feat(router.py): Support Loadbalancing batch azure api endpoints (#5469)

* feat(router.py): initial commit for loadbalancing azure batch api endpoints

Closes https://github.com/BerriAI/litellm/issues/5396

* fix(router.py): working `router.acreate_file()`

* feat(router.py): working router.acreate_batch endpoint

* feat(router.py): expose router.aretrieve_batch function

Make it easy for user to retrieve the batch information

* feat(router.py): support 'router.alist_batches' endpoint

Adds support for getting all batches across all endpoints

* feat(router.py): working loadbalancing on `/v1/files`

* feat(proxy_server.py): working loadbalancing on `/v1/batches`

* feat(proxy_server.py): working loadbalancing on Retrieve + List batch
This commit is contained in:
Krish Dholakia 2024-09-02 21:32:55 -07:00 committed by GitHub
parent 7a22faaba4
commit 9f3fa29624
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
10 changed files with 667 additions and 37 deletions

View file

@ -140,6 +140,7 @@ return_response_headers: bool = (
enable_json_schema_validation: bool = False
##################
logging: bool = True
enable_loadbalancing_on_batch_endpoints: Optional[bool] = None
enable_caching_on_provider_specific_optional_params: bool = (
False # feature-flag for caching on optional params - e.g. 'top_k'
)

View file

@ -1,17 +1,12 @@
model_list:
- model_name: "gpt-3.5-turbo"
- model_name: "batch-gpt-4o-mini"
litellm_params:
model: "gpt-3.5-turbo"
model: "azure/gpt-4o-mini"
api_key: os.environ/AZURE_API_KEY
api_base: os.environ/AZURE_API_BASE
model_info:
mode: batch
litellm_settings:
max_internal_user_budget: 0.02 # amount in USD
internal_user_budget_duration: "1s" # reset every second
general_settings:
master_key: sk-1234
alerting: ["slack"]
alerting_threshold: 0.0001 # (Seconds) set an artifically low threshold for testing alerting
alert_to_webhook_url: {
"spend_reports": ["https://webhook.site/7843a980-a494-4967-80fb-d502dbc16886", "https://webhook.site/28cfb179-f4fb-4408-8129-729ff55cf213"]
}
enable_loadbalancing_on_batch_endpoints: true

View file

@ -31,6 +31,7 @@ from litellm._logging import verbose_proxy_logger
from litellm.batches.main import FileObject
from litellm.proxy._types import *
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
from litellm.router import Router
router = APIRouter()
@ -66,6 +67,41 @@ def get_files_provider_config(
return None
def get_first_json_object(file_content_bytes: bytes) -> Optional[dict]:
try:
# Decode the bytes to a string and split into lines
file_content = file_content_bytes.decode("utf-8")
first_line = file_content.splitlines()[0].strip()
# Parse the JSON object from the first line
json_object = json.loads(first_line)
return json_object
except (json.JSONDecodeError, UnicodeDecodeError) as e:
return None
def get_model_from_json_obj(json_object: dict) -> Optional[str]:
body = json_object.get("body", {}) or {}
model = body.get("model")
return model
def is_known_model(model: Optional[str], llm_router: Optional[Router]) -> bool:
"""
Returns True if the model is in the llm_router model names
"""
if model is None or llm_router is None:
return False
model_names = llm_router.get_model_names()
is_in_list = False
if model in model_names:
is_in_list = True
return is_in_list
@router.post(
"/{provider}/v1/files",
dependencies=[Depends(user_api_key_auth)],
@ -109,6 +145,7 @@ async def create_file(
add_litellm_data_to_request,
general_settings,
get_custom_headers,
llm_router,
proxy_config,
proxy_logging_obj,
version,
@ -138,8 +175,36 @@ async def create_file(
# Prepare the file data according to FileTypes
file_data = (file.filename, file_content, file.content_type)
## check if model is a loadbalanced model
router_model: Optional[str] = None
is_router_model = False
if litellm.enable_loadbalancing_on_batch_endpoints is True:
json_obj = get_first_json_object(file_content_bytes=file_content)
if json_obj:
router_model = get_model_from_json_obj(json_object=json_obj)
is_router_model = is_known_model(
model=router_model, llm_router=llm_router
)
_create_file_request = CreateFileRequest(file=file_data, **data)
if (
litellm.enable_loadbalancing_on_batch_endpoints is True
and is_router_model
and router_model is not None
):
if llm_router is None:
raise HTTPException(
status_code=500,
detail={
"error": "LLM Router not initialized. Ensure models added to proxy."
},
)
response = await llm_router.acreate_file(
model=router_model, **_create_file_request
)
else:
# get configs for custom_llm_provider
llm_provider_config = get_files_provider_config(
custom_llm_provider=custom_llm_provider

View file

@ -199,6 +199,7 @@ from litellm.proxy.management_endpoints.team_callback_endpoints import (
router as team_callback_router,
)
from litellm.proxy.management_endpoints.team_endpoints import router as team_router
from litellm.proxy.openai_files_endpoints.files_endpoints import is_known_model
from litellm.proxy.openai_files_endpoints.files_endpoints import (
router as openai_files_router,
)
@ -4979,8 +4980,30 @@ async def create_batch(
proxy_config=proxy_config,
)
## check if model is a loadbalanced model
router_model: Optional[str] = None
is_router_model = False
if litellm.enable_loadbalancing_on_batch_endpoints is True:
router_model = data.get("model", None)
is_router_model = is_known_model(model=router_model, llm_router=llm_router)
_create_batch_data = CreateBatchRequest(**data)
if (
litellm.enable_loadbalancing_on_batch_endpoints is True
and is_router_model
and router_model is not None
):
if llm_router is None:
raise HTTPException(
status_code=500,
detail={
"error": "LLM Router not initialized. Ensure models added to proxy."
},
)
response = await llm_router.acreate_batch(**_create_batch_data) # type: ignore
else:
if provider is None:
provider = "openai"
response = await litellm.acreate_batch(
@ -5017,7 +5040,7 @@ async def create_batch(
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
verbose_proxy_logger.error(
verbose_proxy_logger.exception(
"litellm.proxy.proxy_server.create_batch(): Exception occured - {}".format(
str(e)
)
@ -5080,10 +5103,25 @@ async def retrieve_batch(
global proxy_logging_obj
data: Dict = {}
try:
## check if model is a loadbalanced model
router_model: Optional[str] = None
is_router_model = False
_retrieve_batch_request = RetrieveBatchRequest(
batch_id=batch_id,
)
if litellm.enable_loadbalancing_on_batch_endpoints is True:
if llm_router is None:
raise HTTPException(
status_code=500,
detail={
"error": "LLM Router not initialized. Ensure models added to proxy."
},
)
response = await llm_router.aretrieve_batch(**_retrieve_batch_request) # type: ignore
else:
if provider is None:
provider = "openai"
response = await litellm.aretrieve_batch(
@ -5120,7 +5158,7 @@ async def retrieve_batch(
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
verbose_proxy_logger.error(
verbose_proxy_logger.exception(
"litellm.proxy.proxy_server.retrieve_batch(): Exception occured - {}".format(
str(e)
)

View file

@ -54,6 +54,10 @@ from litellm.router_strategy.lowest_latency import LowestLatencyLoggingHandler
from litellm.router_strategy.lowest_tpm_rpm import LowestTPMLoggingHandler
from litellm.router_strategy.lowest_tpm_rpm_v2 import LowestTPMLoggingHandler_v2
from litellm.router_strategy.tag_based_routing import get_deployments_for_tag
from litellm.router_utils.batch_utils import (
_get_router_metadata_variable_name,
replace_model_in_jsonl,
)
from litellm.router_utils.client_initalization_utils import (
set_client,
should_initialize_sync_client,
@ -73,6 +77,12 @@ from litellm.types.llms.openai import (
AssistantToolParam,
AsyncCursorPage,
Attachment,
Batch,
CreateFileRequest,
FileContentRequest,
FileObject,
FileTypes,
HttpxBinaryResponseContent,
OpenAIMessage,
Run,
Thread,
@ -103,6 +113,7 @@ from litellm.utils import (
_is_region_eu,
calculate_max_parallel_requests,
create_proxy_transport_and_mounts,
get_llm_provider,
get_utc_datetime,
)
@ -2228,6 +2239,373 @@ class Router:
self.fail_calls[model_name] += 1
raise e
#### FILES API ####
async def acreate_file(
self,
model: str,
**kwargs,
) -> FileObject:
try:
kwargs["model"] = model
kwargs["original_function"] = self._acreate_file
kwargs["num_retries"] = kwargs.get("num_retries", self.num_retries)
timeout = kwargs.get("request_timeout", self.timeout)
kwargs.setdefault("metadata", {}).update({"model_group": model})
response = await self.async_function_with_fallbacks(**kwargs)
return response
except Exception as e:
asyncio.create_task(
send_llm_exception_alert(
litellm_router_instance=self,
request_kwargs=kwargs,
error_traceback_str=traceback.format_exc(),
original_exception=e,
)
)
raise e
async def _acreate_file(
self,
model: str,
**kwargs,
) -> FileObject:
try:
verbose_router_logger.debug(
f"Inside _atext_completion()- model: {model}; kwargs: {kwargs}"
)
deployment = await self.async_get_available_deployment(
model=model,
messages=[{"role": "user", "content": "files-api-fake-text"}],
specific_deployment=kwargs.pop("specific_deployment", None),
)
kwargs.setdefault("metadata", {}).update(
{
"deployment": deployment["litellm_params"]["model"],
"model_info": deployment.get("model_info", {}),
"api_base": deployment.get("litellm_params", {}).get("api_base"),
}
)
kwargs["model_info"] = deployment.get("model_info", {})
data = deployment["litellm_params"].copy()
model_name = data["model"]
for k, v in self.default_litellm_params.items():
if (
k not in kwargs
): # prioritize model-specific params > default router params
kwargs[k] = v
elif k == "metadata":
kwargs[k].update(v)
potential_model_client = self._get_client(
deployment=deployment, kwargs=kwargs, client_type="async"
)
# check if provided keys == client keys #
dynamic_api_key = kwargs.get("api_key", None)
if (
dynamic_api_key is not None
and potential_model_client is not None
and dynamic_api_key != potential_model_client.api_key
):
model_client = None
else:
model_client = potential_model_client
self.total_calls[model_name] += 1
## REPLACE MODEL IN FILE WITH SELECTED DEPLOYMENT ##
stripped_model, custom_llm_provider, _, _ = get_llm_provider(
model=data["model"]
)
kwargs["file"] = replace_model_in_jsonl(
file_content=kwargs["file"], new_model_name=stripped_model
)
response = litellm.acreate_file(
**{
**data,
"custom_llm_provider": custom_llm_provider,
"caching": self.cache_responses,
"client": model_client,
"timeout": self.timeout,
**kwargs,
}
)
rpm_semaphore = self._get_client(
deployment=deployment,
kwargs=kwargs,
client_type="max_parallel_requests",
)
if rpm_semaphore is not None and isinstance(
rpm_semaphore, asyncio.Semaphore
):
async with rpm_semaphore:
"""
- Check rpm limits before making the call
- If allowed, increment the rpm limit (allows global value to be updated, concurrency-safe)
"""
await self.async_routing_strategy_pre_call_checks(
deployment=deployment
)
response = await response # type: ignore
else:
await self.async_routing_strategy_pre_call_checks(deployment=deployment)
response = await response # type: ignore
self.success_calls[model_name] += 1
verbose_router_logger.info(
f"litellm.acreate_file(model={model_name})\033[32m 200 OK\033[0m"
)
return response # type: ignore
except Exception as e:
verbose_router_logger.exception(
f"litellm.acreate_file(model={model}, {kwargs})\033[31m Exception {str(e)}\033[0m"
)
if model is not None:
self.fail_calls[model] += 1
raise e
async def acreate_batch(
self,
model: str,
**kwargs,
) -> Batch:
try:
kwargs["model"] = model
kwargs["original_function"] = self._acreate_batch
kwargs["num_retries"] = kwargs.get("num_retries", self.num_retries)
timeout = kwargs.get("request_timeout", self.timeout)
kwargs.setdefault("metadata", {}).update({"model_group": model})
response = await self.async_function_with_fallbacks(**kwargs)
return response
except Exception as e:
asyncio.create_task(
send_llm_exception_alert(
litellm_router_instance=self,
request_kwargs=kwargs,
error_traceback_str=traceback.format_exc(),
original_exception=e,
)
)
raise e
async def _acreate_batch(
self,
model: str,
**kwargs,
) -> Batch:
try:
verbose_router_logger.debug(
f"Inside _acreate_batch()- model: {model}; kwargs: {kwargs}"
)
deployment = await self.async_get_available_deployment(
model=model,
messages=[{"role": "user", "content": "files-api-fake-text"}],
specific_deployment=kwargs.pop("specific_deployment", None),
)
metadata_variable_name = _get_router_metadata_variable_name(
function_name="_acreate_batch"
)
kwargs.setdefault(metadata_variable_name, {}).update(
{
"deployment": deployment["litellm_params"]["model"],
"model_info": deployment.get("model_info", {}),
"api_base": deployment.get("litellm_params", {}).get("api_base"),
}
)
kwargs["model_info"] = deployment.get("model_info", {})
data = deployment["litellm_params"].copy()
model_name = data["model"]
for k, v in self.default_litellm_params.items():
if (
k not in kwargs
): # prioritize model-specific params > default router params
kwargs[k] = v
elif k == metadata_variable_name:
kwargs[k].update(v)
potential_model_client = self._get_client(
deployment=deployment, kwargs=kwargs, client_type="async"
)
# check if provided keys == client keys #
dynamic_api_key = kwargs.get("api_key", None)
if (
dynamic_api_key is not None
and potential_model_client is not None
and dynamic_api_key != potential_model_client.api_key
):
model_client = None
else:
model_client = potential_model_client
self.total_calls[model_name] += 1
## SET CUSTOM PROVIDER TO SELECTED DEPLOYMENT ##
_, custom_llm_provider, _, _ = get_llm_provider(model=data["model"])
response = litellm.acreate_batch(
**{
**data,
"custom_llm_provider": custom_llm_provider,
"caching": self.cache_responses,
"client": model_client,
"timeout": self.timeout,
**kwargs,
}
)
rpm_semaphore = self._get_client(
deployment=deployment,
kwargs=kwargs,
client_type="max_parallel_requests",
)
if rpm_semaphore is not None and isinstance(
rpm_semaphore, asyncio.Semaphore
):
async with rpm_semaphore:
"""
- Check rpm limits before making the call
- If allowed, increment the rpm limit (allows global value to be updated, concurrency-safe)
"""
await self.async_routing_strategy_pre_call_checks(
deployment=deployment
)
response = await response # type: ignore
else:
await self.async_routing_strategy_pre_call_checks(deployment=deployment)
response = await response # type: ignore
self.success_calls[model_name] += 1
verbose_router_logger.info(
f"litellm.acreate_file(model={model_name})\033[32m 200 OK\033[0m"
)
return response # type: ignore
except Exception as e:
verbose_router_logger.exception(
f"litellm._acreate_batch(model={model}, {kwargs})\033[31m Exception {str(e)}\033[0m"
)
if model is not None:
self.fail_calls[model] += 1
raise e
async def aretrieve_batch(
self,
**kwargs,
) -> Batch:
"""
Iterate through all models in a model group to check for batch
Future Improvement - cache the result.
"""
try:
filtered_model_list = self.get_model_list()
if filtered_model_list is None:
raise Exception("Router not yet initialized.")
receieved_exceptions = []
async def try_retrieve_batch(model_name):
try:
# Update kwargs with the current model name or any other model-specific adjustments
## SET CUSTOM PROVIDER TO SELECTED DEPLOYMENT ##
_, custom_llm_provider, _, _ = get_llm_provider(
model=model_name["litellm_params"]["model"]
)
new_kwargs = copy.deepcopy(kwargs)
new_kwargs.pop("custom_llm_provider", None)
return await litellm.aretrieve_batch(
custom_llm_provider=custom_llm_provider, **new_kwargs
)
except Exception as e:
receieved_exceptions.append(e)
return None
# Check all models in parallel
results = await asyncio.gather(
*[try_retrieve_batch(model) for model in filtered_model_list],
return_exceptions=True,
)
# Check for successful responses and handle exceptions
for result in results:
if isinstance(result, Batch):
return result
# If no valid Batch response was found, raise the first encountered exception
if receieved_exceptions:
raise receieved_exceptions[0] # Raising the first exception encountered
# If no exceptions were encountered, raise a generic exception
raise Exception(
"Unable to find batch in any model. Received errors - {}".format(
receieved_exceptions
)
)
except Exception as e:
asyncio.create_task(
send_llm_exception_alert(
litellm_router_instance=self,
request_kwargs=kwargs,
error_traceback_str=traceback.format_exc(),
original_exception=e,
)
)
raise e
async def alist_batches(
self,
model: str,
**kwargs,
):
"""
Return all the batches across all deployments of a model group.
"""
filtered_model_list = self.get_model_list(model_name=model)
if filtered_model_list is None:
raise Exception("Router not yet initialized.")
async def try_retrieve_batch(model: DeploymentTypedDict):
try:
# Update kwargs with the current model name or any other model-specific adjustments
return await litellm.alist_batches(
**{**model["litellm_params"], **kwargs}
)
except Exception as e:
return None
# Check all models in parallel
results = await asyncio.gather(
*[try_retrieve_batch(model) for model in filtered_model_list]
)
final_results = {
"object": "list",
"data": [],
"first_id": None,
"last_id": None,
"has_more": False,
}
for result in results:
if result is not None:
## check batch id
if final_results["first_id"] is None:
final_results["first_id"] = result.first_id
final_results["last_id"] = result.last_id
final_results["data"].extend(result.data) # type: ignore
## check 'has_more'
if result.has_more is True:
final_results["has_more"] = True
return final_results
#### ASSISTANTS API ####
async def acreate_assistants(
@ -4132,9 +4510,18 @@ class Router:
def get_model_names(self) -> List[str]:
return self.model_names
def get_model_list(self):
def get_model_list(
self, model_name: Optional[str] = None
) -> Optional[List[DeploymentTypedDict]]:
if hasattr(self, "model_list"):
if model_name is None:
return self.model_list
returned_models: List[DeploymentTypedDict] = []
for model in self.model_list:
if model["model_name"] == model_name:
returned_models.append(model)
return returned_models
return None
def get_model_access_groups(self):

View file

@ -0,0 +1,59 @@
import io
import json
from typing import IO, Optional, Tuple, Union
class InMemoryFile(io.BytesIO):
def __init__(self, content: bytes, name: str):
super().__init__(content)
self.name = name
def replace_model_in_jsonl(
file_content: Union[bytes, IO, Tuple[str, bytes, str]], new_model_name: str
) -> Optional[InMemoryFile]:
try:
# Decode the bytes to a string and split into lines
# If file_content is a file-like object, read the bytes
if hasattr(file_content, "read"):
file_content_bytes = file_content.read() # type: ignore
elif isinstance(file_content, tuple):
file_content_bytes = file_content[1]
else:
file_content_bytes = file_content
# Decode the bytes to a string and split into lines
file_content_str = file_content_bytes.decode("utf-8")
lines = file_content_str.splitlines()
modified_lines = []
for line in lines:
# Parse each line as a JSON object
json_object = json.loads(line.strip())
# Replace the model name if it exists
if "body" in json_object:
json_object["body"]["model"] = new_model_name
# Convert the modified JSON object back to a string
modified_lines.append(json.dumps(json_object))
# Reassemble the modified lines and return as bytes
modified_file_content = "\n".join(modified_lines).encode("utf-8")
return InMemoryFile(modified_file_content, name="modified_file.jsonl") # type: ignore
except (json.JSONDecodeError, UnicodeDecodeError, TypeError) as e:
return None
def _get_router_metadata_variable_name(function_name) -> str:
"""
Helper to return what the "metadata" field should be called in the request data
For all /thread or /assistant endpoints we need to call this "litellm_metadata"
For ALL other endpoints we call this "metadata
"""
if "batch" in function_name:
return "litellm_metadata"
else:
return "metadata"

View file

@ -0,0 +1,3 @@
{"custom_id": "task-0", "method": "POST", "url": "/chat/completions", "body": {"model": "my-custom-name", "messages": [{"role": "system", "content": "You are an AI assistant that helps people find information."}, {"role": "user", "content": "When was Microsoft founded?"}]}}
{"custom_id": "task-1", "method": "POST", "url": "/chat/completions", "body": {"model": "my-custom-name", "messages": [{"role": "system", "content": "You are an AI assistant that helps people find information."}, {"role": "user", "content": "When was the first XBOX released?"}]}}
{"custom_id": "task-2", "method": "POST", "url": "/chat/completions", "body": {"model": "my-custom-name", "messages": [{"role": "system", "content": "You are an AI assistant that helps people find information."}, {"role": "user", "content": "What is Altair Basic?"}]}}

View file

@ -2394,3 +2394,83 @@ async def test_router_weighted_pick(sync_mode):
else:
raise Exception("invalid model id returned!")
assert model_id_1_count > model_id_2_count
@pytest.mark.parametrize("provider", ["azure"])
@pytest.mark.asyncio
async def test_router_batch_endpoints(provider):
"""
1. Create File for Batch completion
2. Create Batch Request
3. Retrieve the specific batch
"""
print("Testing async create batch")
router = Router(
model_list=[
{
"model_name": "my-custom-name",
"litellm_params": {
"model": "azure/gpt-4o-mini",
"api_base": os.getenv("AZURE_API_BASE"),
"api_key": os.getenv("AZURE_API_KEY"),
},
},
]
)
file_name = "openai_batch_completions_router.jsonl"
_current_dir = os.path.dirname(os.path.abspath(__file__))
file_path = os.path.join(_current_dir, file_name)
file_obj = await router.acreate_file(
model="my-custom-name",
file=open(file_path, "rb"),
purpose="batch",
custom_llm_provider=provider,
)
print("Response from creating file=", file_obj)
await asyncio.sleep(10)
batch_input_file_id = file_obj.id
assert (
batch_input_file_id is not None
), "Failed to create file, expected a non null file_id but got {batch_input_file_id}"
create_batch_response = await router.acreate_batch(
model="my-custom-name",
completion_window="24h",
endpoint="/v1/chat/completions",
input_file_id=batch_input_file_id,
custom_llm_provider=provider,
metadata={"key1": "value1", "key2": "value2"},
)
print("response from router.create_batch=", create_batch_response)
assert (
create_batch_response.id is not None
), f"Failed to create batch, expected a non null batch_id but got {create_batch_response.id}"
assert (
create_batch_response.endpoint == "/v1/chat/completions"
or create_batch_response.endpoint == "/chat/completions"
), f"Failed to create batch, expected endpoint to be /v1/chat/completions but got {create_batch_response.endpoint}"
assert (
create_batch_response.input_file_id == batch_input_file_id
), f"Failed to create batch, expected input_file_id to be {batch_input_file_id} but got {create_batch_response.input_file_id}"
await asyncio.sleep(1)
retrieved_batch = await router.aretrieve_batch(
batch_id=create_batch_response.id,
custom_llm_provider=provider,
)
print("retrieved batch=", retrieved_batch)
# just assert that we retrieved a non None batch
assert retrieved_batch.id == create_batch_response.id
# list all batches
list_batches = await router.alist_batches(
model="my-custom-name", custom_llm_provider=provider, limit=2
)
print("list_batches=", list_batches)

View file

@ -4645,6 +4645,8 @@ def get_llm_provider(
For router -> Can also give the whole litellm param dict -> this function will extract the relevant details
Raises Error - if unable to map model to a provider
Return model, custom_llm_provider, dynamic_api_key, api_base
"""
try:
## IF LITELLM PARAMS GIVEN ##

View file

@ -1,2 +1,2 @@
{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "gpt-3.5-turbo-0125", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 10}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "gpt-3.5-turbo-0125", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 10}}
{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "my-custom-name", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 10}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "my-custom-name", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 10}}