forked from phoenix/litellm-mirror
update cookbook
This commit is contained in:
parent
98d7faeb3e
commit
a2b5f471a8
4 changed files with 238 additions and 0 deletions
154
cookbook/codellama-server/README.MD
Normal file
154
cookbook/codellama-server/README.MD
Normal file
|
@ -0,0 +1,154 @@
|
|||
# CodeLlama Server: Streaming, Caching, Model Fallbacks (OpenAI + Anthropic), Prompt-tracking
|
||||
|
||||
Works with: Anthropic, Huggingface, Cohere, TogetherAI, Azure, OpenAI, etc.
|
||||
|
||||
[](https://pypi.org/project/litellm/)
|
||||
[](https://pypi.org/project/litellm/0.1.1/)
|
||||

|
||||
|
||||
[](https://railway.app/template/HuDPw-?referralCode=jch2ME)
|
||||
|
||||
**LIVE DEMO** - https://litellm.ai/playground
|
||||
|
||||
## What does CodeLlama Server do
|
||||
|
||||
- Uses Together AI's CodeLlama to answer coding questions, with GPT-4 + Claude-2 as backups (you can easily switch this to any model from Huggingface, Replicate, Cohere, AI21, Azure, OpenAI, etc.)
|
||||
- Sets default system prompt for guardrails `system_prompt = "Only respond to questions about code. Say 'I don't know' to anything outside of that."`
|
||||
- Integrates with Promptlayer for model + prompt tracking
|
||||
- Example output
|
||||
|
||||
<img src="imgs/code-output.png" alt="Code Output" width="600"/>
|
||||
|
||||
- **Consistent Input/Output** Format
|
||||
- Call all models using the OpenAI format - `completion(model, messages)`
|
||||
- Text responses will always be available at `['choices'][0]['message']['content']`
|
||||
- Stream responses will always be available at `['choices'][0]['delta']['content']`
|
||||
- **Error Handling** Using Model Fallbacks (if `CodeLlama` fails, try `GPT-4`) with cooldowns, and retries
|
||||
- **Prompt Logging** - Log successful completions to promptlayer for testing + iterating on your prompts in production! (Learn more: https://litellm.readthedocs.io/en/latest/advanced/
|
||||
|
||||
**Example: Logs sent to PromptLayer**
|
||||
|
||||
<img src="imgs/promptlayer_logging.png" alt="Prompt Logging" width="900"/>
|
||||
|
||||
|
||||
- **Token Usage & Spend** - Track Input + Completion tokens used + Spend/model - https://docs.litellm.ai/docs/token_usage
|
||||
- **Caching** - Provides in-memory cache + GPT-Cache integration for more advanced usage - https://docs.litellm.ai/docs/caching/gpt_cache
|
||||
|
||||
- **Streaming & Async Support** - Return generators to stream text responses - TEST IT 👉 https://litellm.ai/
|
||||
|
||||
## API Endpoints
|
||||
|
||||
### `/chat/completions` (POST)
|
||||
|
||||
This endpoint is used to generate chat completions for 50+ support LLM API Models. Use llama2, GPT-4, Claude2 etc
|
||||
|
||||
#### Input
|
||||
|
||||
This API endpoint accepts all inputs in raw JSON and expects the following inputs
|
||||
|
||||
- `prompt` (string, required): The user's coding related question
|
||||
- Additional Optional parameters: `temperature`, `functions`, `function_call`, `top_p`, `n`, `stream`. See the full list of supported inputs here: https://litellm.readthedocs.io/en/latest/input/
|
||||
|
||||
#### Example JSON body
|
||||
|
||||
For claude-2
|
||||
|
||||
```json
|
||||
{
|
||||
"prompt": "write me a function to print hello world"
|
||||
}
|
||||
```
|
||||
|
||||
### Making an API request to the Code-Gen Server
|
||||
|
||||
```python
|
||||
import requests
|
||||
import json
|
||||
|
||||
url = "localhost:4000/chat/completions"
|
||||
|
||||
payload = json.dumps({
|
||||
"prompt": "write me a function to print hello world"
|
||||
})
|
||||
headers = {
|
||||
'Content-Type': 'application/json'
|
||||
}
|
||||
|
||||
response = requests.request("POST", url, headers=headers, data=payload)
|
||||
|
||||
print(response.text)
|
||||
|
||||
```
|
||||
|
||||
### Output [Response Format]
|
||||
|
||||
Responses from the server are given in the following format.
|
||||
All responses from the server are returned in the following format (for all LLM models). More info on output here: https://litellm.readthedocs.io/en/latest/output/
|
||||
|
||||
```json
|
||||
{
|
||||
"choices": [
|
||||
{
|
||||
"finish_reason": "stop",
|
||||
"index": 0,
|
||||
"message": {
|
||||
"content": ".\n\n```\ndef print_hello_world():\n print(\"hello world\")\n",
|
||||
"role": "assistant"
|
||||
}
|
||||
}
|
||||
],
|
||||
"created": 1693279694.6474009,
|
||||
"model": "togethercomputer/CodeLlama-34b-Instruct",
|
||||
"usage": {
|
||||
"completion_tokens": 14,
|
||||
"prompt_tokens": 28,
|
||||
"total_tokens": 42
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Installation & Usage
|
||||
|
||||
### Running Locally
|
||||
|
||||
1. Clone liteLLM repository to your local machine:
|
||||
```
|
||||
git clone https://github.com/BerriAI/litellm-CodeGen-proxy
|
||||
```
|
||||
2. Install the required dependencies using pip
|
||||
```
|
||||
pip install requirements.txt
|
||||
```
|
||||
3. Set your LLM API keys
|
||||
```
|
||||
os.environ['OPENAI_API_KEY]` = "YOUR_API_KEY"
|
||||
or
|
||||
set OPENAI_API_KEY in your .env file
|
||||
```
|
||||
4. Run the server:
|
||||
```
|
||||
python main.py
|
||||
```
|
||||
|
||||
## Deploying
|
||||
|
||||
1. Quick Start: Deploy on Railway
|
||||
|
||||
[](https://railway.app/template/HuDPw-?referralCode=jch2ME)
|
||||
|
||||
2. `GCP`, `AWS`, `Azure`
|
||||
This project includes a `Dockerfile` allowing you to build and deploy a Docker Project on your providers
|
||||
|
||||
# Support / Talk with founders
|
||||
|
||||
- [Our calendar 👋](https://calendly.com/d/4mp-gd3-k5k/berriai-1-1-onboarding-litellm-hosted-version)
|
||||
- [Community Discord 💭](https://discord.gg/wuPM9dRgDw)
|
||||
- Our numbers 📞 +1 (770) 8783-106 / +1 (412) 618-6238
|
||||
- Our emails ✉️ ishaan@berri.ai / krrish@berri.ai
|
||||
|
||||
## Roadmap
|
||||
|
||||
- [ ] Implement user-based rate-limiting
|
||||
- [ ] Spending controls per project - expose key creation endpoint
|
||||
- [ ] Need to store a keys db -> mapping created keys to their alias (i.e. project name)
|
||||
- [ ] Easily add new models as backups / as the entry-point (add this to the available model list)
|
BIN
cookbook/codellama-server/imgs/code-output.png
Normal file
BIN
cookbook/codellama-server/imgs/code-output.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 232 KiB |
BIN
cookbook/codellama-server/imgs/promptlayer_logging.png
Normal file
BIN
cookbook/codellama-server/imgs/promptlayer_logging.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 293 KiB |
84
cookbook/codellama-server/main.py
Normal file
84
cookbook/codellama-server/main.py
Normal file
|
@ -0,0 +1,84 @@
|
|||
import traceback
|
||||
from flask import Flask, request, jsonify, abort, Response
|
||||
from flask_cors import CORS
|
||||
import traceback
|
||||
import litellm
|
||||
from util import handle_error
|
||||
from litellm import completion
|
||||
import os, dotenv, time
|
||||
import json
|
||||
dotenv.load_dotenv()
|
||||
|
||||
# TODO: set your keys in .env or here:
|
||||
# os.environ["OPENAI_API_KEY"] = "" # set your openai key here
|
||||
# os.environ["ANTHROPIC_API_KEY"] = "" # set your anthropic key here
|
||||
# os.environ["TOGETHER_AI_API_KEY"] = "" # set your together ai key here
|
||||
# see supported models / keys here: https://litellm.readthedocs.io/en/latest/supported/
|
||||
######### ENVIRONMENT VARIABLES ##########
|
||||
verbose = True
|
||||
|
||||
# litellm.caching_with_models = True # CACHING: caching_with_models Keys in the cache are messages + model. - to learn more: https://docs.litellm.ai/docs/caching/
|
||||
######### PROMPT LOGGING ##########
|
||||
os.environ["PROMPTLAYER_API_KEY"] = "" # set your promptlayer key here - https://promptlayer.com/
|
||||
|
||||
# set callbacks
|
||||
litellm.success_callback = ["promptlayer"]
|
||||
############ HELPER FUNCTIONS ###################################
|
||||
|
||||
def print_verbose(print_statement):
|
||||
if verbose:
|
||||
print(print_statement)
|
||||
|
||||
app = Flask(__name__)
|
||||
CORS(app)
|
||||
|
||||
@app.route('/')
|
||||
def index():
|
||||
return 'received!', 200
|
||||
|
||||
def data_generator(response):
|
||||
for chunk in response:
|
||||
yield f"data: {json.dumps(chunk)}\n\n"
|
||||
|
||||
@app.route('/chat/completions', methods=["POST"])
|
||||
def api_completion():
|
||||
data = request.json
|
||||
start_time = time.time()
|
||||
if data.get('stream') == "True":
|
||||
data['stream'] = True # convert to boolean
|
||||
try:
|
||||
if "prompt" not in data:
|
||||
raise ValueError("data needs to have prompt")
|
||||
data["model"] = "togethercomputer/CodeLlama-34b-Instruct" # by default use Together AI's CodeLlama model - https://api.together.xyz/playground/chat?model=togethercomputer%2FCodeLlama-34b-Instruct
|
||||
# COMPLETION CALL
|
||||
system_prompt = "Only respond to questions about code. Say 'I don't know' to anything outside of that."
|
||||
messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": data.pop("prompt")}]
|
||||
data["messages"] = messages
|
||||
print(f"data: {data}")
|
||||
response = completion(**data)
|
||||
## LOG SUCCESS
|
||||
end_time = time.time()
|
||||
if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
|
||||
return Response(data_generator(response), mimetype='text/event-stream')
|
||||
except Exception as e:
|
||||
# call handle_error function
|
||||
print_verbose(f"Got Error api_completion(): {traceback.format_exc()}")
|
||||
## LOG FAILURE
|
||||
end_time = time.time()
|
||||
traceback_exception = traceback.format_exc()
|
||||
return handle_error(data=data)
|
||||
return response
|
||||
|
||||
@app.route('/get_models', methods=["POST"])
|
||||
def get_models():
|
||||
try:
|
||||
return litellm.model_list
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
response = {"error": str(e)}
|
||||
return response, 200
|
||||
|
||||
if __name__ == "__main__":
|
||||
from waitress import serve
|
||||
serve(app, host="0.0.0.0", port=4000, threads=500)
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue