forked from phoenix/litellm-mirror
fix(utils): adds complete streaming response to success handler
This commit is contained in:
parent
f941975a78
commit
9cda24e1b2
7 changed files with 161 additions and 97 deletions
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -1478,12 +1478,13 @@ def config_completion(**kwargs):
|
|||
)
|
||||
|
||||
def stream_chunk_builder(chunks: list):
|
||||
print(f"chunk 0: {chunks[0]}")
|
||||
id = chunks[0]["id"]
|
||||
object = chunks[0]["object"]
|
||||
created = chunks[0]["created"]
|
||||
model = chunks[0]["model"]
|
||||
role = chunks[0]["choices"][0]["delta"]["role"]
|
||||
finnish_reason = chunks[-1]["choices"][0]["finish_reason"]
|
||||
finish_reason = chunks[-1]["choices"][0]["finish_reason"]
|
||||
|
||||
# Initialize the response dictionary
|
||||
response = {
|
||||
|
@ -1498,7 +1499,7 @@ def stream_chunk_builder(chunks: list):
|
|||
"role": role,
|
||||
"content": ""
|
||||
},
|
||||
"finish_reason": finnish_reason,
|
||||
"finish_reason": finish_reason,
|
||||
}
|
||||
],
|
||||
# "usage": {
|
||||
|
|
|
@ -41,6 +41,8 @@ messages = [{"content": user_message, "role": "user"}]
|
|||
# 1. On Call Success
|
||||
# normal completion
|
||||
## test on openai completion call
|
||||
def test_logging_success_completion():
|
||||
global score
|
||||
try:
|
||||
# Redirect stdout
|
||||
old_stdout = sys.stdout
|
||||
|
@ -63,6 +65,8 @@ except Exception as e:
|
|||
pass
|
||||
|
||||
## test on non-openai completion call
|
||||
def test_logging_success_completion_non_openai():
|
||||
global score
|
||||
try:
|
||||
# Redirect stdout
|
||||
old_stdout = sys.stdout
|
||||
|
@ -87,12 +91,28 @@ except Exception as e:
|
|||
|
||||
# streaming completion
|
||||
## test on openai completion call
|
||||
def test_logging_success_streaming_openai():
|
||||
global score
|
||||
try:
|
||||
# litellm.set_verbose = False
|
||||
def custom_callback(
|
||||
kwargs, # kwargs to completion
|
||||
completion_response, # response from completion
|
||||
start_time, end_time # start/end time
|
||||
):
|
||||
if "complete_streaming_response" in kwargs:
|
||||
print(f"Complete Streaming Response: {kwargs['complete_streaming_response']}")
|
||||
|
||||
# Assign the custom callback function
|
||||
litellm.success_callback = [custom_callback]
|
||||
|
||||
# Redirect stdout
|
||||
old_stdout = sys.stdout
|
||||
sys.stdout = new_stdout = io.StringIO()
|
||||
|
||||
response = completion(model="gpt-3.5-turbo", messages=messages)
|
||||
response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
|
||||
for chunk in response:
|
||||
pass
|
||||
|
||||
# Restore stdout
|
||||
sys.stdout = old_stdout
|
||||
|
@ -104,18 +124,39 @@ try:
|
|||
raise Exception("Required log message not found!")
|
||||
elif "Logging Details LiteLLM-Success Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
elif "Complete Streaming Response:" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
score += 1
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
pass
|
||||
|
||||
# test_logging_success_streaming_openai()
|
||||
|
||||
## test on non-openai completion call
|
||||
def test_logging_success_streaming_non_openai():
|
||||
global score
|
||||
try:
|
||||
# litellm.set_verbose = False
|
||||
def custom_callback(
|
||||
kwargs, # kwargs to completion
|
||||
completion_response, # response from completion
|
||||
start_time, end_time # start/end time
|
||||
):
|
||||
# print(f"streaming response: {completion_response}")
|
||||
if "complete_streaming_response" in kwargs:
|
||||
print(f"Complete Streaming Response: {kwargs['complete_streaming_response']}")
|
||||
|
||||
# Assign the custom callback function
|
||||
litellm.success_callback = [custom_callback]
|
||||
|
||||
# Redirect stdout
|
||||
old_stdout = sys.stdout
|
||||
sys.stdout = new_stdout = io.StringIO()
|
||||
|
||||
response = completion(model="claude-instant-1", messages=messages)
|
||||
response = completion(model="claude-instant-1", messages=messages, stream=True)
|
||||
for idx, chunk in enumerate(response):
|
||||
pass
|
||||
|
||||
# Restore stdout
|
||||
sys.stdout = old_stdout
|
||||
|
@ -127,13 +168,17 @@ try:
|
|||
raise Exception("Required log message not found!")
|
||||
elif "Logging Details LiteLLM-Success Call" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
elif "Complete Streaming Response:" not in output:
|
||||
raise Exception("Required log message not found!")
|
||||
score += 1
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
pass
|
||||
|
||||
test_logging_success_streaming_non_openai()
|
||||
# embedding
|
||||
|
||||
def test_logging_success_embedding_openai():
|
||||
try:
|
||||
# Redirect stdout
|
||||
old_stdout = sys.stdout
|
||||
|
|
|
@ -54,4 +54,5 @@ def test_stream_chunk_builder():
|
|||
finnish_reason = choices["finish_reason"]
|
||||
except:
|
||||
raise Exception("stream_chunk_builder failed to rebuild response")
|
||||
test_stream_chunk_builder()
|
||||
# test_stream_chunk_builder()
|
||||
|
||||
|
|
|
@ -228,6 +228,7 @@ class Logging:
|
|||
self.call_type = call_type
|
||||
self.litellm_call_id = litellm_call_id
|
||||
self.function_id = function_id
|
||||
self.streaming_chunks = [] # for generating complete stream response
|
||||
|
||||
def update_environment_variables(self, model, user, optional_params, litellm_params):
|
||||
self.optional_params = optional_params
|
||||
|
@ -394,7 +395,7 @@ class Logging:
|
|||
pass
|
||||
|
||||
|
||||
def success_handler(self, result, start_time=None, end_time=None):
|
||||
def success_handler(self, result=None, start_time=None, end_time=None, **kwargs):
|
||||
print_verbose(
|
||||
f"Logging Details LiteLLM-Success Call"
|
||||
)
|
||||
|
@ -403,6 +404,20 @@ class Logging:
|
|||
start_time = self.start_time
|
||||
if end_time is None:
|
||||
end_time = datetime.datetime.now()
|
||||
|
||||
complete_streaming_response = None
|
||||
|
||||
## BUILD COMPLETE STREAMED RESPONSE
|
||||
if self.stream:
|
||||
if result.choices[0].finish_reason: # if it's the last chunk
|
||||
self.streaming_chunks.append(result)
|
||||
complete_streaming_response = litellm.stream_chunk_builder(self.streaming_chunks)
|
||||
else:
|
||||
self.streaming_chunks.append(result)
|
||||
|
||||
if complete_streaming_response:
|
||||
self.model_call_details["complete_streaming_response"] = complete_streaming_response
|
||||
|
||||
print_verbose(f"success callbacks: {litellm.success_callback}")
|
||||
|
||||
if litellm.max_budget and self.stream:
|
||||
|
@ -3328,20 +3343,22 @@ class CustomStreamWrapper:
|
|||
chunk = next(self.completion_stream)
|
||||
model_response = chunk
|
||||
# LOGGING
|
||||
threading.Thread(target=self.logging_obj.success_handler, args=(completion_obj,)).start()
|
||||
threading.Thread(target=self.logging_obj.success_handler, args=(model_response,)).start()
|
||||
return model_response
|
||||
|
||||
# LOGGING
|
||||
threading.Thread(target=self.logging_obj.success_handler, args=(completion_obj,)).start()
|
||||
model_response.model = self.model
|
||||
if len(completion_obj["content"]) > 0: # cannot set content of an OpenAI Object to be an empty string
|
||||
if self.sent_first_chunk == False:
|
||||
completion_obj["role"] = "assistant"
|
||||
self.sent_first_chunk = True
|
||||
model_response.choices[0].delta = Delta(**completion_obj)
|
||||
# LOGGING
|
||||
threading.Thread(target=self.logging_obj.success_handler, args=(model_response,)).start()
|
||||
return model_response
|
||||
elif model_response.choices[0].finish_reason:
|
||||
model_response.choices[0].finish_reason = map_finish_reason(model_response.choices[0].finish_reason) # ensure consistent output to openai
|
||||
# LOGGING
|
||||
threading.Thread(target=self.logging_obj.success_handler, args=(model_response,)).start()
|
||||
return model_response
|
||||
except StopIteration:
|
||||
raise StopIteration
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue