(refactor) sync caching - use LLMCachingHandler class for get_cache (#6249)

* caching - use _sync_set_cache

* add sync _sync_add_streaming_response_to_cache

* use caching class for cache storage

* fix use _sync_get_cache

* fix circular import

* use _update_litellm_logging_obj_environment

* use one helper for _process_async_embedding_cached_response

* fix _is_call_type_supported_by_cache

* fix checking cache

* fix sync get cache

* fix use _combine_cached_embedding_response_with_api_result

* fix _update_litellm_logging_obj_environment

* adjust test_redis_cache_acompletion_stream_bedrock
This commit is contained in:
Ishaan Jaff 2024-10-16 12:33:49 +05:30 committed by GitHub
parent 183bd5d873
commit 97ba4eea7d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 434 additions and 294 deletions

View file

@ -13,7 +13,18 @@ In each method it will call the appropriate method from caching.py
import asyncio
import datetime
import threading
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
from typing import (
TYPE_CHECKING,
Any,
AsyncGenerator,
Callable,
Dict,
Generator,
List,
Optional,
Tuple,
Union,
)
from pydantic import BaseModel
@ -41,8 +52,10 @@ from litellm.types.utils import (
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.utils import CustomStreamWrapper
else:
LiteLLMLoggingObj = Any
CustomStreamWrapper = Any
class CachingHandlerResponse(BaseModel):
@ -108,6 +121,7 @@ class LLMCachingHandler:
args = args or ()
final_embedding_cached_response: Optional[EmbeddingResponse] = None
embedding_all_elements_cache_hit: bool = False
cached_result: Optional[Any] = None
if (
(kwargs.get("caching", None) is None and litellm.cache is not None)
@ -115,16 +129,10 @@ class LLMCachingHandler:
) and (
kwargs.get("cache", {}).get("no-cache", False) is not True
): # allow users to control returning cached responses from the completion function
# checking cache
print_verbose("INSIDE CHECKING CACHE")
if (
litellm.cache is not None
and litellm.cache.supported_call_types is not None
and str(original_function.__name__)
in litellm.cache.supported_call_types
if litellm.cache is not None and self._is_call_type_supported_by_cache(
original_function=original_function
):
print_verbose("Checking Cache")
cached_result = await self._retrieve_from_cache(
call_type=call_type,
kwargs=kwargs,
@ -135,42 +143,20 @@ class LLMCachingHandler:
print_verbose("Cache Hit!")
cache_hit = True
end_time = datetime.datetime.now()
(
model,
custom_llm_provider,
dynamic_api_key,
api_base,
) = litellm.get_llm_provider(
model, _, _, _ = litellm.get_llm_provider(
model=model,
custom_llm_provider=kwargs.get("custom_llm_provider", None),
api_base=kwargs.get("api_base", None),
api_key=kwargs.get("api_key", None),
)
print_verbose(
f"Async Wrapper: Completed Call, calling async_success_handler: {logging_obj.async_success_handler}"
)
logging_obj.update_environment_variables(
self._update_litellm_logging_obj_environment(
logging_obj=logging_obj,
model=model,
user=kwargs.get("user", None),
optional_params={},
litellm_params={
"logger_fn": kwargs.get("logger_fn", None),
"acompletion": True,
"metadata": kwargs.get("metadata", {}),
"model_info": kwargs.get("model_info", {}),
"proxy_server_request": kwargs.get(
"proxy_server_request", None
),
"preset_cache_key": kwargs.get("preset_cache_key", None),
"stream_response": kwargs.get("stream_response", {}),
"api_base": kwargs.get("api_base", ""),
},
input=kwargs.get("messages", ""),
api_key=kwargs.get("api_key", None),
original_response=str(cached_result),
additional_args=None,
stream=kwargs.get("stream", False),
kwargs=kwargs,
cached_result=cached_result,
is_async=True,
)
call_type = original_function.__name__
cached_result = self._convert_cached_result_to_model_response(
@ -184,15 +170,13 @@ class LLMCachingHandler:
)
if kwargs.get("stream", False) is False:
# LOG SUCCESS
asyncio.create_task(
logging_obj.async_success_handler(
cached_result, start_time, end_time, cache_hit
)
self._async_log_cache_hit_on_callbacks(
logging_obj=logging_obj,
cached_result=cached_result,
start_time=start_time,
end_time=end_time,
cache_hit=cache_hit,
)
threading.Thread(
target=logging_obj.success_handler,
args=(cached_result, start_time, end_time, cache_hit),
).start()
cache_key = kwargs.get("preset_cache_key", None)
if (
isinstance(cached_result, BaseModel)
@ -209,101 +193,261 @@ class LLMCachingHandler:
litellm.cache.cache, S3Cache
) # s3 doesn't support bulk writing. Exclude.
):
remaining_list = []
non_null_list = []
for idx, cr in enumerate(cached_result):
if cr is None:
remaining_list.append(kwargs["input"][idx])
else:
non_null_list.append((idx, cr))
original_kwargs_input = kwargs["input"]
kwargs["input"] = remaining_list
if len(non_null_list) > 0:
print_verbose(f"EMBEDDING CACHE HIT! - {len(non_null_list)}")
final_embedding_cached_response = EmbeddingResponse(
model=kwargs.get("model"),
data=[None] * len(original_kwargs_input),
)
final_embedding_cached_response._hidden_params["cache_hit"] = (
True
)
for val in non_null_list:
idx, cr = val # (idx, cr) tuple
if cr is not None:
final_embedding_cached_response.data[idx] = Embedding(
embedding=cr["embedding"],
index=idx,
object="embedding",
)
if len(remaining_list) == 0:
# LOG SUCCESS
cache_hit = True
end_time = datetime.datetime.now()
(
model,
custom_llm_provider,
dynamic_api_key,
api_base,
) = litellm.get_llm_provider(
model=model,
custom_llm_provider=kwargs.get("custom_llm_provider", None),
api_base=kwargs.get("api_base", None),
api_key=kwargs.get("api_key", None),
)
print_verbose(
f"Async Wrapper: Completed Call, calling async_success_handler: {logging_obj.async_success_handler}"
)
logging_obj.update_environment_variables(
model=model,
user=kwargs.get("user", None),
optional_params={},
litellm_params={
"logger_fn": kwargs.get("logger_fn", None),
"acompletion": True,
"metadata": kwargs.get("metadata", {}),
"model_info": kwargs.get("model_info", {}),
"proxy_server_request": kwargs.get(
"proxy_server_request", None
),
"preset_cache_key": kwargs.get(
"preset_cache_key", None
),
"stream_response": kwargs.get("stream_response", {}),
"api_base": "",
},
input=kwargs.get("messages", ""),
api_key=kwargs.get("api_key", None),
original_response=str(final_embedding_cached_response),
additional_args=None,
stream=kwargs.get("stream", False),
)
asyncio.create_task(
logging_obj.async_success_handler(
final_embedding_cached_response,
start_time,
end_time,
cache_hit,
)
)
threading.Thread(
target=logging_obj.success_handler,
args=(
final_embedding_cached_response,
start_time,
end_time,
cache_hit,
),
).start()
return CachingHandlerResponse(
final_embedding_cached_response=final_embedding_cached_response,
embedding_all_elements_cache_hit=True,
)
(
final_embedding_cached_response,
embedding_all_elements_cache_hit,
) = self._process_async_embedding_cached_response(
final_embedding_cached_response=final_embedding_cached_response,
cached_result=cached_result,
kwargs=kwargs,
logging_obj=logging_obj,
start_time=start_time,
model=model,
)
return CachingHandlerResponse(
final_embedding_cached_response=final_embedding_cached_response,
embedding_all_elements_cache_hit=embedding_all_elements_cache_hit,
)
return CachingHandlerResponse(
cached_result=cached_result,
final_embedding_cached_response=final_embedding_cached_response,
)
def _sync_get_cache(
self,
model: str,
original_function: Callable,
logging_obj: LiteLLMLoggingObj,
start_time: datetime.datetime,
call_type: str,
kwargs: Dict[str, Any],
args: Optional[Tuple[Any, ...]] = None,
) -> CachingHandlerResponse:
from litellm.utils import CustomStreamWrapper
args = args or ()
cached_result: Optional[Any] = None
if litellm.cache is not None and self._is_call_type_supported_by_cache(
original_function=original_function
):
print_verbose("Checking Cache")
preset_cache_key = litellm.cache.get_cache_key(*args, **kwargs)
kwargs["preset_cache_key"] = (
preset_cache_key # for streaming calls, we need to pass the preset_cache_key
)
cached_result = litellm.cache.get_cache(*args, **kwargs)
if cached_result is not None:
if "detail" in cached_result:
# implies an error occurred
pass
else:
call_type = original_function.__name__
cached_result = self._convert_cached_result_to_model_response(
cached_result=cached_result,
call_type=call_type,
kwargs=kwargs,
logging_obj=logging_obj,
model=model,
custom_llm_provider=kwargs.get("custom_llm_provider", None),
args=args,
)
# LOG SUCCESS
cache_hit = True
end_time = datetime.datetime.now()
(
model,
custom_llm_provider,
dynamic_api_key,
api_base,
) = litellm.get_llm_provider(
model=model or "",
custom_llm_provider=kwargs.get("custom_llm_provider", None),
api_base=kwargs.get("api_base", None),
api_key=kwargs.get("api_key", None),
)
self._update_litellm_logging_obj_environment(
logging_obj=logging_obj,
model=model,
kwargs=kwargs,
cached_result=cached_result,
is_async=False,
)
threading.Thread(
target=logging_obj.success_handler,
args=(cached_result, start_time, end_time, cache_hit),
).start()
cache_key = kwargs.get("preset_cache_key", None)
if (
isinstance(cached_result, BaseModel)
or isinstance(cached_result, CustomStreamWrapper)
) and hasattr(cached_result, "_hidden_params"):
cached_result._hidden_params["cache_key"] = cache_key # type: ignore
return CachingHandlerResponse(cached_result=cached_result)
return CachingHandlerResponse(cached_result=cached_result)
def _process_async_embedding_cached_response(
self,
final_embedding_cached_response: Optional[EmbeddingResponse],
cached_result: List[Optional[Dict[str, Any]]],
kwargs: Dict[str, Any],
logging_obj: LiteLLMLoggingObj,
start_time: datetime.datetime,
model: str,
) -> Tuple[Optional[EmbeddingResponse], bool]:
"""
Returns the final embedding cached response and a boolean indicating if all elements in the list have a cache hit
For embedding responses, there can be a cache hit for some of the inputs in the list and a cache miss for others
This function processes the cached embedding responses and returns the final embedding cached response and a boolean indicating if all elements in the list have a cache hit
Args:
final_embedding_cached_response: Optional[EmbeddingResponse]:
cached_result: List[Optional[Dict[str, Any]]]:
kwargs: Dict[str, Any]:
logging_obj: LiteLLMLoggingObj:
start_time: datetime.datetime:
model: str:
Returns:
Tuple[Optional[EmbeddingResponse], bool]:
Returns the final embedding cached response and a boolean indicating if all elements in the list have a cache hit
"""
embedding_all_elements_cache_hit: bool = False
remaining_list = []
non_null_list = []
for idx, cr in enumerate(cached_result):
if cr is None:
remaining_list.append(kwargs["input"][idx])
else:
non_null_list.append((idx, cr))
original_kwargs_input = kwargs["input"]
kwargs["input"] = remaining_list
if len(non_null_list) > 0:
print_verbose(f"EMBEDDING CACHE HIT! - {len(non_null_list)}")
final_embedding_cached_response = EmbeddingResponse(
model=kwargs.get("model"),
data=[None] * len(original_kwargs_input),
)
final_embedding_cached_response._hidden_params["cache_hit"] = True
for val in non_null_list:
idx, cr = val # (idx, cr) tuple
if cr is not None:
final_embedding_cached_response.data[idx] = Embedding(
embedding=cr["embedding"],
index=idx,
object="embedding",
)
if len(remaining_list) == 0:
# LOG SUCCESS
cache_hit = True
embedding_all_elements_cache_hit = True
end_time = datetime.datetime.now()
(
model,
custom_llm_provider,
dynamic_api_key,
api_base,
) = litellm.get_llm_provider(
model=model,
custom_llm_provider=kwargs.get("custom_llm_provider", None),
api_base=kwargs.get("api_base", None),
api_key=kwargs.get("api_key", None),
)
self._update_litellm_logging_obj_environment(
logging_obj=logging_obj,
model=model,
kwargs=kwargs,
cached_result=final_embedding_cached_response,
is_async=True,
is_embedding=True,
)
self._async_log_cache_hit_on_callbacks(
logging_obj=logging_obj,
cached_result=final_embedding_cached_response,
start_time=start_time,
end_time=end_time,
cache_hit=cache_hit,
)
return final_embedding_cached_response, embedding_all_elements_cache_hit
return final_embedding_cached_response, embedding_all_elements_cache_hit
def _combine_cached_embedding_response_with_api_result(
self,
_caching_handler_response: CachingHandlerResponse,
embedding_response: EmbeddingResponse,
start_time: datetime.datetime,
end_time: datetime.datetime,
) -> EmbeddingResponse:
"""
Combines the cached embedding response with the API EmbeddingResponse
For caching there can be a cache hit for some of the inputs in the list and a cache miss for others
This function combines the cached embedding response with the API EmbeddingResponse
Args:
caching_handler_response: CachingHandlerResponse:
embedding_response: EmbeddingResponse:
Returns:
EmbeddingResponse:
"""
if _caching_handler_response.final_embedding_cached_response is None:
return embedding_response
idx = 0
final_data_list = []
for item in _caching_handler_response.final_embedding_cached_response.data:
if item is None and embedding_response.data is not None:
final_data_list.append(embedding_response.data[idx])
idx += 1
else:
final_data_list.append(item)
_caching_handler_response.final_embedding_cached_response.data = final_data_list
_caching_handler_response.final_embedding_cached_response._hidden_params[
"cache_hit"
] = True
_caching_handler_response.final_embedding_cached_response._response_ms = (
end_time - start_time
).total_seconds() * 1000
return _caching_handler_response.final_embedding_cached_response
def _async_log_cache_hit_on_callbacks(
self,
logging_obj: LiteLLMLoggingObj,
cached_result: Any,
start_time: datetime.datetime,
end_time: datetime.datetime,
cache_hit: bool,
):
"""
Helper function to log the success of a cached result on callbacks
Args:
logging_obj (LiteLLMLoggingObj): The logging object.
cached_result: The cached result.
start_time (datetime): The start time of the operation.
end_time (datetime): The end time of the operation.
cache_hit (bool): Whether it was a cache hit.
"""
asyncio.create_task(
logging_obj.async_success_handler(
cached_result, start_time, end_time, cache_hit
)
)
threading.Thread(
target=logging_obj.success_handler,
args=(cached_result, start_time, end_time, cache_hit),
).start()
async def _retrieve_from_cache(
self, call_type: str, kwargs: Dict[str, Any], args: Tuple[Any, ...]
) -> Optional[Any]:
@ -385,57 +529,60 @@ class LLMCachingHandler:
from litellm.utils import (
CustomStreamWrapper,
convert_to_model_response_object,
convert_to_streaming_response,
convert_to_streaming_response_async,
)
if call_type == CallTypes.acompletion.value and isinstance(cached_result, dict):
if (
call_type == CallTypes.acompletion.value
or call_type == CallTypes.completion.value
) and isinstance(cached_result, dict):
if kwargs.get("stream", False) is True:
cached_result = convert_to_streaming_response_async(
response_object=cached_result,
)
cached_result = CustomStreamWrapper(
completion_stream=cached_result,
model=model,
custom_llm_provider="cached_response",
cached_result = self._convert_cached_stream_response(
cached_result=cached_result,
call_type=call_type,
logging_obj=logging_obj,
model=model,
)
else:
cached_result = convert_to_model_response_object(
response_object=cached_result,
model_response_object=ModelResponse(),
)
if call_type == CallTypes.atext_completion.value and isinstance(
cached_result, dict
):
if (
call_type == CallTypes.atext_completion.value
or call_type == CallTypes.text_completion.value
) and isinstance(cached_result, dict):
if kwargs.get("stream", False) is True:
cached_result = convert_to_streaming_response_async(
response_object=cached_result,
)
cached_result = CustomStreamWrapper(
completion_stream=cached_result,
model=model,
custom_llm_provider="cached_response",
cached_result = self._convert_cached_stream_response(
cached_result=cached_result,
call_type=call_type,
logging_obj=logging_obj,
model=model,
)
else:
cached_result = TextCompletionResponse(**cached_result)
elif call_type == CallTypes.aembedding.value and isinstance(
cached_result, dict
):
elif (
call_type == CallTypes.aembedding.value
or call_type == CallTypes.embedding.value
) and isinstance(cached_result, dict):
cached_result = convert_to_model_response_object(
response_object=cached_result,
model_response_object=EmbeddingResponse(),
response_type="embedding",
)
elif call_type == CallTypes.arerank.value and isinstance(cached_result, dict):
elif (
call_type == CallTypes.arerank.value or call_type == CallTypes.rerank.value
) and isinstance(cached_result, dict):
cached_result = convert_to_model_response_object(
response_object=cached_result,
model_response_object=None,
response_type="rerank",
)
elif call_type == CallTypes.atranscription.value and isinstance(
cached_result, dict
):
elif (
call_type == CallTypes.atranscription.value
or call_type == CallTypes.transcription.value
) and isinstance(cached_result, dict):
hidden_params = {
"model": "whisper-1",
"custom_llm_provider": custom_llm_provider,
@ -449,6 +596,38 @@ class LLMCachingHandler:
)
return cached_result
def _convert_cached_stream_response(
self,
cached_result: Any,
call_type: str,
logging_obj: LiteLLMLoggingObj,
model: str,
) -> CustomStreamWrapper:
from litellm.utils import (
CustomStreamWrapper,
convert_to_streaming_response,
convert_to_streaming_response_async,
)
_stream_cached_result: Union[AsyncGenerator, Generator]
if (
call_type == CallTypes.acompletion.value
or call_type == CallTypes.atext_completion.value
):
_stream_cached_result = convert_to_streaming_response_async(
response_object=cached_result,
)
else:
_stream_cached_result = convert_to_streaming_response(
response_object=cached_result,
)
return CustomStreamWrapper(
completion_stream=_stream_cached_result,
model=model,
custom_llm_provider="cached_response",
logging_obj=logging_obj,
)
async def _async_set_cache(
self,
result: Any,
@ -545,6 +724,28 @@ class LLMCachingHandler:
and (kwargs.get("cache", {}).get("no-store", False) is not True)
)
def _is_call_type_supported_by_cache(
self,
original_function: Callable,
) -> bool:
"""
Helper function to determine if the call type is supported by the cache.
call types are acompletion, aembedding, atext_completion, atranscription, arerank
Defined on `litellm.types.utils.CallTypes`
Returns:
bool: True if the call type is supported by the cache, False otherwise.
"""
if (
litellm.cache is not None
and litellm.cache.supported_call_types is not None
and str(original_function.__name__) in litellm.cache.supported_call_types
):
return True
return False
async def _add_streaming_response_to_cache(self, processed_chunk: ModelResponse):
"""
Internal method to add the streaming response to the cache
@ -594,3 +795,53 @@ class LLMCachingHandler:
result=complete_streaming_response,
kwargs=self.request_kwargs,
)
def _update_litellm_logging_obj_environment(
self,
logging_obj: LiteLLMLoggingObj,
model: str,
kwargs: Dict[str, Any],
cached_result: Any,
is_async: bool,
is_embedding: bool = False,
):
"""
Helper function to update the LiteLLMLoggingObj environment variables.
Args:
logging_obj (LiteLLMLoggingObj): The logging object to update.
model (str): The model being used.
kwargs (Dict[str, Any]): The keyword arguments from the original function call.
cached_result (Any): The cached result to log.
is_async (bool): Whether the call is asynchronous or not.
is_embedding (bool): Whether the call is for embeddings or not.
Returns:
None
"""
litellm_params = {
"logger_fn": kwargs.get("logger_fn", None),
"acompletion": is_async,
"api_base": kwargs.get("api_base", ""),
"metadata": kwargs.get("metadata", {}),
"model_info": kwargs.get("model_info", {}),
"proxy_server_request": kwargs.get("proxy_server_request", None),
"preset_cache_key": kwargs.get("preset_cache_key", None),
"stream_response": kwargs.get("stream_response", {}),
}
logging_obj.update_environment_variables(
model=model,
user=kwargs.get("user", None),
optional_params={},
litellm_params=litellm_params,
input=(
kwargs.get("messages", "")
if not is_embedding
else kwargs.get("input", "")
),
api_key=kwargs.get("api_key", None),
original_response=str(cached_result),
additional_args=None,
stream=kwargs.get("stream", False),
)

View file

@ -773,6 +773,8 @@ def client(original_function):
call_type = original_function.__name__
if "litellm_call_id" not in kwargs:
kwargs["litellm_call_id"] = str(uuid.uuid4())
model: Optional[str] = None
try:
model = args[0] if len(args) > 0 else kwargs["model"]
except Exception:
@ -844,116 +846,20 @@ def client(original_function):
): # allow users to control returning cached responses from the completion function
# checking cache
print_verbose("INSIDE CHECKING CACHE")
if (
litellm.cache is not None
and litellm.cache.supported_call_types is not None
and str(original_function.__name__)
in litellm.cache.supported_call_types
):
print_verbose("Checking Cache")
preset_cache_key = litellm.cache.get_cache_key(*args, **kwargs)
kwargs["preset_cache_key"] = (
preset_cache_key # for streaming calls, we need to pass the preset_cache_key
caching_handler_response: CachingHandlerResponse = (
_llm_caching_handler._sync_get_cache(
model=model or "",
original_function=original_function,
logging_obj=logging_obj,
start_time=start_time,
call_type=call_type,
kwargs=kwargs,
args=args,
)
cached_result = litellm.cache.get_cache(*args, **kwargs)
if cached_result is not None:
if "detail" in cached_result:
# implies an error occurred
pass
else:
call_type = original_function.__name__
print_verbose(
f"Cache Response Object routing: call_type - {call_type}; cached_result instace: {type(cached_result)}"
)
if call_type == CallTypes.completion.value and isinstance(
cached_result, dict
):
cached_result = convert_to_model_response_object(
response_object=cached_result,
model_response_object=ModelResponse(),
stream=kwargs.get("stream", False),
)
)
if caching_handler_response.cached_result is not None:
return caching_handler_response.cached_result
if kwargs.get("stream", False) is True:
cached_result = CustomStreamWrapper(
completion_stream=cached_result,
model=model,
custom_llm_provider="cached_response",
logging_obj=logging_obj,
)
elif call_type == CallTypes.embedding.value and isinstance(
cached_result, dict
):
cached_result = convert_to_model_response_object(
response_object=cached_result,
response_type="embedding",
)
elif call_type == CallTypes.rerank.value and isinstance(
cached_result, dict
):
cached_result = convert_to_model_response_object(
response_object=cached_result,
response_type="rerank",
)
# LOG SUCCESS
cache_hit = True
end_time = datetime.datetime.now()
(
model,
custom_llm_provider,
dynamic_api_key,
api_base,
) = litellm.get_llm_provider(
model=model or "",
custom_llm_provider=kwargs.get(
"custom_llm_provider", None
),
api_base=kwargs.get("api_base", None),
api_key=kwargs.get("api_key", None),
)
print_verbose(
f"Async Wrapper: Completed Call, calling async_success_handler: {logging_obj.async_success_handler}"
)
logging_obj.update_environment_variables(
model=model,
user=kwargs.get("user", None),
optional_params={},
litellm_params={
"logger_fn": kwargs.get("logger_fn", None),
"acompletion": False,
"metadata": kwargs.get("metadata", {}),
"model_info": kwargs.get("model_info", {}),
"proxy_server_request": kwargs.get(
"proxy_server_request", None
),
"preset_cache_key": kwargs.get(
"preset_cache_key", None
),
"stream_response": kwargs.get(
"stream_response", {}
),
},
input=kwargs.get("messages", ""),
api_key=kwargs.get("api_key", None),
original_response=str(cached_result),
additional_args=None,
stream=kwargs.get("stream", False),
)
threading.Thread(
target=logging_obj.success_handler,
args=(cached_result, start_time, end_time, cache_hit),
).start()
cache_key = kwargs.get("preset_cache_key", None)
if (
isinstance(cached_result, BaseModel)
or isinstance(cached_result, CustomStreamWrapper)
) and hasattr(cached_result, "_hidden_params"):
cached_result._hidden_params["cache_key"] = cache_key # type: ignore
return cached_result
else:
print_verbose(
"Cache Miss! on key - {}".format(preset_cache_key)
)
# CHECK MAX TOKENS
if (
kwargs.get("max_tokens", None) is not None
@ -1245,30 +1151,13 @@ def client(original_function):
isinstance(result, EmbeddingResponse)
and _caching_handler_response.final_embedding_cached_response
is not None
and _caching_handler_response.final_embedding_cached_response.data
is not None
):
idx = 0
final_data_list = []
for (
item
) in _caching_handler_response.final_embedding_cached_response.data:
if item is None and result.data is not None:
final_data_list.append(result.data[idx])
idx += 1
else:
final_data_list.append(item)
_caching_handler_response.final_embedding_cached_response.data = (
final_data_list
return _llm_caching_handler._combine_cached_embedding_response_with_api_result(
_caching_handler_response=_caching_handler_response,
embedding_response=result,
start_time=start_time,
end_time=end_time,
)
_caching_handler_response.final_embedding_cached_response._hidden_params[
"cache_hit"
] = True
_caching_handler_response.final_embedding_cached_response._response_ms = (
end_time - start_time
).total_seconds() * 1000
return _caching_handler_response.final_embedding_cached_response
return result
except Exception as e:

View file

@ -1067,7 +1067,7 @@ async def test_redis_cache_acompletion_stream_bedrock():
response_1_content += chunk.choices[0].delta.content or ""
print(response_1_content)
time.sleep(0.5)
await asyncio.sleep(1)
print("\n\n Response 1 content: ", response_1_content, "\n\n")
response2 = await litellm.acompletion(
@ -1082,8 +1082,8 @@ async def test_redis_cache_acompletion_stream_bedrock():
response_2_content += chunk.choices[0].delta.content or ""
print(response_2_content)
print("\nresponse 1", response_1_content)
print("\nresponse 2", response_2_content)
print("\nfinal response 1", response_1_content)
print("\nfinal response 2", response_2_content)
assert (
response_1_content == response_2_content
), f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"