forked from phoenix/litellm-mirror
fix(router.py): deepcopy initial model list, don't mutate it
This commit is contained in:
parent
a5dd8b1d4a
commit
9cf5ab468f
6 changed files with 280 additions and 102 deletions
|
@ -1,3 +1,4 @@
|
|||
from tkinter import N
|
||||
from typing import Optional, Union, Any
|
||||
import types, time, json
|
||||
import httpx
|
||||
|
@ -195,23 +196,23 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
**optional_params
|
||||
}
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=messages,
|
||||
api_key=api_key,
|
||||
additional_args={"headers": headers, "api_base": api_base, "acompletion": acompletion, "complete_input_dict": data},
|
||||
)
|
||||
|
||||
try:
|
||||
max_retries = data.pop("max_retries", 2)
|
||||
if acompletion is True:
|
||||
if optional_params.get("stream", False):
|
||||
return self.async_streaming(logging_obj=logging_obj, data=data, model=model, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
|
||||
return self.async_streaming(logging_obj=logging_obj, headers=headers, data=data, model=model, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
|
||||
else:
|
||||
return self.acompletion(data=data, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
|
||||
return self.acompletion(data=data, headers=headers, logging_obj=logging_obj, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
|
||||
elif optional_params.get("stream", False):
|
||||
return self.streaming(logging_obj=logging_obj, data=data, model=model, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
|
||||
return self.streaming(logging_obj=logging_obj, headers=headers, data=data, model=model, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
|
||||
else:
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=messages,
|
||||
api_key=api_key,
|
||||
additional_args={"headers": headers, "api_base": api_base, "acompletion": acompletion, "complete_input_dict": data},
|
||||
)
|
||||
|
||||
if not isinstance(max_retries, int):
|
||||
raise OpenAIError(status_code=422, message="max retries must be an int")
|
||||
if client is None:
|
||||
|
@ -260,6 +261,8 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
api_base: Optional[str]=None,
|
||||
client=None,
|
||||
max_retries=None,
|
||||
logging_obj=None,
|
||||
headers=None
|
||||
):
|
||||
response = None
|
||||
try:
|
||||
|
@ -267,8 +270,21 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base, http_client=litellm.aclient_session, timeout=timeout, max_retries=max_retries)
|
||||
else:
|
||||
openai_aclient = client
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=data['messages'],
|
||||
api_key=api_key,
|
||||
additional_args={"headers": headers, "api_base": api_base, "acompletion": True, "complete_input_dict": data},
|
||||
)
|
||||
response = await openai_aclient.chat.completions.create(**data)
|
||||
return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response)
|
||||
stringified_response = response.model_dump_json()
|
||||
logging_obj.post_call(
|
||||
input=data['messages'],
|
||||
api_key=api_key,
|
||||
original_response=stringified_response,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
return convert_to_model_response_object(response_object=json.loads(stringified_response), model_response_object=model_response)
|
||||
except Exception as e:
|
||||
if response and hasattr(response, "text"):
|
||||
raise OpenAIError(status_code=500, message=f"{str(e)}\n\nOriginal Response: {response.text}")
|
||||
|
@ -286,12 +302,19 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
api_key: Optional[str]=None,
|
||||
api_base: Optional[str]=None,
|
||||
client = None,
|
||||
max_retries=None
|
||||
max_retries=None,
|
||||
headers=None
|
||||
):
|
||||
if client is None:
|
||||
openai_client = OpenAI(api_key=api_key, base_url=api_base, http_client=litellm.client_session, timeout=timeout, max_retries=max_retries)
|
||||
else:
|
||||
openai_client = client
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=data['messages'],
|
||||
api_key=api_key,
|
||||
additional_args={"headers": headers, "api_base": api_base, "acompletion": False, "complete_input_dict": data},
|
||||
)
|
||||
response = openai_client.chat.completions.create(**data)
|
||||
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
|
||||
return streamwrapper
|
||||
|
@ -305,6 +328,7 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
api_base: Optional[str]=None,
|
||||
client=None,
|
||||
max_retries=None,
|
||||
headers=None
|
||||
):
|
||||
response = None
|
||||
try:
|
||||
|
@ -312,6 +336,13 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base, http_client=litellm.aclient_session, timeout=timeout, max_retries=max_retries)
|
||||
else:
|
||||
openai_aclient = client
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=data['messages'],
|
||||
api_key=api_key,
|
||||
additional_args={"headers": headers, "api_base": api_base, "acompletion": True, "complete_input_dict": data},
|
||||
)
|
||||
|
||||
response = await openai_aclient.chat.completions.create(**data)
|
||||
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
|
||||
async for transformed_chunk in streamwrapper:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue