Merge pull request #4567 from BerriAI/litellm_add_galileo_logging

[Feat] Add Galileo Logging Callback
This commit is contained in:
Ishaan Jaff 2024-07-05 19:55:30 -07:00 committed by GitHub
commit 982dfe64c0
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 237 additions and 0 deletions

View file

@ -7,10 +7,13 @@ import TabItem from '@theme/TabItem';
Log Proxy Input, Output, Exceptions using Langfuse, OpenTelemetry, Custom Callbacks, DataDog, DynamoDB, s3 Bucket
## Table of Contents
- [Logging to Langfuse](#logging-proxy-inputoutput---langfuse)
- [Logging with OpenTelemetry (OpenTelemetry)](#logging-proxy-inputoutput-in-opentelemetry-format)
- [Async Custom Callbacks](#custom-callback-class-async)
- [Async Custom Callback APIs](#custom-callback-apis-async)
- [Logging to Galileo](#logging-llm-io-to-galielo)
- [Logging to OpenMeter](#logging-proxy-inputoutput---langfuse)
- [Logging to s3 Buckets](#logging-proxy-inputoutput---s3-buckets)
- [Logging to DataDog](#logging-proxy-inputoutput---datadog)
@ -1056,6 +1059,67 @@ litellm_settings:
Start the LiteLLM Proxy and make a test request to verify the logs reached your callback API
## [Beta] Logging LLM I/O to Galileo
Log LLM I/O on [www.rungalileo.io](https://www.rungalileo.io/)
:::info
Beta Integration
:::
**Required Env Variables**
```bash
export GALILEO_BASE_URL="" # For most users, this is the same as their console URL except with the word 'console' replaced by 'api' (e.g. http://www.console.galileo.myenterprise.com -> http://www.api.galileo.myenterprise.com)
export GALILEO_PROJECT_ID=""
export GALILEO_USERNAME=""
export GALILEO_PASSWORD=""
```
### Quick Start
1. Add to Config.yaml
```yaml
model_list:
- litellm_params:
api_base: https://exampleopenaiendpoint-production.up.railway.app/
api_key: my-fake-key
model: openai/my-fake-model
model_name: fake-openai-endpoint
litellm_settings:
success_callback: ["galileo"] # 👈 KEY CHANGE
```
2. Start Proxy
```
litellm --config /path/to/config.yaml
```
3. Test it!
```bash
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "fake-openai-endpoint",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}
'
```
🎉 That's it - Expect to see your Logs on your Galileo Dashboard
## Logging Proxy Cost + Usage - OpenMeter
Bill customers according to their LLM API usage with [OpenMeter](../observability/openmeter.md)

View file

@ -0,0 +1,134 @@
import os
from datetime import datetime
from typing import List
import litellm
from litellm._logging import verbose_logger
from litellm.integrations.custom_logger import CustomLogger
from litellm.integrations.types.galileo import LLMResponse
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
class GalileoObserve(CustomLogger):
def __init__(self) -> None:
self.in_memory_records: List[dict] = []
self.batch_size = 1
self.base_url = os.getenv("GALILEO_BASE_URL", None)
self.project_id = os.getenv("GALILEO_PROJECT_ID", None)
self.headers = None
self.async_httpx_handler = AsyncHTTPHandler()
pass
def set_galileo_headers(self):
# following https://docs.rungalileo.io/galileo/gen-ai-studio-products/galileo-observe/how-to/logging-data-via-restful-apis#logging-your-records
headers = {
"accept": "application/json",
"Content-Type": "application/x-www-form-urlencoded",
}
galileo_login_response = self.async_httpx_handler.post(
url=f"{self.base_url}/login",
headers=headers,
data={
"username": os.getenv("GALILEO_USERNAME"),
"password": os.getenv("GALILEO_PASSWORD"),
},
)
access_token = galileo_login_response.json()["access_token"]
self.headers = {
"accept": "application/json",
"Content-Type": "application/json",
"Authorization": f"Bearer {access_token}",
}
def get_output_str_from_response(self, response_obj, kwargs):
output = None
if response_obj is not None and (
kwargs.get("call_type", None) == "embedding"
or isinstance(response_obj, litellm.EmbeddingResponse)
):
output = None
elif response_obj is not None and isinstance(
response_obj, litellm.ModelResponse
):
output = response_obj["choices"][0]["message"].json()
elif response_obj is not None and isinstance(
response_obj, litellm.TextCompletionResponse
):
output = response_obj.choices[0].text
elif response_obj is not None and isinstance(
response_obj, litellm.ImageResponse
):
output = response_obj["data"]
return output
async def async_log_success_event(
self,
kwargs,
start_time,
end_time,
response_obj,
):
verbose_logger.debug(f"On Async Success")
_latency_ms = int((end_time - start_time).total_seconds() * 1000)
_call_type = kwargs.get("call_type", "litellm")
input_text = litellm.utils.get_formatted_prompt(
data=kwargs, call_type=_call_type
)
_usage = response_obj.get("usage", {}) or {}
num_input_tokens = _usage.get("prompt_tokens", 0)
num_output_tokens = _usage.get("completion_tokens", 0)
output_text = self.get_output_str_from_response(
response_obj=response_obj, kwargs=kwargs
)
request_record = LLMResponse(
latency_ms=_latency_ms,
status_code=200,
input_text=input_text,
output_text=output_text,
node_type=_call_type,
model=kwargs.get("model", "-"),
num_input_tokens=num_input_tokens,
num_output_tokens=num_output_tokens,
created_at=start_time.strftime(
"%Y-%m-%dT%H:%M:%S"
), # timestamp str constructed in "%Y-%m-%dT%H:%M:%S" format
)
# dump to dict
request_dict = request_record.model_dump()
self.in_memory_records.append(request_dict)
if len(self.in_memory_records) >= self.batch_size:
await self.flush_in_memory_records()
async def flush_in_memory_records(self):
verbose_logger.debug("flushing in memory records")
response = await self.async_httpx_handler.post(
url=f"{self.base_url}/projects/{self.project_id}/observe/ingest",
headers=self.headers,
json={"records": self.in_memory_records},
)
if response.status_code == 200:
verbose_logger.debug(
"Galileo Logger:successfully flushed in memory records"
)
self.in_memory_records = []
else:
verbose_logger.debug("Galileo Logger: failed to flush in memory records")
verbose_logger.debug(
"Galileo Logger error=%s, status code=%s",
response.text,
response.status_code,
)
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
verbose_logger.debug(f"On Async Failure")

View file

@ -0,0 +1,25 @@
from datetime import datetime
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Field
# from here: https://docs.rungalileo.io/galileo/gen-ai-studio-products/galileo-observe/how-to/logging-data-via-restful-apis#structuring-your-records
class LLMResponse(BaseModel):
latency_ms: int
status_code: int
input_text: str
output_text: str
node_type: str
model: str
num_input_tokens: int
num_output_tokens: int
output_logprobs: Optional[Dict[str, Any]] = Field(
default=None,
description="Optional. When available, logprobs are used to compute Uncertainty.",
)
created_at: str = Field(
..., description='timestamp constructed in "%Y-%m-%dT%H:%M:%S" format'
)
tags: Optional[List[str]] = None
user_metadata: Optional[Dict[str, Any]] = None

View file

@ -56,6 +56,7 @@ from ..integrations.clickhouse import ClickhouseLogger
from ..integrations.custom_logger import CustomLogger
from ..integrations.datadog import DataDogLogger
from ..integrations.dynamodb import DyanmoDBLogger
from ..integrations.galileo import GalileoObserve
from ..integrations.greenscale import GreenscaleLogger
from ..integrations.helicone import HeliconeLogger
from ..integrations.lago import LagoLogger
@ -1925,6 +1926,15 @@ def _init_custom_logger_compatible_class(
_openmeter_logger = OpenMeterLogger()
_in_memory_loggers.append(_openmeter_logger)
return _openmeter_logger # type: ignore
elif logging_integration == "galileo":
for callback in _in_memory_loggers:
if isinstance(callback, GalileoObserve):
return callback # type: ignore
galileo_logger = GalileoObserve()
_in_memory_loggers.append(galileo_logger)
return galileo_logger # type: ignore
elif logging_integration == "logfire":
if "LOGFIRE_TOKEN" not in os.environ:
raise ValueError("LOGFIRE_TOKEN not found in environment variables")
@ -1981,6 +1991,10 @@ def get_custom_logger_compatible_class(
for callback in _in_memory_loggers:
if isinstance(callback, OpenMeterLogger):
return callback
elif logging_integration == "galileo":
for callback in _in_memory_loggers:
if isinstance(callback, GalileoObserve):
return callback
elif logging_integration == "logfire":
if "LOGFIRE_TOKEN" not in os.environ:
raise ValueError("LOGFIRE_TOKEN not found in environment variables")