Merge pull request #3376 from BerriAI/litellm_routing_logic

fix(router.py): unify retry timeout logic across sync + async function_with_retries
This commit is contained in:
Krish Dholakia 2024-04-30 19:58:45 -07:00 committed by GitHub
commit 9f55a99e98
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
7 changed files with 265 additions and 82 deletions

View file

@ -360,7 +360,7 @@ def mock_completion(
model: str,
messages: List,
stream: Optional[bool] = False,
mock_response: str = "This is a mock request",
mock_response: Union[str, Exception] = "This is a mock request",
logging=None,
**kwargs,
):
@ -387,6 +387,20 @@ def mock_completion(
- If 'stream' is True, it returns a response that mimics the behavior of a streaming completion.
"""
try:
## LOGGING
if logging is not None:
logging.pre_call(
input=messages,
api_key="mock-key",
)
if isinstance(mock_response, Exception):
raise litellm.APIError(
status_code=500, # type: ignore
message=str(mock_response),
llm_provider="openai", # type: ignore
model=model, # type: ignore
request=httpx.Request(method="POST", url="https://api.openai.com/v1/"),
)
model_response = ModelResponse(stream=stream)
if stream is True:
# don't try to access stream object,

View file

@ -1450,40 +1450,47 @@ class Router:
raise original_exception
### RETRY
#### check if it should retry + back-off if required
if "No models available" in str(
e
) or RouterErrors.no_deployments_available.value in str(e):
timeout = litellm._calculate_retry_after(
remaining_retries=num_retries,
max_retries=num_retries,
min_timeout=self.retry_after,
)
await asyncio.sleep(timeout)
elif RouterErrors.user_defined_ratelimit_error.value in str(e):
raise e # don't wait to retry if deployment hits user-defined rate-limit
# if "No models available" in str(
# e
# ) or RouterErrors.no_deployments_available.value in str(e):
# timeout = litellm._calculate_retry_after(
# remaining_retries=num_retries,
# max_retries=num_retries,
# min_timeout=self.retry_after,
# )
# await asyncio.sleep(timeout)
# elif RouterErrors.user_defined_ratelimit_error.value in str(e):
# raise e # don't wait to retry if deployment hits user-defined rate-limit
elif hasattr(original_exception, "status_code") and litellm._should_retry(
status_code=original_exception.status_code
):
if hasattr(original_exception, "response") and hasattr(
original_exception.response, "headers"
):
timeout = litellm._calculate_retry_after(
remaining_retries=num_retries,
max_retries=num_retries,
response_headers=original_exception.response.headers,
min_timeout=self.retry_after,
)
else:
timeout = litellm._calculate_retry_after(
remaining_retries=num_retries,
max_retries=num_retries,
min_timeout=self.retry_after,
)
await asyncio.sleep(timeout)
else:
raise original_exception
# elif hasattr(original_exception, "status_code") and litellm._should_retry(
# status_code=original_exception.status_code
# ):
# if hasattr(original_exception, "response") and hasattr(
# original_exception.response, "headers"
# ):
# timeout = litellm._calculate_retry_after(
# remaining_retries=num_retries,
# max_retries=num_retries,
# response_headers=original_exception.response.headers,
# min_timeout=self.retry_after,
# )
# else:
# timeout = litellm._calculate_retry_after(
# remaining_retries=num_retries,
# max_retries=num_retries,
# min_timeout=self.retry_after,
# )
# await asyncio.sleep(timeout)
# else:
# raise original_exception
### RETRY
_timeout = self._router_should_retry(
e=original_exception,
remaining_retries=num_retries,
num_retries=num_retries,
)
await asyncio.sleep(_timeout)
## LOGGING
if num_retries > 0:
kwargs = self.log_retry(kwargs=kwargs, e=original_exception)
@ -1505,34 +1512,12 @@ class Router:
## LOGGING
kwargs = self.log_retry(kwargs=kwargs, e=e)
remaining_retries = num_retries - current_attempt
if "No models available" in str(e):
timeout = litellm._calculate_retry_after(
remaining_retries=remaining_retries,
max_retries=num_retries,
min_timeout=self.retry_after,
)
await asyncio.sleep(timeout)
elif (
hasattr(e, "status_code")
and hasattr(e, "response")
and litellm._should_retry(status_code=e.status_code)
):
if hasattr(e.response, "headers"):
timeout = litellm._calculate_retry_after(
remaining_retries=remaining_retries,
max_retries=num_retries,
response_headers=e.response.headers,
min_timeout=self.retry_after,
)
else:
timeout = litellm._calculate_retry_after(
remaining_retries=remaining_retries,
max_retries=num_retries,
min_timeout=self.retry_after,
)
await asyncio.sleep(timeout)
else:
raise e
_timeout = self._router_should_retry(
e=original_exception,
remaining_retries=remaining_retries,
num_retries=num_retries,
)
await asyncio.sleep(_timeout)
raise original_exception
def function_with_fallbacks(self, *args, **kwargs):
@ -1625,7 +1610,7 @@ class Router:
def _router_should_retry(
self, e: Exception, remaining_retries: int, num_retries: int
):
) -> Union[int, float]:
"""
Calculate back-off, then retry
"""
@ -1636,14 +1621,13 @@ class Router:
response_headers=e.response.headers,
min_timeout=self.retry_after,
)
time.sleep(timeout)
else:
timeout = litellm._calculate_retry_after(
remaining_retries=remaining_retries,
max_retries=num_retries,
min_timeout=self.retry_after,
)
time.sleep(timeout)
return timeout
def function_with_retries(self, *args, **kwargs):
"""
@ -1658,6 +1642,7 @@ class Router:
context_window_fallbacks = kwargs.pop(
"context_window_fallbacks", self.context_window_fallbacks
)
try:
# if the function call is successful, no exception will be raised and we'll break out of the loop
response = original_function(*args, **kwargs)
@ -1677,11 +1662,12 @@ class Router:
if num_retries > 0:
kwargs = self.log_retry(kwargs=kwargs, e=original_exception)
### RETRY
self._router_should_retry(
_timeout = self._router_should_retry(
e=original_exception,
remaining_retries=num_retries,
num_retries=num_retries,
)
time.sleep(_timeout)
for current_attempt in range(num_retries):
verbose_router_logger.debug(
f"retrying request. Current attempt - {current_attempt}; retries left: {num_retries}"
@ -1695,11 +1681,12 @@ class Router:
## LOGGING
kwargs = self.log_retry(kwargs=kwargs, e=e)
remaining_retries = num_retries - current_attempt
self._router_should_retry(
_timeout = self._router_should_retry(
e=e,
remaining_retries=remaining_retries,
num_retries=num_retries,
)
time.sleep(_timeout)
raise original_exception
### HELPER FUNCTIONS
@ -1733,10 +1720,11 @@ class Router:
) # i.e. azure
metadata = kwargs.get("litellm_params", {}).get("metadata", None)
_model_info = kwargs.get("litellm_params", {}).get("model_info", {})
if isinstance(_model_info, dict):
deployment_id = _model_info.get("id", None)
self._set_cooldown_deployments(
deployment_id
exception_status=exception_status, deployment=deployment_id
) # setting deployment_id in cooldown deployments
if custom_llm_provider:
model_name = f"{custom_llm_provider}/{model_name}"
@ -1796,9 +1784,15 @@ class Router:
key=rpm_key, value=request_count, local_only=True
) # don't change existing ttl
def _set_cooldown_deployments(self, deployment: Optional[str] = None):
def _set_cooldown_deployments(
self, exception_status: Union[str, int], deployment: Optional[str] = None
):
"""
Add a model to the list of models being cooled down for that minute, if it exceeds the allowed fails / minute
or
the exception is not one that should be immediately retried (e.g. 401)
"""
if deployment is None:
return
@ -1815,7 +1809,20 @@ class Router:
f"Attempting to add {deployment} to cooldown list. updated_fails: {updated_fails}; self.allowed_fails: {self.allowed_fails}"
)
cooldown_time = self.cooldown_time or 1
if updated_fails > self.allowed_fails:
if isinstance(exception_status, str):
try:
exception_status = int(exception_status)
except Exception as e:
verbose_router_logger.debug(
"Unable to cast exception status to int {}. Defaulting to status=500.".format(
exception_status
)
)
exception_status = 500
_should_retry = litellm._should_retry(status_code=exception_status)
if updated_fails > self.allowed_fails or _should_retry == False:
# get the current cooldown list for that minute
cooldown_key = f"{current_minute}:cooldown_models" # group cooldown models by minute to reduce number of redis calls
cached_value = self.cache.get_cache(key=cooldown_key)

View file

@ -19,6 +19,7 @@ def setup_and_teardown():
0, os.path.abspath("../..")
) # Adds the project directory to the system path
import litellm
from litellm import Router
importlib.reload(litellm)
import asyncio

View file

@ -104,6 +104,42 @@ def test_router_timeout_init(timeout, ssl_verify):
)
@pytest.mark.parametrize("sync_mode", [False, True])
@pytest.mark.asyncio
async def test_router_retries(sync_mode):
"""
- make sure retries work as expected
"""
model_list = [
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {"model": "gpt-3.5-turbo", "api_key": "bad-key"},
},
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_base": os.getenv("AZURE_API_BASE"),
"api_version": os.getenv("AZURE_API_VERSION"),
},
},
]
router = Router(model_list=model_list, num_retries=2)
if sync_mode:
router.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey, how's it going?"}],
)
else:
await router.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey, how's it going?"}],
)
@pytest.mark.parametrize(
"mistral_api_base",
[
@ -1118,6 +1154,7 @@ def test_consistent_model_id():
assert id1 == id2
@pytest.mark.skip(reason="local test")
def test_reading_keys_os_environ():
import openai
@ -1217,6 +1254,7 @@ def test_reading_keys_os_environ():
# test_reading_keys_os_environ()
@pytest.mark.skip(reason="local test")
def test_reading_openai_keys_os_environ():
import openai

View file

@ -46,6 +46,7 @@ def test_async_fallbacks(caplog):
router = Router(
model_list=model_list,
fallbacks=[{"gpt-3.5-turbo": ["azure/gpt-3.5-turbo"]}],
num_retries=1,
)
user_message = "Hello, how are you?"
@ -82,6 +83,7 @@ def test_async_fallbacks(caplog):
# - error request, falling back notice, success notice
expected_logs = [
"litellm.acompletion(model=gpt-3.5-turbo)\x1b[31m Exception OpenAIException - Error code: 401 - {'error': {'message': 'Incorrect API key provided: bad-key. You can find your API key at https://platform.openai.com/account/api-keys.', 'type': 'invalid_request_error', 'param': None, 'code': 'invalid_api_key'}}\x1b[0m",
"litellm.acompletion(model=None)\x1b[31m Exception No deployments available for selected model, passed model=gpt-3.5-turbo\x1b[0m",
"Falling back to model_group = azure/gpt-3.5-turbo",
"litellm.acompletion(model=azure/chatgpt-v-2)\x1b[32m 200 OK\x1b[0m",
]

View file

@ -22,10 +22,10 @@ class MyCustomHandler(CustomLogger):
def log_pre_api_call(self, model, messages, kwargs):
print(f"Pre-API Call")
print(
f"previous_models: {kwargs['litellm_params']['metadata']['previous_models']}"
f"previous_models: {kwargs['litellm_params']['metadata'].get('previous_models', None)}"
)
self.previous_models += len(
kwargs["litellm_params"]["metadata"]["previous_models"]
self.previous_models = len(
kwargs["litellm_params"]["metadata"].get("previous_models", [])
) # {"previous_models": [{"model": litellm_model_name, "exception_type": AuthenticationError, "exception_string": <complete_traceback>}]}
print(f"self.previous_models: {self.previous_models}")
@ -127,7 +127,7 @@ def test_sync_fallbacks():
response = router.completion(**kwargs)
print(f"response: {response}")
time.sleep(0.05) # allow a delay as success_callbacks are on a separate thread
assert customHandler.previous_models == 1 # 0 retries, 1 fallback
assert customHandler.previous_models == 4
print("Passed ! Test router_fallbacks: test_sync_fallbacks()")
router.reset()
@ -140,7 +140,7 @@ def test_sync_fallbacks():
@pytest.mark.asyncio
async def test_async_fallbacks():
litellm.set_verbose = False
litellm.set_verbose = True
model_list = [
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo", # openai model name
@ -209,12 +209,13 @@ async def test_async_fallbacks():
user_message = "Hello, how are you?"
messages = [{"content": user_message, "role": "user"}]
try:
kwargs["model"] = "azure/gpt-3.5-turbo"
response = await router.acompletion(**kwargs)
print(f"customHandler.previous_models: {customHandler.previous_models}")
await asyncio.sleep(
0.05
) # allow a delay as success_callbacks are on a separate thread
assert customHandler.previous_models == 1 # 0 retries, 1 fallback
assert customHandler.previous_models == 4 # 1 init call, 2 retries, 1 fallback
router.reset()
except litellm.Timeout as e:
pass
@ -258,7 +259,6 @@ def test_sync_fallbacks_embeddings():
model_list=model_list,
fallbacks=[{"bad-azure-embedding-model": ["good-azure-embedding-model"]}],
set_verbose=False,
num_retries=0,
)
customHandler = MyCustomHandler()
litellm.callbacks = [customHandler]
@ -269,7 +269,7 @@ def test_sync_fallbacks_embeddings():
response = router.embedding(**kwargs)
print(f"customHandler.previous_models: {customHandler.previous_models}")
time.sleep(0.05) # allow a delay as success_callbacks are on a separate thread
assert customHandler.previous_models == 1 # 0 retries, 1 fallback
assert customHandler.previous_models == 4 # 1 init call, 2 retries, 1 fallback
router.reset()
except litellm.Timeout as e:
pass
@ -323,7 +323,7 @@ async def test_async_fallbacks_embeddings():
await asyncio.sleep(
0.05
) # allow a delay as success_callbacks are on a separate thread
assert customHandler.previous_models == 1 # 0 retries, 1 fallback
assert customHandler.previous_models == 4 # 1 init call, 2 retries, 1 fallback
router.reset()
except litellm.Timeout as e:
pass
@ -394,7 +394,7 @@ def test_dynamic_fallbacks_sync():
},
]
router = Router(model_list=model_list, set_verbose=True, num_retries=0)
router = Router(model_list=model_list, set_verbose=True)
kwargs = {}
kwargs["model"] = "azure/gpt-3.5-turbo"
kwargs["messages"] = [{"role": "user", "content": "Hey, how's it going?"}]
@ -402,7 +402,7 @@ def test_dynamic_fallbacks_sync():
response = router.completion(**kwargs)
print(f"response: {response}")
time.sleep(0.05) # allow a delay as success_callbacks are on a separate thread
assert customHandler.previous_models == 1 # 0 retries, 1 fallback
assert customHandler.previous_models == 4 # 1 init call, 2 retries, 1 fallback
router.reset()
except Exception as e:
pytest.fail(f"An exception occurred - {e}")
@ -488,7 +488,7 @@ async def test_dynamic_fallbacks_async():
await asyncio.sleep(
0.05
) # allow a delay as success_callbacks are on a separate thread
assert customHandler.previous_models == 1 # 0 retries, 1 fallback
assert customHandler.previous_models == 4 # 1 init call, 2 retries, 1 fallback
router.reset()
except Exception as e:
pytest.fail(f"An exception occurred - {e}")
@ -573,7 +573,7 @@ async def test_async_fallbacks_streaming():
await asyncio.sleep(
0.05
) # allow a delay as success_callbacks are on a separate thread
assert customHandler.previous_models == 1 # 0 retries, 1 fallback
assert customHandler.previous_models == 4 # 1 init call, 2 retries, 1 fallback
router.reset()
except litellm.Timeout as e:
pass

View file

@ -0,0 +1,121 @@
#### What this tests ####
# This tests calling router with fallback models
import sys, os, time
import traceback, asyncio
import pytest
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import Router
from litellm.integrations.custom_logger import CustomLogger
class MyCustomHandler(CustomLogger):
success: bool = False
failure: bool = False
previous_models: int = 0
def log_pre_api_call(self, model, messages, kwargs):
print(f"Pre-API Call")
print(
f"previous_models: {kwargs['litellm_params']['metadata'].get('previous_models', None)}"
)
self.previous_models = len(
kwargs["litellm_params"]["metadata"].get("previous_models", [])
) # {"previous_models": [{"model": litellm_model_name, "exception_type": AuthenticationError, "exception_string": <complete_traceback>}]}
print(f"self.previous_models: {self.previous_models}")
def log_post_api_call(self, kwargs, response_obj, start_time, end_time):
print(
f"Post-API Call - response object: {response_obj}; model: {kwargs['model']}"
)
def log_stream_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Stream")
def async_log_stream_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Stream")
def log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Success")
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Success")
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Failure")
"""
Test sync + async
- Authorization Errors
- Random API Error
"""
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.parametrize("error_type", ["Authorization Error", "API Error"])
@pytest.mark.asyncio
async def test_router_retries_errors(sync_mode, error_type):
"""
- Auth Error -> 0 retries
- API Error -> 2 retries
"""
_api_key = (
"bad-key" if error_type == "Authorization Error" else os.getenv("AZURE_API_KEY")
)
print(f"_api_key: {_api_key}")
model_list = [
{
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": _api_key,
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
]
router = Router(model_list=model_list, allowed_fails=3)
customHandler = MyCustomHandler()
litellm.callbacks = [customHandler]
user_message = "Hello, how are you?"
messages = [{"content": user_message, "role": "user"}]
kwargs = {
"model": "azure/gpt-3.5-turbo",
"messages": messages,
"mock_response": (
None
if error_type == "Authorization Error"
else Exception("Invalid Request")
),
}
try:
if sync_mode:
response = router.completion(**kwargs)
else:
response = await router.acompletion(**kwargs)
except Exception as e:
pass
await asyncio.sleep(
0.05
) # allow a delay as success_callbacks are on a separate thread
print(f"customHandler.previous_models: {customHandler.previous_models}")
if error_type == "Authorization Error":
assert customHandler.previous_models == 0 # 0 retries
else:
assert customHandler.previous_models == 2 # 2 retries