forked from phoenix/litellm-mirror
add GET fine_tuning/jobs
This commit is contained in:
parent
287b09cff6
commit
9b6231810b
3 changed files with 141 additions and 10 deletions
|
@ -138,7 +138,6 @@ async def create_fine_tuning_job(
|
||||||
# add llm_provider_config to data
|
# add llm_provider_config to data
|
||||||
data.update(llm_provider_config)
|
data.update(llm_provider_config)
|
||||||
|
|
||||||
# For now, use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for fine-tuning
|
|
||||||
response = await litellm.acreate_fine_tuning_job(**data)
|
response = await litellm.acreate_fine_tuning_job(**data)
|
||||||
|
|
||||||
### ALERTING ###
|
### ALERTING ###
|
||||||
|
@ -191,3 +190,105 @@ async def create_fine_tuning_job(
|
||||||
param=getattr(e, "param", "None"),
|
param=getattr(e, "param", "None"),
|
||||||
code=getattr(e, "status_code", 500),
|
code=getattr(e, "status_code", 500),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@router.get(
|
||||||
|
"/v1/fine_tuning/jobs",
|
||||||
|
dependencies=[Depends(user_api_key_auth)],
|
||||||
|
tags=["fine-tuning"],
|
||||||
|
)
|
||||||
|
async def list_fine_tuning_jobs(
|
||||||
|
request: Request,
|
||||||
|
fastapi_response: Response,
|
||||||
|
custom_llm_provider: Literal["openai", "azure"],
|
||||||
|
after: Optional[str] = None,
|
||||||
|
limit: Optional[int] = None,
|
||||||
|
user_api_key_dict: dict = Depends(user_api_key_auth),
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Lists fine-tuning jobs for the organization.
|
||||||
|
This is the equivalent of GET https://api.openai.com/v1/fine_tuning/jobs
|
||||||
|
|
||||||
|
Supported Query Params:
|
||||||
|
- `custom_llm_provider`: Name of the LiteLLM provider
|
||||||
|
- `after`: Identifier for the last job from the previous pagination request.
|
||||||
|
- `limit`: Number of fine-tuning jobs to retrieve (default is 20).
|
||||||
|
"""
|
||||||
|
from litellm.proxy.proxy_server import (
|
||||||
|
add_litellm_data_to_request,
|
||||||
|
general_settings,
|
||||||
|
get_custom_headers,
|
||||||
|
proxy_config,
|
||||||
|
proxy_logging_obj,
|
||||||
|
version,
|
||||||
|
)
|
||||||
|
|
||||||
|
data: dict = {}
|
||||||
|
try:
|
||||||
|
# Include original request and headers in the data
|
||||||
|
data = await add_litellm_data_to_request(
|
||||||
|
data=data,
|
||||||
|
request=request,
|
||||||
|
general_settings=general_settings,
|
||||||
|
user_api_key_dict=user_api_key_dict,
|
||||||
|
version=version,
|
||||||
|
proxy_config=proxy_config,
|
||||||
|
)
|
||||||
|
|
||||||
|
# get configs for custom_llm_provider
|
||||||
|
llm_provider_config = get_fine_tuning_provider_config(
|
||||||
|
custom_llm_provider=custom_llm_provider
|
||||||
|
)
|
||||||
|
|
||||||
|
data.update(llm_provider_config)
|
||||||
|
|
||||||
|
response = await litellm.alist_fine_tuning_jobs(
|
||||||
|
**data,
|
||||||
|
after=after,
|
||||||
|
limit=limit,
|
||||||
|
)
|
||||||
|
|
||||||
|
### RESPONSE HEADERS ###
|
||||||
|
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
||||||
|
model_id = hidden_params.get("model_id", None) or ""
|
||||||
|
cache_key = hidden_params.get("cache_key", None) or ""
|
||||||
|
api_base = hidden_params.get("api_base", None) or ""
|
||||||
|
|
||||||
|
fastapi_response.headers.update(
|
||||||
|
get_custom_headers(
|
||||||
|
user_api_key_dict=user_api_key_dict,
|
||||||
|
model_id=model_id,
|
||||||
|
cache_key=cache_key,
|
||||||
|
api_base=api_base,
|
||||||
|
version=version,
|
||||||
|
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
return response
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
await proxy_logging_obj.post_call_failure_hook(
|
||||||
|
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
|
||||||
|
)
|
||||||
|
verbose_proxy_logger.error(
|
||||||
|
"litellm.proxy.proxy_server.list_fine_tuning_jobs(): Exception occurred - {}".format(
|
||||||
|
str(e)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
verbose_proxy_logger.debug(traceback.format_exc())
|
||||||
|
if isinstance(e, HTTPException):
|
||||||
|
raise ProxyException(
|
||||||
|
message=getattr(e, "message", str(e.detail)),
|
||||||
|
type=getattr(e, "type", "None"),
|
||||||
|
param=getattr(e, "param", "None"),
|
||||||
|
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
error_msg = f"{str(e)}"
|
||||||
|
raise ProxyException(
|
||||||
|
message=getattr(e, "message", error_msg),
|
||||||
|
type=getattr(e, "type", "None"),
|
||||||
|
param=getattr(e, "param", "None"),
|
||||||
|
code=getattr(e, "status_code", 500),
|
||||||
|
)
|
||||||
|
|
|
@ -38,7 +38,7 @@ finetune_settings:
|
||||||
# for /files endpoints
|
# for /files endpoints
|
||||||
files_settings:
|
files_settings:
|
||||||
- custom_llm_provider: azure
|
- custom_llm_provider: azure
|
||||||
api_base: http://0.0.0.0:8090
|
api_base: https://exampleopenaiendpoint-production.up.railway.app
|
||||||
api_key: fake-key
|
api_key: fake-key
|
||||||
api_version: "2023-03-15-preview"
|
api_version: "2023-03-15-preview"
|
||||||
- custom_llm_provider: openai
|
- custom_llm_provider: openai
|
||||||
|
|
|
@ -10,14 +10,44 @@ async def test_openai_fine_tuning():
|
||||||
"""
|
"""
|
||||||
client = AsyncOpenAI(api_key="sk-1234", base_url="http://0.0.0.0:4000")
|
client = AsyncOpenAI(api_key="sk-1234", base_url="http://0.0.0.0:4000")
|
||||||
|
|
||||||
file_name = "openai_batch_completions.jsonl"
|
# file_name = "openai_batch_completions.jsonl"
|
||||||
_current_dir = os.path.dirname(os.path.abspath(__file__))
|
# _current_dir = os.path.dirname(os.path.abspath(__file__))
|
||||||
file_path = os.path.join(_current_dir, file_name)
|
# file_path = os.path.join(_current_dir, file_name)
|
||||||
|
|
||||||
response = await client.files.create(
|
# response = await client.files.create(
|
||||||
extra_body={"custom_llm_provider": "azure"},
|
# extra_body={"custom_llm_provider": "azure"},
|
||||||
file=open(file_path, "rb"),
|
# file=open(file_path, "rb"),
|
||||||
purpose="fine-tune",
|
# purpose="fine-tune",
|
||||||
|
# )
|
||||||
|
|
||||||
|
# print("response from files.create: {}".format(response))
|
||||||
|
|
||||||
|
# # create fine tuning job
|
||||||
|
|
||||||
|
# ft_job = await client.fine_tuning.jobs.create(
|
||||||
|
# model="gpt-35-turbo-1106",
|
||||||
|
# training_file=response.id,
|
||||||
|
# extra_body={"custom_llm_provider": "azure"},
|
||||||
|
# )
|
||||||
|
|
||||||
|
# print("response from ft job={}".format(ft_job))
|
||||||
|
|
||||||
|
# # response from example endpoint
|
||||||
|
# assert ft_job.id == "file-abc123"
|
||||||
|
|
||||||
|
# get fine tuning job
|
||||||
|
# specific_ft_job = await client.fine_tuning.jobs.retrieve(
|
||||||
|
# fine_tuning_job_id="123",
|
||||||
|
# extra_body={"custom_llm_provider": "azure"},
|
||||||
|
# )
|
||||||
|
|
||||||
|
# list all fine tuning jobs
|
||||||
|
list_ft_jobs = await client.fine_tuning.jobs.list(
|
||||||
|
extra_query={"custom_llm_provider": "azure"}
|
||||||
)
|
)
|
||||||
|
|
||||||
print("response from files.create: {}".format(response))
|
# cancel specific fine tuning job
|
||||||
|
cancel_ft_job = await client.fine_tuning.jobs.cancel(
|
||||||
|
fine_tuning_job_id="123",
|
||||||
|
extra_body={"custom_llm_provider": "azure"},
|
||||||
|
)
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue