response_obj)
|
|
||||||
response = response_obj
|
|
||||||
# tokens used in response
|
|
||||||
usage = response_obj.get("usage", {})
|
|
||||||
|
|
||||||
print(
|
|
||||||
f"""
|
|
||||||
Model: {model},
|
|
||||||
Messages: {messages},
|
|
||||||
User: {user},
|
|
||||||
Usage: {usage},
|
|
||||||
Cost: {cost},
|
|
||||||
Response: {response}
|
|
||||||
Proxy Metadata: {metadata}
|
|
||||||
Exception: {exception_event}
|
|
||||||
Traceback: {traceback_event}
|
|
||||||
"""
|
|
||||||
)
|
|
||||||
```
|
```
|
||||||
|
|
||||||
### Step 2 - Pass your custom callback functions in `config.yaml`
|
**Expected Output**
|
||||||
We pass the custom callback functions defined in **Step1** to the config.yaml.
|
|
||||||
Set `success_callback` and `failure_callback` to `python_filename.function_name`
|
|
||||||
|
|
||||||
In the config below, we pass
|
|
||||||
- python_filename: `custom_callbacks.py`
|
|
||||||
- function_name: `async_on_succes_logger` and `async_on_fail_logger` This is defined in Step 1
|
|
||||||
|
|
||||||
`success_callback: [custom_callbacks.async_on_succes_logger]`
|
|
||||||
|
|
||||||
`failure_callback: [custom_callbacks.async_on_fail_logger]`
|
|
||||||
|
|
||||||
```yaml
|
|
||||||
model_list:
|
|
||||||
- model_name: gpt-3.5-turbo
|
|
||||||
litellm_params:
|
|
||||||
model: gpt-3.5-turbo
|
|
||||||
|
|
||||||
litellm_settings:
|
|
||||||
# setting a callback function for success and failure
|
|
||||||
success_callback: [custom_callbacks.async_on_succes_logger]
|
|
||||||
failure_callback: [custom_callbacks.async_on_fail_logger]
|
|
||||||
|
|
||||||
```
|
|
||||||
|
|
||||||
### Step 3 - Start proxy + test request
|
|
||||||
```shell
|
|
||||||
litellm --config proxy_config.yaml
|
|
||||||
```
|
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
curl --location 'http://0.0.0.0:8000/chat/completions' \
|
{
|
||||||
--header 'Authorization: Bearer sk-1234' \
|
"url": "http://testserver/chat/completions",
|
||||||
--data ' {
|
"method": "POST",
|
||||||
"model": "gpt-3.5-turbo",
|
"headers": {
|
||||||
|
"host": "testserver",
|
||||||
|
"accept": "*/*",
|
||||||
|
"accept-encoding": "gzip, deflate",
|
||||||
|
"connection": "keep-alive",
|
||||||
|
"user-agent": "testclient",
|
||||||
|
"authorization": "Bearer None",
|
||||||
|
"content-length": "105",
|
||||||
|
"content-type": "application/json"
|
||||||
|
},
|
||||||
|
"body": {
|
||||||
|
"model": "Azure OpenAI GPT-4 Canada",
|
||||||
"messages": [
|
"messages": [
|
||||||
{
|
{
|
||||||
"role": "user",
|
"role": "user",
|
||||||
"content": "good morning good sir"
|
"content": "hi"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"user": "ishaan-app",
|
"max_tokens": 10
|
||||||
"temperature": 0.2
|
}
|
||||||
}'
|
}
|
||||||
```
|
|
||||||
|
|
||||||
#### Resulting Log on Proxy
|
|
||||||
```shell
|
|
||||||
|
|
||||||
```
|
```
|
||||||
-->
|
|
||||||
|
|
||||||
|
### Logging `model_info` set in config.yaml
|
||||||
|
|
||||||
|
Here is how to log the `model_info` set in your proxy `config.yaml`. Information on setting `model_info` on [config.yaml](https://docs.litellm.ai/docs/proxy/configs)
|
||||||
|
|
||||||
|
```python
|
||||||
|
class MyCustomHandler(CustomLogger):
|
||||||
|
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
||||||
|
print(f"On Async Success!")
|
||||||
|
|
||||||
|
litellm_params = kwargs.get("litellm_params", None)
|
||||||
|
model_info = litellm_params.get("model_info")
|
||||||
|
print(model_info)
|
||||||
|
```
|
||||||
|
|
||||||
|
**Expected Output**
|
||||||
|
```json
|
||||||
|
{'mode': 'embedding', 'input_cost_per_token': 0.002}
|
||||||
|
```
|
||||||
|
|
||||||
|
### Logging LLM Responses
|
||||||
|
|
||||||
## OpenTelemetry, ElasticSearch
|
## OpenTelemetry, ElasticSearch
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue