Merge branch 'main' into litellm_moderations_improvements

This commit is contained in:
Krish Dholakia 2024-02-15 23:08:25 -08:00 committed by GitHub
commit 999fab82f7
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
32 changed files with 683 additions and 72 deletions

View file

@ -5,7 +5,7 @@
<p align="center">Call all LLM APIs using the OpenAI format [Bedrock, Huggingface, VertexAI, TogetherAI, Azure, OpenAI, etc.]
<br>
</p>
<h4 align="center"><a href="https://docs.litellm.ai/docs/simple_proxy" target="_blank">OpenAI Proxy Server</a> | <a href="https://docs.litellm.ai/docs/enterprise"target="_blank">Enterprise Support</a></h4>
<h4 align="center"><a href="https://docs.litellm.ai/docs/simple_proxy" target="_blank">OpenAI Proxy Server</a> | <a href="https://docs.litellm.ai/docs/enterprise"target="_blank">Enterprise Tier</a></h4>
<h4 align="center">
<a href="https://pypi.org/project/litellm/" target="_blank">
<img src="https://img.shields.io/pypi/v/litellm.svg" alt="PyPI Version">
@ -28,7 +28,7 @@ LiteLLM manages:
- Translate inputs to provider's `completion`, `embedding`, and `image_generation` endpoints
- [Consistent output](https://docs.litellm.ai/docs/completion/output), text responses will always be available at `['choices'][0]['message']['content']`
- Retry/fallback logic across multiple deployments (e.g. Azure/OpenAI) - [Router](https://docs.litellm.ai/docs/routing)
- Track spend & set budgets per project [OpenAI Proxy Server](https://docs.litellm.ai/docs/simple_proxy)
- Set Budgets & Rate limits per project [OpenAI Proxy Server](https://docs.litellm.ai/docs/simple_proxy)
[**Jump to OpenAI Proxy Docs**](https://github.com/BerriAI/litellm?tab=readme-ov-file#openai-proxy---docs) <br>

View file

@ -8,6 +8,7 @@ import TabItem from '@theme/TabItem';
Log Proxy Input, Output, Exceptions using Custom Callbacks, Langfuse, OpenTelemetry, LangFuse, DynamoDB, s3 Bucket
- [Async Custom Callbacks](#custom-callback-class-async)
- [Async Custom Callback APIs](#custom-callback-apis-async)
- [Logging to Langfuse](#logging-proxy-inputoutput---langfuse)
- [Logging to s3 Buckets](#logging-proxy-inputoutput---s3-buckets)
- [Logging to DynamoDB](#logging-proxy-inputoutput---dynamodb)
@ -297,6 +298,106 @@ ModelResponse(
```
## Custom Callback APIs [Async]
:::info
This is an Enterprise only feature [Get Started with Enterprise here](https://github.com/BerriAI/litellm/tree/main/enterprise)
:::
Use this if you:
- Want to use custom callbacks written in a non Python programming language
- Want your callbacks to run on a different microservice
#### Step 1. Create your generic logging API endpoint
Set up a generic API endpoint that can receive data in JSON format. The data will be included within a "data" field.
Your server should support the following Request format:
```shell
curl --location https://your-domain.com/log-event \
--request POST \
--header "Content-Type: application/json" \
--data '{
"data": {
"id": "chatcmpl-8sgE89cEQ4q9biRtxMvDfQU1O82PT",
"call_type": "acompletion",
"cache_hit": "None",
"startTime": "2024-02-15 16:18:44.336280",
"endTime": "2024-02-15 16:18:45.045539",
"model": "gpt-3.5-turbo",
"user": "ishaan-2",
"modelParameters": "{'temperature': 0.7, 'max_tokens': 10, 'user': 'ishaan-2', 'extra_body': {}}",
"messages": "[{'role': 'user', 'content': 'This is a test'}]",
"response": "ModelResponse(id='chatcmpl-8sgE89cEQ4q9biRtxMvDfQU1O82PT', choices=[Choices(finish_reason='length', index=0, message=Message(content='Great! How can I assist you with this test', role='assistant'))], created=1708042724, model='gpt-3.5-turbo-0613', object='chat.completion', system_fingerprint=None, usage=Usage(completion_tokens=10, prompt_tokens=11, total_tokens=21))",
"usage": "Usage(completion_tokens=10, prompt_tokens=11, total_tokens=21)",
"metadata": "{}",
"cost": "3.65e-05"
}
}'
```
Reference FastAPI Python Server
Here's a reference FastAPI Server that is compatible with LiteLLM Proxy:
```python
# this is an example endpoint to receive data from litellm
from fastapi import FastAPI, HTTPException, Request
app = FastAPI()
@app.post("/log-event")
async def log_event(request: Request):
try:
print("Received /log-event request")
# Assuming the incoming request has JSON data
data = await request.json()
print("Received request data:")
print(data)
# Your additional logic can go here
# For now, just printing the received data
return {"message": "Request received successfully"}
except Exception as e:
print(f"Error processing request: {str(e)}")
import traceback
traceback.print_exc()
raise HTTPException(status_code=500, detail="Internal Server Error")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="127.0.0.1", port=8000)
```
#### Step 2. Set your `GENERIC_LOGGER_ENDPOINT` to the endpoint + route we should send callback logs to
```shell
os.environ["GENERIC_LOGGER_ENDPOINT"] = "http://localhost:8000/log-event"
```
#### Step 3. Create a `config.yaml` file and set `litellm_settings`: `success_callback` = ["generic"]
Example litellm proxy config.yaml
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
litellm_settings:
success_callback: ["generic"]
```
Start the LiteLLM Proxy and make a test request to verify the logs reached your callback API
## Logging Proxy Input/Output - Langfuse
We will use the `--config` to set `litellm.success_callback = ["langfuse"]` this will log all successfull LLM calls to langfuse

View file

@ -1,6 +1,6 @@
## LiteLLM Enterprise
Code in this folder is licensed under a commercial license. Please review the [LICENSE](/LICENSE.md) file within the /enterprise folder
Code in this folder is licensed under a commercial license. Please review the [LICENSE](./LICENSE.md) file within the /enterprise folder
**These features are covered under the LiteLLM Enterprise contract**
@ -8,4 +8,5 @@ Code in this folder is licensed under a commercial license. Please review the [L
## Features:
- Custom API / microservice callbacks
- Google Text Moderation API

View file

@ -0,0 +1,31 @@
# this is an example endpoint to receive data from litellm
from fastapi import FastAPI, HTTPException, Request
app = FastAPI()
@app.post("/log-event")
async def log_event(request: Request):
try:
print("Received /log-event request")
# Assuming the incoming request has JSON data
data = await request.json()
print("Received request data:")
print(data)
# Your additional logic can go here
# For now, just printing the received data
return {"message": "Request received successfully"}
except Exception as e:
print(f"Error processing request: {str(e)}")
import traceback
traceback.print_exc()
raise HTTPException(status_code=500, detail="Internal Server Error")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="127.0.0.1", port=8000)

View file

@ -0,0 +1,128 @@
# callback to make a request to an API endpoint
#### What this does ####
# On success, logs events to Promptlayer
import dotenv, os
import requests
from litellm.proxy._types import UserAPIKeyAuth
from litellm.caching import DualCache
from typing import Literal, Union
dotenv.load_dotenv() # Loading env variables using dotenv
import traceback
#### What this does ####
# On success + failure, log events to Supabase
import dotenv, os
import requests
dotenv.load_dotenv() # Loading env variables using dotenv
import traceback
import datetime, subprocess, sys
import litellm, uuid
from litellm._logging import print_verbose, verbose_logger
class GenericAPILogger:
# Class variables or attributes
def __init__(self, endpoint=None, headers=None):
try:
if endpoint == None:
# check env for "GENERIC_LOGGER_ENDPOINT"
if os.getenv("GENERIC_LOGGER_ENDPOINT"):
# Do something with the endpoint
endpoint = os.getenv("GENERIC_LOGGER_ENDPOINT")
else:
# Handle the case when the endpoint is not found in the environment variables
raise ValueError(
f"endpoint not set for GenericAPILogger, GENERIC_LOGGER_ENDPOINT not found in environment variables"
)
headers = headers or litellm.generic_logger_headers
self.endpoint = endpoint
self.headers = headers
verbose_logger.debug(
f"in init GenericAPILogger, endpoint {self.endpoint}, headers {self.headers}"
)
pass
except Exception as e:
print_verbose(f"Got exception on init GenericAPILogger client {str(e)}")
raise e
# This is sync, because we run this in a separate thread. Running in a sepearate thread ensures it will never block an LLM API call
# Experience with s3, Langfuse shows that async logging events are complicated and can block LLM calls
def log_event(
self, kwargs, response_obj, start_time, end_time, user_id, print_verbose
):
try:
verbose_logger.debug(
f"GenericAPILogger Logging - Enters logging function for model {kwargs}"
)
# construct payload to send custom logger
# follows the same params as langfuse.py
litellm_params = kwargs.get("litellm_params", {})
metadata = (
litellm_params.get("metadata", {}) or {}
) # if litellm_params['metadata'] == None
messages = kwargs.get("messages")
cost = kwargs.get("response_cost", 0.0)
optional_params = kwargs.get("optional_params", {})
call_type = kwargs.get("call_type", "litellm.completion")
cache_hit = kwargs.get("cache_hit", False)
usage = response_obj["usage"]
id = response_obj.get("id", str(uuid.uuid4()))
# Build the initial payload
payload = {
"id": id,
"call_type": call_type,
"cache_hit": cache_hit,
"startTime": start_time,
"endTime": end_time,
"model": kwargs.get("model", ""),
"user": kwargs.get("user", ""),
"modelParameters": optional_params,
"messages": messages,
"response": response_obj,
"usage": usage,
"metadata": metadata,
"cost": cost,
}
# Ensure everything in the payload is converted to str
for key, value in payload.items():
try:
payload[key] = str(value)
except:
# non blocking if it can't cast to a str
pass
import json
data = {
"data": payload,
}
data = json.dumps(data)
print_verbose(f"\nGeneric Logger - Logging payload = {data}")
# make request to endpoint with payload
response = requests.post(self.endpoint, json=data, headers=self.headers)
response_status = response.status_code
response_text = response.text
print_verbose(
f"Generic Logger - final response status = {response_status}, response text = {response_text}"
)
return response
except Exception as e:
traceback.print_exc()
verbose_logger.debug(f"Generic - {str(e)}\n{traceback.format_exc()}")
pass

View file

@ -0,0 +1,53 @@
# +-----------------------------------------------+
#
# Google Text Moderation
# https://cloud.google.com/natural-language/docs/moderating-text
#
# +-----------------------------------------------+
# Thank you users! We ❤️ you! - Krrish & Ishaan
from typing import Optional, Literal, Union
import litellm, traceback, sys, uuid
from litellm.caching import DualCache
from litellm.proxy._types import UserAPIKeyAuth
from litellm.integrations.custom_logger import CustomLogger
from fastapi import HTTPException
from litellm._logging import verbose_proxy_logger
from litellm.utils import (
ModelResponse,
EmbeddingResponse,
ImageResponse,
StreamingChoices,
)
from datetime import datetime
import aiohttp, asyncio
class _ENTERPRISE_GoogleTextModeration(CustomLogger):
user_api_key_cache = None
# Class variables or attributes
def __init__(self, mock_testing: bool = False):
pass
def print_verbose(self, print_statement):
try:
verbose_proxy_logger.debug(print_statement)
if litellm.set_verbose:
print(print_statement) # noqa
except:
pass
async def async_pre_call_hook(
self,
user_api_key_dict: UserAPIKeyAuth,
cache: DualCache,
data: dict,
call_type: str,
):
"""
- Calls Google's Text Moderation API
- Rejects request if it fails safety check
"""
pass

View file

@ -146,6 +146,7 @@ model_cost_map_url: str = "https://raw.githubusercontent.com/BerriAI/litellm/mai
suppress_debug_info = False
dynamodb_table_name: Optional[str] = None
s3_callback_params: Optional[Dict] = None
generic_logger_headers: Optional[Dict] = None
default_key_generate_params: Optional[Dict] = None
upperbound_key_generate_params: Optional[Dict] = None
default_team_settings: Optional[List] = None

View file

@ -98,6 +98,9 @@ def _get_redis_client_logic(**env_overrides):
def get_redis_client(**env_overrides):
redis_kwargs = _get_redis_client_logic(**env_overrides)
if "url" in redis_kwargs and redis_kwargs["url"] is not None:
redis_kwargs.pop(
"connection_pool", None
) # redis.from_url doesn't support setting your own connection pool
return redis.Redis.from_url(**redis_kwargs)
return redis.Redis(**redis_kwargs)
@ -105,6 +108,9 @@ def get_redis_client(**env_overrides):
def get_redis_async_client(**env_overrides):
redis_kwargs = _get_redis_client_logic(**env_overrides)
if "url" in redis_kwargs and redis_kwargs["url"] is not None:
redis_kwargs.pop(
"connection_pool", None
) # redis.from_url doesn't support setting your own connection pool
return async_redis.Redis.from_url(**redis_kwargs)
return async_redis.Redis(
socket_timeout=5,

View file

@ -124,7 +124,7 @@ class RedisCache(BaseCache):
self.redis_client.set(name=key, value=str(value), ex=ttl)
except Exception as e:
# NON blocking - notify users Redis is throwing an exception
logging.debug("LiteLLM Caching: set() - Got exception from REDIS : ", e)
print_verbose("LiteLLM Caching: set() - Got exception from REDIS : ", e)
async def async_set_cache(self, key, value, **kwargs):
_redis_client = self.init_async_client()
@ -134,10 +134,12 @@ class RedisCache(BaseCache):
f"Set ASYNC Redis Cache: key: {key}\nValue {value}\nttl={ttl}"
)
try:
await redis_client.set(name=key, value=json.dumps(value), ex=ttl)
await redis_client.set(
name=key, value=json.dumps(value), ex=ttl, get=True
)
except Exception as e:
# NON blocking - notify users Redis is throwing an exception
logging.debug("LiteLLM Caching: set() - Got exception from REDIS : ", e)
print_verbose("LiteLLM Caching: set() - Got exception from REDIS : ", e)
async def async_set_cache_pipeline(self, cache_list, ttl=None):
"""

View file

@ -259,6 +259,7 @@ class LangFuseLogger:
if key in [
"user_api_key",
"user_api_key_user_id",
"user_api_key_team_id",
"semantic-similarity",
]:
tags.append(f"{key}:{value}")

View file

@ -343,24 +343,31 @@ def completion(
llm_model = CodeChatModel.from_pretrained(model)
mode = "chat"
request_str += f"llm_model = CodeChatModel.from_pretrained({model})\n"
else: # assume vertex model garden
client = aiplatform.gapic.PredictionServiceClient(
client_options=client_options
elif model == "private":
mode = "private"
model = optional_params.pop("model_id", None)
# private endpoint requires a dict instead of JSON
instances = [optional_params.copy()]
instances[0]["prompt"] = prompt
llm_model = aiplatform.PrivateEndpoint(
endpoint_name=model,
project=vertex_project,
location=vertex_location,
)
request_str += f"llm_model = aiplatform.PrivateEndpoint(endpoint_name={model}, project={vertex_project}, location={vertex_location})\n"
else: # assume vertex model garden on public endpoint
mode = "custom"
instances = [optional_params]
instances = [optional_params.copy()]
instances[0]["prompt"] = prompt
instances = [
json_format.ParseDict(instance_dict, Value())
for instance_dict in instances
]
llm_model = client.endpoint_path(
project=vertex_project, location=vertex_location, endpoint=model
)
mode = "custom"
request_str += f"llm_model = client.endpoint_path(project={vertex_project}, location={vertex_location}, endpoint={model})\n"
# Will determine the API used based on async parameter
llm_model = None
# NOTE: async prediction and streaming under "private" mode isn't supported by aiplatform right now
if acompletion == True:
data = {
"llm_model": llm_model,
@ -532,9 +539,6 @@ def completion(
"""
Vertex AI Model Garden
"""
request_str += (
f"client.predict(endpoint={llm_model}, instances={instances})\n"
)
## LOGGING
logging_obj.pre_call(
input=prompt,
@ -544,11 +548,21 @@ def completion(
"request_str": request_str,
},
)
response = client.predict(
endpoint=llm_model,
instances=instances,
llm_model = aiplatform.gapic.PredictionServiceClient(
client_options=client_options
)
request_str += f"llm_model = aiplatform.gapic.PredictionServiceClient(client_options={client_options})\n"
endpoint_path = llm_model.endpoint_path(
project=vertex_project, location=vertex_location, endpoint=model
)
request_str += (
f"llm_model.predict(endpoint={endpoint_path}, instances={instances})\n"
)
response = llm_model.predict(
endpoint=endpoint_path,
instances=instances
).predictions
completion_response = response[0]
if (
isinstance(completion_response, str)
@ -558,6 +572,36 @@ def completion(
if "stream" in optional_params and optional_params["stream"] == True:
response = TextStreamer(completion_response)
return response
elif mode == "private":
"""
Vertex AI Model Garden deployed on private endpoint
"""
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
request_str += (
f"llm_model.predict(instances={instances})\n"
)
response = llm_model.predict(
instances=instances
).predictions
completion_response = response[0]
if (
isinstance(completion_response, str)
and "\nOutput:\n" in completion_response
):
completion_response = completion_response.split("\nOutput:\n", 1)[1]
if "stream" in optional_params and optional_params["stream"] == True:
response = TextStreamer(completion_response)
return response
## LOGGING
logging_obj.post_call(
input=prompt, api_key=None, original_response=completion_response
@ -722,17 +766,6 @@ async def async_completion(
Vertex AI Model Garden
"""
from google.cloud import aiplatform
async_client = aiplatform.gapic.PredictionServiceAsyncClient(
client_options=client_options
)
llm_model = async_client.endpoint_path(
project=vertex_project, location=vertex_location, endpoint=model
)
request_str += (
f"client.predict(endpoint={llm_model}, instances={instances})\n"
)
## LOGGING
logging_obj.pre_call(
input=prompt,
@ -743,8 +776,18 @@ async def async_completion(
},
)
response_obj = await async_client.predict(
endpoint=llm_model,
llm_model = aiplatform.gapic.PredictionServiceAsyncClient(
client_options=client_options
)
request_str += f"llm_model = aiplatform.gapic.PredictionServiceAsyncClient(client_options={client_options})\n"
endpoint_path = llm_model.endpoint_path(
project=vertex_project, location=vertex_location, endpoint=model
)
request_str += (
f"llm_model.predict(endpoint={endpoint_path}, instances={instances})\n"
)
response_obj = await llm_model.predict(
endpoint=endpoint_path,
instances=instances,
)
response = response_obj.predictions
@ -754,6 +797,23 @@ async def async_completion(
and "\nOutput:\n" in completion_response
):
completion_response = completion_response.split("\nOutput:\n", 1)[1]
elif mode == "private":
request_str += (
f"llm_model.predict_async(instances={instances})\n"
)
response_obj = await llm_model.predict_async(
instances=instances,
)
response = response_obj.predictions
completion_response = response[0]
if (
isinstance(completion_response, str)
and "\nOutput:\n" in completion_response
):
completion_response = completion_response.split("\nOutput:\n", 1)[1]
## LOGGING
logging_obj.post_call(
input=prompt, api_key=None, original_response=completion_response
@ -894,15 +954,8 @@ async def async_streaming(
response = llm_model.predict_streaming_async(prompt, **optional_params)
elif mode == "custom":
from google.cloud import aiplatform
stream = optional_params.pop("stream", None)
async_client = aiplatform.gapic.PredictionServiceAsyncClient(
client_options=client_options
)
llm_model = async_client.endpoint_path(
project=vertex_project, location=vertex_location, endpoint=model
)
request_str += f"client.predict(endpoint={llm_model}, instances={instances})\n"
## LOGGING
logging_obj.pre_call(
input=prompt,
@ -912,9 +965,34 @@ async def async_streaming(
"request_str": request_str,
},
)
llm_model = aiplatform.gapic.PredictionServiceAsyncClient(
client_options=client_options
)
request_str += f"llm_model = aiplatform.gapic.PredictionServiceAsyncClient(client_options={client_options})\n"
endpoint_path = llm_model.endpoint_path(
project=vertex_project, location=vertex_location, endpoint=model
)
request_str += f"client.predict(endpoint={endpoint_path}, instances={instances})\n"
response_obj = await llm_model.predict(
endpoint=endpoint_path,
instances=instances,
)
response_obj = await async_client.predict(
endpoint=llm_model,
response = response_obj.predictions
completion_response = response[0]
if (
isinstance(completion_response, str)
and "\nOutput:\n" in completion_response
):
completion_response = completion_response.split("\nOutput:\n", 1)[1]
if stream:
response = TextStreamer(completion_response)
elif mode == "private":
stream = optional_params.pop("stream", None)
_ = instances[0].pop("stream", None)
request_str += f"llm_model.predict_async(instances={instances})\n"
response_obj = await llm_model.predict_async(
instances=instances,
)
response = response_obj.predictions
@ -924,8 +1002,9 @@ async def async_streaming(
and "\nOutput:\n" in completion_response
):
completion_response = completion_response.split("\nOutput:\n", 1)[1]
if "stream" in optional_params and optional_params["stream"] == True:
if stream:
response = TextStreamer(completion_response)
streamwrapper = CustomStreamWrapper(
completion_stream=response,
model=model,

View file

@ -10,6 +10,7 @@
import os, openai, sys, json, inspect, uuid, datetime, threading
from typing import Any, Literal, Union
from functools import partial
import dotenv, traceback, random, asyncio, time, contextvars
from copy import deepcopy
import httpx

View file

@ -642,21 +642,40 @@
"mode": "chat"
},
"gemini-pro": {
"max_tokens": 30720,
"max_tokens": 32760,
"max_output_tokens": 2048,
"input_cost_per_token": 0.00000025,
"output_cost_per_token": 0.0000005,
"litellm_provider": "vertex_ai-language-models",
"mode": "chat"
},
"gemini-1.0-pro": {
"max_tokens": 32760,
"max_output_tokens": 8192,
"input_cost_per_token": 0.00000025,
"output_cost_per_token": 0.0000005,
"litellm_provider": "vertex_ai-language-models",
"mode": "chat"
},
"gemini-pro-vision": {
"max_tokens": 30720,
"max_tokens": 16384,
"max_output_tokens": 2048,
"input_cost_per_token": 0.00000025,
"output_cost_per_token": 0.0000005,
"litellm_provider": "vertex_ai-vision-models",
"mode": "chat"
},
"gemini-1.0-pro-vision": {
"max_tokens": 16384,
"max_output_tokens": 2048,
"max_images_per_prompt": 16,
"max_videos_per_prompt": 1,
"max_video_length": 2,
"input_cost_per_token": 0.00000025,
"output_cost_per_token": 0.0000005,
"litellm_provider": "vertex_ai-vision-models",
"mode": "chat"
},
"textembedding-gecko": {
"max_tokens": 3072,
"max_input_tokens": 3072,

File diff suppressed because one or more lines are too long

View file

@ -1 +1 @@
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-db47c93f042d6d15.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-a85b2c176012d8e5.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-e1b183dda365ec86.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-9b4fb13a7db53edf.js" async="" crossorigin=""></script><title>🚅 LiteLLM</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-db47c93f042d6d15.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/c18941d97fb7245b.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[48016,[\"145\",\"static/chunks/145-9c160ad5539e000f.js\",\"931\",\"static/chunks/app/page-fcb69349f15d154b.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/c18941d97fb7245b.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"lLFQRQnIrRo-GJf5spHEd\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_c23dc8\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"🚅 LiteLLM\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-db47c93f042d6d15.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-a85b2c176012d8e5.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-e1b183dda365ec86.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-9b4fb13a7db53edf.js" async="" crossorigin=""></script><title>🚅 LiteLLM</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-db47c93f042d6d15.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/c18941d97fb7245b.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[48016,[\"145\",\"static/chunks/145-9c160ad5539e000f.js\",\"931\",\"static/chunks/app/page-7bb820bd6902dbf2.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/c18941d97fb7245b.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"unBuvDqydg0yodtP5c3nQ\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_c23dc8\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"🚅 LiteLLM\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>

View file

@ -1,7 +1,7 @@
2:I[77831,[],""]
3:I[48016,["145","static/chunks/145-9c160ad5539e000f.js","931","static/chunks/app/page-fcb69349f15d154b.js"],""]
3:I[48016,["145","static/chunks/145-9c160ad5539e000f.js","931","static/chunks/app/page-7bb820bd6902dbf2.js"],""]
4:I[5613,[],""]
5:I[31778,[],""]
0:["lLFQRQnIrRo-GJf5spHEd",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_c23dc8","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/c18941d97fb7245b.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
0:["unBuvDqydg0yodtP5c3nQ",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_c23dc8","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/c18941d97fb7245b.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"🚅 LiteLLM"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]]
1:null

View file

@ -819,6 +819,7 @@ async def _PROXY_track_cost_callback(
user_id = user_id or kwargs["litellm_params"]["metadata"].get(
"user_api_key_user_id", None
)
team_id = kwargs["litellm_params"]["metadata"].get("user_api_key_team_id", None)
if kwargs.get("response_cost", None) is not None:
response_cost = kwargs["response_cost"]
user_api_key = kwargs["litellm_params"]["metadata"].get(
@ -842,6 +843,7 @@ async def _PROXY_track_cost_callback(
token=user_api_key,
response_cost=response_cost,
user_id=user_id,
team_id=team_id,
kwargs=kwargs,
completion_response=completion_response,
start_time=start_time,
@ -879,6 +881,7 @@ async def update_database(
token,
response_cost,
user_id=None,
team_id=None,
kwargs=None,
completion_response=None,
start_time=None,
@ -886,7 +889,7 @@ async def update_database(
):
try:
verbose_proxy_logger.info(
f"Enters prisma db call, response_cost: {response_cost}, token: {token}; user_id: {user_id}"
f"Enters prisma db call, response_cost: {response_cost}, token: {token}; user_id: {user_id}; team_id: {team_id}"
)
### [TODO] STEP 1: GET KEY + USER SPEND ### (key, user)
@ -1039,8 +1042,69 @@ async def update_database(
except Exception as e:
verbose_proxy_logger.info(f"Update Spend Logs DB failed to execute")
### UPDATE KEY SPEND ###
async def _update_team_db():
try:
verbose_proxy_logger.debug(
f"adding spend to team db. Response cost: {response_cost}. team_id: {team_id}."
)
if team_id is None:
verbose_proxy_logger.debug(
"track_cost_callback: team_id is None. Not tracking spend for team"
)
return
if prisma_client is not None:
# Fetch the existing cost for the given token
existing_spend_obj = await prisma_client.get_data(
team_id=team_id, table_name="team"
)
verbose_proxy_logger.debug(
f"_update_team_db: existing spend: {existing_spend_obj}"
)
if existing_spend_obj is None:
existing_spend = 0
else:
existing_spend = existing_spend_obj.spend
# Calculate the new cost by adding the existing cost and response_cost
new_spend = existing_spend + response_cost
verbose_proxy_logger.debug(f"new cost: {new_spend}")
# Update the cost column for the given token
await prisma_client.update_data(
team_id=team_id, data={"spend": new_spend}, table_name="team"
)
elif custom_db_client is not None:
# Fetch the existing cost for the given token
existing_spend_obj = await custom_db_client.get_data(
key=token, table_name="key"
)
verbose_proxy_logger.debug(
f"_update_key_db existing spend: {existing_spend_obj}"
)
if existing_spend_obj is None:
existing_spend = 0
else:
existing_spend = existing_spend_obj.spend
# Calculate the new cost by adding the existing cost and response_cost
new_spend = existing_spend + response_cost
verbose_proxy_logger.debug(f"new cost: {new_spend}")
# Update the cost column for the given token
await custom_db_client.update_data(
key=token, value={"spend": new_spend}, table_name="key"
)
valid_token = user_api_key_cache.get_cache(key=token)
if valid_token is not None:
valid_token.spend = new_spend
user_api_key_cache.set_cache(key=token, value=valid_token)
except Exception as e:
verbose_proxy_logger.info(f"Update Team DB failed to execute")
asyncio.create_task(_update_user_db())
asyncio.create_task(_update_key_db())
asyncio.create_task(_update_team_db())
asyncio.create_task(_insert_spend_log_to_db())
verbose_proxy_logger.info("Successfully updated spend in all 3 tables")
except Exception as e:
@ -2143,6 +2207,9 @@ async def completion(
data["metadata"]["user_api_key"] = user_api_key_dict.api_key
data["metadata"]["user_api_key_metadata"] = user_api_key_dict.metadata
data["metadata"]["user_api_key_user_id"] = user_api_key_dict.user_id
data["metadata"]["user_api_key_team_id"] = getattr(
user_api_key_dict, "team_id", None
)
_headers = dict(request.headers)
_headers.pop(
"authorization", None
@ -2306,6 +2373,9 @@ async def chat_completion(
data["metadata"] = {}
data["metadata"]["user_api_key"] = user_api_key_dict.api_key
data["metadata"]["user_api_key_user_id"] = user_api_key_dict.user_id
data["metadata"]["user_api_key_team_id"] = getattr(
user_api_key_dict, "team_id", None
)
data["metadata"]["user_api_key_metadata"] = user_api_key_dict.metadata
_headers = dict(request.headers)
_headers.pop(
@ -2527,6 +2597,9 @@ async def embeddings(
) # do not store the original `sk-..` api key in the db
data["metadata"]["headers"] = _headers
data["metadata"]["user_api_key_user_id"] = user_api_key_dict.user_id
data["metadata"]["user_api_key_team_id"] = getattr(
user_api_key_dict, "team_id", None
)
data["metadata"]["endpoint"] = str(request.url)
### TEAM-SPECIFIC PARAMS ###
@ -2698,6 +2771,9 @@ async def image_generation(
) # do not store the original `sk-..` api key in the db
data["metadata"]["headers"] = _headers
data["metadata"]["user_api_key_user_id"] = user_api_key_dict.user_id
data["metadata"]["user_api_key_team_id"] = getattr(
user_api_key_dict, "team_id", None
)
data["metadata"]["endpoint"] = str(request.url)
### TEAM-SPECIFIC PARAMS ###
@ -2853,6 +2929,9 @@ async def moderations(
) # do not store the original `sk-..` api key in the db
data["metadata"]["headers"] = _headers
data["metadata"]["user_api_key_user_id"] = user_api_key_dict.user_id
data["metadata"]["user_api_key_team_id"] = getattr(
user_api_key_dict, "team_id", None
)
data["metadata"]["endpoint"] = str(request.url)
### TEAM-SPECIFIC PARAMS ###
@ -4208,6 +4287,9 @@ async def async_queue_request(
) # do not store the original `sk-..` api key in the db
data["metadata"]["headers"] = _headers
data["metadata"]["user_api_key_user_id"] = user_api_key_dict.user_id
data["metadata"]["user_api_key_team_id"] = getattr(
user_api_key_dict, "team_id", None
)
data["metadata"]["endpoint"] = str(request.url)
global user_temperature, user_request_timeout, user_max_tokens, user_api_base

View file

@ -808,8 +808,9 @@ class PrismaClient:
data: dict = {},
data_list: Optional[List] = None,
user_id: Optional[str] = None,
team_id: Optional[str] = None,
query_type: Literal["update", "update_many"] = "update",
table_name: Optional[Literal["user", "key", "config", "spend"]] = None,
table_name: Optional[Literal["user", "key", "config", "spend", "team"]] = None,
update_key_values: Optional[dict] = None,
):
"""
@ -860,6 +861,35 @@ class PrismaClient:
+ "\033[0m"
)
return {"user_id": user_id, "data": db_data}
elif (
team_id is not None
or (table_name is not None and table_name == "team")
and query_type == "update"
):
"""
If data['spend'] + data['user'], update the user table with spend info as well
"""
if team_id is None:
team_id = db_data["team_id"]
if update_key_values is None:
update_key_values = db_data
if "team_id" not in db_data and team_id is not None:
db_data["team_id"] = team_id
update_team_row = await self.db.litellm_teamtable.upsert(
where={"team_id": team_id}, # type: ignore
data={
"create": {**db_data}, # type: ignore
"update": {
**update_key_values # type: ignore
}, # just update user-specified values, if it already exists
},
)
verbose_proxy_logger.info(
"\033[91m"
+ f"DB Team Table - update succeeded {update_team_row}"
+ "\033[0m"
)
return {"team_id": team_id, "data": db_data}
elif (
table_name is not None
and table_name == "key"

View file

@ -0,0 +1,46 @@
import sys
import os
import io, asyncio
# import logging
# logging.basicConfig(level=logging.DEBUG)
sys.path.insert(0, os.path.abspath("../.."))
print("Modified sys.path:", sys.path)
from litellm import completion
import litellm
litellm.num_retries = 3
import time, random
import pytest
@pytest.mark.asyncio
@pytest.mark.skip(reason="new beta feature, will be testing in our ci/cd soon")
async def test_custom_api_logging():
try:
litellm.success_callback = ["generic"]
litellm.set_verbose = True
os.environ["GENERIC_LOGGER_ENDPOINT"] = "http://localhost:8000/log-event"
print("Testing generic api logging")
await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": f"This is a test"}],
max_tokens=10,
temperature=0.7,
user="ishaan-2",
)
except Exception as e:
pytest.fail(f"An exception occurred - {e}")
finally:
# post, close log file and verify
# Reset stdout to the original value
print("Passed! Testing async s3 logging")
# test_s3_logging()

View file

@ -44,9 +44,9 @@ except:
filename = str(
resources.files(litellm).joinpath("llms/tokenizers") # for python 3.10
) # for python 3.10+
os.environ["TIKTOKEN_CACHE_DIR"] = (
filename # use local copy of tiktoken b/c of - https://github.com/BerriAI/litellm/issues/1071
)
os.environ[
"TIKTOKEN_CACHE_DIR"
] = filename # use local copy of tiktoken b/c of - https://github.com/BerriAI/litellm/issues/1071
encoding = tiktoken.get_encoding("cl100k_base")
import importlib.metadata
@ -4256,7 +4256,14 @@ def get_optional_params(
optional_params["stop_sequences"] = stop
if max_tokens is not None:
optional_params["max_output_tokens"] = max_tokens
elif custom_llm_provider == "vertex_ai":
elif custom_llm_provider == "vertex_ai" and model in (
litellm.vertex_chat_models
or model in litellm.vertex_code_chat_models
or model in litellm.vertex_text_models
or model in litellm.vertex_code_text_models
or model in litellm.vertex_language_models
or model in litellm.vertex_embedding_models
):
## check if unsupported param passed in
supported_params = [
"temperature",

View file

@ -642,21 +642,40 @@
"mode": "chat"
},
"gemini-pro": {
"max_tokens": 30720,
"max_tokens": 32760,
"max_output_tokens": 2048,
"input_cost_per_token": 0.00000025,
"output_cost_per_token": 0.0000005,
"litellm_provider": "vertex_ai-language-models",
"mode": "chat"
},
"gemini-1.0-pro": {
"max_tokens": 32760,
"max_output_tokens": 8192,
"input_cost_per_token": 0.00000025,
"output_cost_per_token": 0.0000005,
"litellm_provider": "vertex_ai-language-models",
"mode": "chat"
},
"gemini-pro-vision": {
"max_tokens": 30720,
"max_tokens": 16384,
"max_output_tokens": 2048,
"input_cost_per_token": 0.00000025,
"output_cost_per_token": 0.0000005,
"litellm_provider": "vertex_ai-vision-models",
"mode": "chat"
},
"gemini-1.0-pro-vision": {
"max_tokens": 16384,
"max_output_tokens": 2048,
"max_images_per_prompt": 16,
"max_videos_per_prompt": 1,
"max_video_length": 2,
"input_cost_per_token": 0.00000025,
"output_cost_per_token": 0.0000005,
"litellm_provider": "vertex_ai-vision-models",
"mode": "chat"
},
"textembedding-gecko": {
"max_tokens": 3072,
"max_input_tokens": 3072,

View file

@ -1,6 +1,6 @@
[tool.poetry]
name = "litellm"
version = "1.24.0"
version = "1.24.3"
description = "Library to easily interface with LLM API providers"
authors = ["BerriAI"]
license = "MIT"
@ -69,7 +69,7 @@ requires = ["poetry-core", "wheel"]
build-backend = "poetry.core.masonry.api"
[tool.commitizen]
version = "1.24.0"
version = "1.24.3"
version_files = [
"pyproject.toml:^version"
]

File diff suppressed because one or more lines are too long

View file

@ -1 +1 @@
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-db47c93f042d6d15.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-a85b2c176012d8e5.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-e1b183dda365ec86.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-9b4fb13a7db53edf.js" async="" crossorigin=""></script><title>🚅 LiteLLM</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-db47c93f042d6d15.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/c18941d97fb7245b.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[48016,[\"145\",\"static/chunks/145-9c160ad5539e000f.js\",\"931\",\"static/chunks/app/page-fcb69349f15d154b.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/c18941d97fb7245b.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"lLFQRQnIrRo-GJf5spHEd\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_c23dc8\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"🚅 LiteLLM\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-db47c93f042d6d15.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-a85b2c176012d8e5.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-e1b183dda365ec86.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-9b4fb13a7db53edf.js" async="" crossorigin=""></script><title>🚅 LiteLLM</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-db47c93f042d6d15.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/c18941d97fb7245b.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[48016,[\"145\",\"static/chunks/145-9c160ad5539e000f.js\",\"931\",\"static/chunks/app/page-7bb820bd6902dbf2.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/c18941d97fb7245b.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"unBuvDqydg0yodtP5c3nQ\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_c23dc8\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"🚅 LiteLLM\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>

View file

@ -1,7 +1,7 @@
2:I[77831,[],""]
3:I[48016,["145","static/chunks/145-9c160ad5539e000f.js","931","static/chunks/app/page-fcb69349f15d154b.js"],""]
3:I[48016,["145","static/chunks/145-9c160ad5539e000f.js","931","static/chunks/app/page-7bb820bd6902dbf2.js"],""]
4:I[5613,[],""]
5:I[31778,[],""]
0:["lLFQRQnIrRo-GJf5spHEd",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_c23dc8","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/c18941d97fb7245b.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
0:["unBuvDqydg0yodtP5c3nQ",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_c23dc8","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/c18941d97fb7245b.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"🚅 LiteLLM"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]]
1:null

View file

@ -21,9 +21,13 @@ interface ChatUIProps {
}
async function generateModelResponse(inputMessage: string, updateUI: (chunk: string) => void, selectedModel: string, accessToken: string) {
const client = new openai.OpenAI({
// base url should be the current base_url
const isLocal = process.env.NODE_ENV === "development";
console.log("isLocal:", isLocal);
const proxyBaseUrl = isLocal ? "http://localhost:4000" : window.location.origin;
const client = new openai.OpenAI({
apiKey: accessToken, // Replace with your OpenAI API key
baseURL: 'http://0.0.0.0:4000', // Replace with your OpenAI API base URL
baseURL: proxyBaseUrl, // Replace with your OpenAI API base URL
dangerouslyAllowBrowser: true, // using a temporary litellm proxy key
});