docs cachedContent endpoint

This commit is contained in:
Ishaan Jaff 2024-08-08 16:06:23 -07:00
parent cae941f4c0
commit a3dd3a19fa
2 changed files with 81 additions and 39 deletions

View file

@ -440,12 +440,20 @@ Use Vertex AI Context Caching
1. Add model to config.yaml
```yaml
model_list:
# used for /chat/completions, /completions, /embeddings endpoints
- model_name: gemini-1.5-pro-001
litellm_params:
model: vertex_ai_beta/gemini-1.5-pro-001
vertex_project: "project-id"
vertex_location: "us-central1"
vertex_credentials: "/path/to/service_account.json" # [OPTIONAL] Do this OR `!gcloud auth application-default login` - run this to add vertex credentials to your env
# used for the /cachedContent and vertexAI native endpoints
default_vertex_config:
vertex_project: "adroit-crow-413218"
vertex_location: "us-central1"
vertex_credentials: "adroit-crow-413218-a956eef1a2a8.json" # Add path to service account.json
```
2. Start Proxy
@ -456,40 +464,58 @@ $ litellm --config /path/to/config.yaml
3. Make Request!
- First create a cachedContents object by calling the Vertex `cachedContents` endpoint. [VertexAI API Ref for cachedContents endpoint](https://cloud.google.com/vertex-ai/generative-ai/docs/context-cache/context-cache-create#create-context-cache-sample-drest). (LiteLLM proxy forwards the `/cachedContents` request to the VertexAI API)
- Use the `cachedContents` object in your /chat/completions request to vertexAI
```python
import datetime
import openai
import vertexai
from vertexai.generative_models import Content, Part
from vertexai.preview import caching
from vertexai.preview.generative_models import GenerativeModel
import httpx
# use Vertex AI SDK to create CachedContent
vertexai.init(project="adroit-crow-413218", location="us-central1")
# Set Litellm proxy variables here
LITELLM_BASE_URL = "http://0.0.0.0:4000"
LITELLM_PROXY_API_KEY = "sk-1234"
client = openai.OpenAI(api_key=LITELLM_PROXY_API_KEY, base_url=LITELLM_BASE_URL)
httpx_client = httpx.Client(timeout=30)
################################
# First create a cachedContents object
# this request gets forwarded as is to: https://cloud.google.com/vertex-ai/generative-ai/docs/context-cache/context-cache-create#create-context-cache-sample-drest
print("creating cached content")
contents_here: list[Content] = [
Content(role="user", parts=[Part.from_text("huge string of text here" * 10000)])
]
cached_content = caching.CachedContent.create(
model_name="gemini-1.5-pro-001",
contents=contents_here,
expire_time=datetime.datetime(2024, 8, 10),
create_cache = httpx_client.post(
url=f"{LITELLM_BASE_URL}/vertex-ai/cachedContents",
headers = {"Authorization": f"Bearer {LITELLM_PROXY_API_KEY}"},
json = {
"model": "gemini-1.5-pro-001",
"contents": [
{
"role": "user",
"parts": [{
"text": "This is sample text to demonstrate explicit caching."*4000
}]
}
],
}
)
print("response from create_cache", create_cache)
create_cache_response = create_cache.json()
print("json from create_cache", create_cache_response)
cached_content_name = create_cache_response["name"]
# use OpenAI SDK to send a request to LiteLLM Proxy
# base_url is litellm proxy server and api_key is api key to litellm proxy
client = openai.OpenAI(api_key="sk-1234", base_url="http://0.0.0.0:4000")
response = client.chat.completions.create(
#################################
# Use the `cachedContents` object in your /chat/completions
response = client.chat.completions.create( # type: ignore
model="gemini-1.5-pro-001",
max_tokens=8192,
messages=[
{
"role": "user",
"content": "hello!",
"content": "what is the sample text about?",
},
],
temperature="0.7",
extra_body={"cached_content": cached_content.resource_name},
extra_body={"cached_content": cached_content_name}, # 👈 key change
)
print("response from proxy", response)

View file

@ -1,38 +1,54 @@
import datetime
import httpx
import openai
import vertexai
from vertexai.generative_models import Content, Part
from vertexai.preview import caching
from vertexai.preview.generative_models import GenerativeModel
client = openai.OpenAI(api_key="sk-1234", base_url="http://0.0.0.0:4000")
vertexai.init(project="adroit-crow-413218", location="us-central1")
# Set Litellm proxy variables here
LITELLM_BASE_URL = "http://0.0.0.0:4000"
LITELLM_PROXY_API_KEY = "sk-1234"
client = openai.OpenAI(api_key=LITELLM_PROXY_API_KEY, base_url=LITELLM_BASE_URL)
httpx_client = httpx.Client(timeout=30)
################################
# First create a cachedContents object
print("creating cached content")
contents_here: list[Content] = [
Content(role="user", parts=[Part.from_text("huge string of text here" * 10000)])
]
cached_content = caching.CachedContent.create(
model_name="gemini-1.5-pro-001",
contents=contents_here,
expire_time=datetime.datetime(2024, 8, 10),
create_cache = httpx_client.post(
url=f"{LITELLM_BASE_URL}/vertex-ai/cachedContents",
headers={"Authorization": f"Bearer {LITELLM_PROXY_API_KEY}"},
json={
"model": "gemini-1.5-pro-001",
"contents": [
{
"role": "user",
"parts": [
{
"text": "This is sample text to demonstrate explicit caching."
* 4000
}
],
}
],
},
)
print("response from create_cache", create_cache)
create_cache_response = create_cache.json()
print("json from create_cache", create_cache_response)
cached_content_name = create_cache_response["name"]
created_Caches = caching.CachedContent.list()
print("created_Caches contents=", created_Caches)
#################################
# Use the `cachedContents` object in your /chat/completions
response = client.chat.completions.create( # type: ignore
model="gemini-1.5-pro-001",
max_tokens=8192,
messages=[
{
"role": "user",
"content": "quote all everything above this message",
"content": "what is the sample text about?",
},
],
temperature="0.7",
extra_body={"cached_content": cached_content.resource_name},
extra_body={"cached_content": cached_content_name}, # 👈 key change
)
print("response from proxy", response)