forked from phoenix/litellm-mirror
Merge pull request #2879 from BerriAI/litellm_async_anthropic_api
[Feat] Async Anthropic API 97.5% lower median latency
This commit is contained in:
commit
a5aef6ec00
6 changed files with 339 additions and 150 deletions
|
@ -7,7 +7,8 @@ from typing import Callable, Optional, List
|
||||||
from litellm.utils import ModelResponse, Usage, map_finish_reason, CustomStreamWrapper
|
from litellm.utils import ModelResponse, Usage, map_finish_reason, CustomStreamWrapper
|
||||||
import litellm
|
import litellm
|
||||||
from .prompt_templates.factory import prompt_factory, custom_prompt
|
from .prompt_templates.factory import prompt_factory, custom_prompt
|
||||||
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
|
||||||
|
from .base import BaseLLM
|
||||||
import httpx
|
import httpx
|
||||||
|
|
||||||
|
|
||||||
|
@ -15,6 +16,8 @@ class AnthropicConstants(Enum):
|
||||||
HUMAN_PROMPT = "\n\nHuman: "
|
HUMAN_PROMPT = "\n\nHuman: "
|
||||||
AI_PROMPT = "\n\nAssistant: "
|
AI_PROMPT = "\n\nAssistant: "
|
||||||
|
|
||||||
|
# constants from https://github.com/anthropics/anthropic-sdk-python/blob/main/src/anthropic/_constants.py
|
||||||
|
|
||||||
|
|
||||||
class AnthropicError(Exception):
|
class AnthropicError(Exception):
|
||||||
def __init__(self, status_code, message):
|
def __init__(self, status_code, message):
|
||||||
|
@ -36,7 +39,9 @@ class AnthropicConfig:
|
||||||
to pass metadata to anthropic, it's {"user_id": "any-relevant-information"}
|
to pass metadata to anthropic, it's {"user_id": "any-relevant-information"}
|
||||||
"""
|
"""
|
||||||
|
|
||||||
max_tokens: Optional[int] = 4096 # anthropic requires a default value (Opus, Sonnet, and Haiku have the same default)
|
max_tokens: Optional[int] = (
|
||||||
|
4096 # anthropic requires a default value (Opus, Sonnet, and Haiku have the same default)
|
||||||
|
)
|
||||||
stop_sequences: Optional[list] = None
|
stop_sequences: Optional[list] = None
|
||||||
temperature: Optional[int] = None
|
temperature: Optional[int] = None
|
||||||
top_p: Optional[int] = None
|
top_p: Optional[int] = None
|
||||||
|
@ -46,7 +51,9 @@ class AnthropicConfig:
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
max_tokens: Optional[int] = 4096, # You can pass in a value yourself or use the default value 4096
|
max_tokens: Optional[
|
||||||
|
int
|
||||||
|
] = 4096, # You can pass in a value yourself or use the default value 4096
|
||||||
stop_sequences: Optional[list] = None,
|
stop_sequences: Optional[list] = None,
|
||||||
temperature: Optional[int] = None,
|
temperature: Optional[int] = None,
|
||||||
top_p: Optional[int] = None,
|
top_p: Optional[int] = None,
|
||||||
|
@ -95,121 +102,23 @@ def validate_environment(api_key, user_headers):
|
||||||
return headers
|
return headers
|
||||||
|
|
||||||
|
|
||||||
def completion(
|
class AnthropicChatCompletion(BaseLLM):
|
||||||
model: str,
|
def __init__(self) -> None:
|
||||||
messages: list,
|
super().__init__()
|
||||||
api_base: str,
|
|
||||||
custom_prompt_dict: dict,
|
def process_response(
|
||||||
model_response: ModelResponse,
|
self,
|
||||||
print_verbose: Callable,
|
model,
|
||||||
encoding,
|
response,
|
||||||
api_key,
|
model_response,
|
||||||
|
_is_function_call,
|
||||||
|
stream,
|
||||||
logging_obj,
|
logging_obj,
|
||||||
optional_params=None,
|
api_key,
|
||||||
litellm_params=None,
|
data,
|
||||||
logger_fn=None,
|
messages,
|
||||||
headers={},
|
print_verbose,
|
||||||
):
|
):
|
||||||
headers = validate_environment(api_key, headers)
|
|
||||||
_is_function_call = False
|
|
||||||
messages = copy.deepcopy(messages)
|
|
||||||
optional_params = copy.deepcopy(optional_params)
|
|
||||||
if model in custom_prompt_dict:
|
|
||||||
# check if the model has a registered custom prompt
|
|
||||||
model_prompt_details = custom_prompt_dict[model]
|
|
||||||
prompt = custom_prompt(
|
|
||||||
role_dict=model_prompt_details["roles"],
|
|
||||||
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
|
||||||
final_prompt_value=model_prompt_details["final_prompt_value"],
|
|
||||||
messages=messages,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
# Separate system prompt from rest of message
|
|
||||||
system_prompt_indices = []
|
|
||||||
system_prompt = ""
|
|
||||||
for idx, message in enumerate(messages):
|
|
||||||
if message["role"] == "system":
|
|
||||||
system_prompt += message["content"]
|
|
||||||
system_prompt_indices.append(idx)
|
|
||||||
if len(system_prompt_indices) > 0:
|
|
||||||
for idx in reversed(system_prompt_indices):
|
|
||||||
messages.pop(idx)
|
|
||||||
if len(system_prompt) > 0:
|
|
||||||
optional_params["system"] = system_prompt
|
|
||||||
# Format rest of message according to anthropic guidelines
|
|
||||||
try:
|
|
||||||
messages = prompt_factory(
|
|
||||||
model=model, messages=messages, custom_llm_provider="anthropic"
|
|
||||||
)
|
|
||||||
except Exception as e:
|
|
||||||
raise AnthropicError(status_code=400, message=str(e))
|
|
||||||
|
|
||||||
## Load Config
|
|
||||||
config = litellm.AnthropicConfig.get_config()
|
|
||||||
for k, v in config.items():
|
|
||||||
if (
|
|
||||||
k not in optional_params
|
|
||||||
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
||||||
optional_params[k] = v
|
|
||||||
|
|
||||||
## Handle Tool Calling
|
|
||||||
if "tools" in optional_params:
|
|
||||||
_is_function_call = True
|
|
||||||
headers["anthropic-beta"] = "tools-2024-04-04"
|
|
||||||
|
|
||||||
anthropic_tools = []
|
|
||||||
for tool in optional_params["tools"]:
|
|
||||||
new_tool = tool["function"]
|
|
||||||
new_tool["input_schema"] = new_tool.pop("parameters") # rename key
|
|
||||||
anthropic_tools.append(new_tool)
|
|
||||||
|
|
||||||
optional_params["tools"] = anthropic_tools
|
|
||||||
|
|
||||||
stream = optional_params.pop("stream", None)
|
|
||||||
|
|
||||||
data = {
|
|
||||||
"model": model,
|
|
||||||
"messages": messages,
|
|
||||||
**optional_params,
|
|
||||||
}
|
|
||||||
|
|
||||||
## LOGGING
|
|
||||||
logging_obj.pre_call(
|
|
||||||
input=messages,
|
|
||||||
api_key=api_key,
|
|
||||||
additional_args={
|
|
||||||
"complete_input_dict": data,
|
|
||||||
"api_base": api_base,
|
|
||||||
"headers": headers,
|
|
||||||
},
|
|
||||||
)
|
|
||||||
print_verbose(f"_is_function_call: {_is_function_call}")
|
|
||||||
## COMPLETION CALL
|
|
||||||
if (
|
|
||||||
stream and not _is_function_call
|
|
||||||
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
|
|
||||||
print_verbose("makes anthropic streaming POST request")
|
|
||||||
data["stream"] = stream
|
|
||||||
response = requests.post(
|
|
||||||
api_base,
|
|
||||||
headers=headers,
|
|
||||||
data=json.dumps(data),
|
|
||||||
stream=stream,
|
|
||||||
)
|
|
||||||
|
|
||||||
if response.status_code != 200:
|
|
||||||
raise AnthropicError(
|
|
||||||
status_code=response.status_code, message=response.text
|
|
||||||
)
|
|
||||||
|
|
||||||
return response.iter_lines()
|
|
||||||
else:
|
|
||||||
response = requests.post(api_base, headers=headers, data=json.dumps(data))
|
|
||||||
if response.status_code != 200:
|
|
||||||
raise AnthropicError(
|
|
||||||
status_code=response.status_code, message=response.text
|
|
||||||
)
|
|
||||||
|
|
||||||
## LOGGING
|
## LOGGING
|
||||||
logging_obj.post_call(
|
logging_obj.post_call(
|
||||||
input=messages,
|
input=messages,
|
||||||
|
@ -327,6 +236,272 @@ def completion(
|
||||||
model_response.usage = usage
|
model_response.usage = usage
|
||||||
return model_response
|
return model_response
|
||||||
|
|
||||||
|
async def acompletion_stream_function(
|
||||||
|
self,
|
||||||
|
model: str,
|
||||||
|
messages: list,
|
||||||
|
api_base: str,
|
||||||
|
custom_prompt_dict: dict,
|
||||||
|
model_response: ModelResponse,
|
||||||
|
print_verbose: Callable,
|
||||||
|
encoding,
|
||||||
|
api_key,
|
||||||
|
logging_obj,
|
||||||
|
stream,
|
||||||
|
_is_function_call,
|
||||||
|
data=None,
|
||||||
|
optional_params=None,
|
||||||
|
litellm_params=None,
|
||||||
|
logger_fn=None,
|
||||||
|
headers={},
|
||||||
|
):
|
||||||
|
self.async_handler = AsyncHTTPHandler(
|
||||||
|
timeout=httpx.Timeout(timeout=600.0, connect=5.0)
|
||||||
|
)
|
||||||
|
response = await self.async_handler.post(
|
||||||
|
api_base, headers=headers, data=json.dumps(data)
|
||||||
|
)
|
||||||
|
|
||||||
|
if response.status_code != 200:
|
||||||
|
raise AnthropicError(
|
||||||
|
status_code=response.status_code, message=response.text
|
||||||
|
)
|
||||||
|
|
||||||
|
completion_stream = response.aiter_lines()
|
||||||
|
|
||||||
|
streamwrapper = CustomStreamWrapper(
|
||||||
|
completion_stream=completion_stream,
|
||||||
|
model=model,
|
||||||
|
custom_llm_provider="anthropic",
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
)
|
||||||
|
return streamwrapper
|
||||||
|
|
||||||
|
async def acompletion_function(
|
||||||
|
self,
|
||||||
|
model: str,
|
||||||
|
messages: list,
|
||||||
|
api_base: str,
|
||||||
|
custom_prompt_dict: dict,
|
||||||
|
model_response: ModelResponse,
|
||||||
|
print_verbose: Callable,
|
||||||
|
encoding,
|
||||||
|
api_key,
|
||||||
|
logging_obj,
|
||||||
|
stream,
|
||||||
|
_is_function_call,
|
||||||
|
data=None,
|
||||||
|
optional_params=None,
|
||||||
|
litellm_params=None,
|
||||||
|
logger_fn=None,
|
||||||
|
headers={},
|
||||||
|
):
|
||||||
|
self.async_handler = AsyncHTTPHandler(
|
||||||
|
timeout=httpx.Timeout(timeout=600.0, connect=5.0)
|
||||||
|
)
|
||||||
|
response = await self.async_handler.post(
|
||||||
|
api_base, headers=headers, data=json.dumps(data)
|
||||||
|
)
|
||||||
|
return self.process_response(
|
||||||
|
model=model,
|
||||||
|
response=response,
|
||||||
|
model_response=model_response,
|
||||||
|
_is_function_call=_is_function_call,
|
||||||
|
stream=stream,
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
api_key=api_key,
|
||||||
|
data=data,
|
||||||
|
messages=messages,
|
||||||
|
print_verbose=print_verbose,
|
||||||
|
)
|
||||||
|
|
||||||
|
def completion(
|
||||||
|
self,
|
||||||
|
model: str,
|
||||||
|
messages: list,
|
||||||
|
api_base: str,
|
||||||
|
custom_prompt_dict: dict,
|
||||||
|
model_response: ModelResponse,
|
||||||
|
print_verbose: Callable,
|
||||||
|
encoding,
|
||||||
|
api_key,
|
||||||
|
logging_obj,
|
||||||
|
optional_params=None,
|
||||||
|
acompletion=None,
|
||||||
|
litellm_params=None,
|
||||||
|
logger_fn=None,
|
||||||
|
headers={},
|
||||||
|
):
|
||||||
|
headers = validate_environment(api_key, headers)
|
||||||
|
_is_function_call = False
|
||||||
|
messages = copy.deepcopy(messages)
|
||||||
|
optional_params = copy.deepcopy(optional_params)
|
||||||
|
if model in custom_prompt_dict:
|
||||||
|
# check if the model has a registered custom prompt
|
||||||
|
model_prompt_details = custom_prompt_dict[model]
|
||||||
|
prompt = custom_prompt(
|
||||||
|
role_dict=model_prompt_details["roles"],
|
||||||
|
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
||||||
|
final_prompt_value=model_prompt_details["final_prompt_value"],
|
||||||
|
messages=messages,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# Separate system prompt from rest of message
|
||||||
|
system_prompt_indices = []
|
||||||
|
system_prompt = ""
|
||||||
|
for idx, message in enumerate(messages):
|
||||||
|
if message["role"] == "system":
|
||||||
|
system_prompt += message["content"]
|
||||||
|
system_prompt_indices.append(idx)
|
||||||
|
if len(system_prompt_indices) > 0:
|
||||||
|
for idx in reversed(system_prompt_indices):
|
||||||
|
messages.pop(idx)
|
||||||
|
if len(system_prompt) > 0:
|
||||||
|
optional_params["system"] = system_prompt
|
||||||
|
# Format rest of message according to anthropic guidelines
|
||||||
|
try:
|
||||||
|
messages = prompt_factory(
|
||||||
|
model=model, messages=messages, custom_llm_provider="anthropic"
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
raise AnthropicError(status_code=400, message=str(e))
|
||||||
|
|
||||||
|
## Load Config
|
||||||
|
config = litellm.AnthropicConfig.get_config()
|
||||||
|
for k, v in config.items():
|
||||||
|
if (
|
||||||
|
k not in optional_params
|
||||||
|
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||||
|
optional_params[k] = v
|
||||||
|
|
||||||
|
## Handle Tool Calling
|
||||||
|
if "tools" in optional_params:
|
||||||
|
_is_function_call = True
|
||||||
|
headers["anthropic-beta"] = "tools-2024-04-04"
|
||||||
|
|
||||||
|
anthropic_tools = []
|
||||||
|
for tool in optional_params["tools"]:
|
||||||
|
new_tool = tool["function"]
|
||||||
|
new_tool["input_schema"] = new_tool.pop("parameters") # rename key
|
||||||
|
anthropic_tools.append(new_tool)
|
||||||
|
|
||||||
|
optional_params["tools"] = anthropic_tools
|
||||||
|
|
||||||
|
stream = optional_params.pop("stream", None)
|
||||||
|
|
||||||
|
data = {
|
||||||
|
"model": model,
|
||||||
|
"messages": messages,
|
||||||
|
**optional_params,
|
||||||
|
}
|
||||||
|
|
||||||
|
## LOGGING
|
||||||
|
logging_obj.pre_call(
|
||||||
|
input=messages,
|
||||||
|
api_key=api_key,
|
||||||
|
additional_args={
|
||||||
|
"complete_input_dict": data,
|
||||||
|
"api_base": api_base,
|
||||||
|
"headers": headers,
|
||||||
|
},
|
||||||
|
)
|
||||||
|
print_verbose(f"_is_function_call: {_is_function_call}")
|
||||||
|
if acompletion == True:
|
||||||
|
if (
|
||||||
|
stream and not _is_function_call
|
||||||
|
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
|
||||||
|
print_verbose("makes async anthropic streaming POST request")
|
||||||
|
data["stream"] = stream
|
||||||
|
return self.acompletion_stream_function(
|
||||||
|
model=model,
|
||||||
|
messages=messages,
|
||||||
|
data=data,
|
||||||
|
api_base=api_base,
|
||||||
|
custom_prompt_dict=custom_prompt_dict,
|
||||||
|
model_response=model_response,
|
||||||
|
print_verbose=print_verbose,
|
||||||
|
encoding=encoding,
|
||||||
|
api_key=api_key,
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
optional_params=optional_params,
|
||||||
|
stream=stream,
|
||||||
|
_is_function_call=_is_function_call,
|
||||||
|
litellm_params=litellm_params,
|
||||||
|
logger_fn=logger_fn,
|
||||||
|
headers=headers,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
return self.acompletion_function(
|
||||||
|
model=model,
|
||||||
|
messages=messages,
|
||||||
|
data=data,
|
||||||
|
api_base=api_base,
|
||||||
|
custom_prompt_dict=custom_prompt_dict,
|
||||||
|
model_response=model_response,
|
||||||
|
print_verbose=print_verbose,
|
||||||
|
encoding=encoding,
|
||||||
|
api_key=api_key,
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
optional_params=optional_params,
|
||||||
|
stream=stream,
|
||||||
|
_is_function_call=_is_function_call,
|
||||||
|
litellm_params=litellm_params,
|
||||||
|
logger_fn=logger_fn,
|
||||||
|
headers=headers,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
## COMPLETION CALL
|
||||||
|
if (
|
||||||
|
stream and not _is_function_call
|
||||||
|
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
|
||||||
|
print_verbose("makes anthropic streaming POST request")
|
||||||
|
data["stream"] = stream
|
||||||
|
response = requests.post(
|
||||||
|
api_base,
|
||||||
|
headers=headers,
|
||||||
|
data=json.dumps(data),
|
||||||
|
stream=stream,
|
||||||
|
)
|
||||||
|
|
||||||
|
if response.status_code != 200:
|
||||||
|
raise AnthropicError(
|
||||||
|
status_code=response.status_code, message=response.text
|
||||||
|
)
|
||||||
|
|
||||||
|
completion_stream = response.iter_lines()
|
||||||
|
streaming_response = CustomStreamWrapper(
|
||||||
|
completion_stream=completion_stream,
|
||||||
|
model=model,
|
||||||
|
custom_llm_provider="anthropic",
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
)
|
||||||
|
return streaming_response
|
||||||
|
|
||||||
|
else:
|
||||||
|
response = requests.post(
|
||||||
|
api_base, headers=headers, data=json.dumps(data)
|
||||||
|
)
|
||||||
|
if response.status_code != 200:
|
||||||
|
raise AnthropicError(
|
||||||
|
status_code=response.status_code, message=response.text
|
||||||
|
)
|
||||||
|
return self.process_response(
|
||||||
|
model=model,
|
||||||
|
response=response,
|
||||||
|
model_response=model_response,
|
||||||
|
_is_function_call=_is_function_call,
|
||||||
|
stream=stream,
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
api_key=api_key,
|
||||||
|
data=data,
|
||||||
|
messages=messages,
|
||||||
|
print_verbose=print_verbose,
|
||||||
|
)
|
||||||
|
|
||||||
|
def embedding(self):
|
||||||
|
# logic for parsing in - calling - parsing out model embedding calls
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
class ModelResponseIterator:
|
class ModelResponseIterator:
|
||||||
def __init__(self, model_response):
|
def __init__(self, model_response):
|
||||||
|
@ -352,8 +527,3 @@ class ModelResponseIterator:
|
||||||
raise StopAsyncIteration
|
raise StopAsyncIteration
|
||||||
self.is_done = True
|
self.is_done = True
|
||||||
return self.model_response
|
return self.model_response
|
||||||
|
|
||||||
|
|
||||||
def embedding():
|
|
||||||
# logic for parsing in - calling - parsing out model embedding calls
|
|
||||||
pass
|
|
||||||
|
|
|
@ -4,7 +4,7 @@ from enum import Enum
|
||||||
import requests
|
import requests
|
||||||
import time
|
import time
|
||||||
from typing import Callable, Optional
|
from typing import Callable, Optional
|
||||||
from litellm.utils import ModelResponse, Usage
|
from litellm.utils import ModelResponse, Usage, CustomStreamWrapper
|
||||||
import litellm
|
import litellm
|
||||||
from .prompt_templates.factory import prompt_factory, custom_prompt
|
from .prompt_templates.factory import prompt_factory, custom_prompt
|
||||||
import httpx
|
import httpx
|
||||||
|
@ -162,8 +162,15 @@ def completion(
|
||||||
raise AnthropicError(
|
raise AnthropicError(
|
||||||
status_code=response.status_code, message=response.text
|
status_code=response.status_code, message=response.text
|
||||||
)
|
)
|
||||||
|
completion_stream = response.iter_lines()
|
||||||
|
stream_response = CustomStreamWrapper(
|
||||||
|
completion_stream=completion_stream,
|
||||||
|
model=model,
|
||||||
|
custom_llm_provider="anthropic",
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
)
|
||||||
|
return stream_response
|
||||||
|
|
||||||
return response.iter_lines()
|
|
||||||
else:
|
else:
|
||||||
response = requests.post(api_base, headers=headers, data=json.dumps(data))
|
response = requests.post(api_base, headers=headers, data=json.dumps(data))
|
||||||
if response.status_code != 200:
|
if response.status_code != 200:
|
||||||
|
|
|
@ -1,21 +1,34 @@
|
||||||
import httpx, asyncio
|
import httpx, asyncio
|
||||||
from typing import Optional
|
from typing import Optional, Union, Mapping, Any
|
||||||
|
|
||||||
|
# https://www.python-httpx.org/advanced/timeouts
|
||||||
|
_DEFAULT_TIMEOUT = httpx.Timeout(timeout=5.0, connect=5.0)
|
||||||
|
|
||||||
|
|
||||||
class AsyncHTTPHandler:
|
class AsyncHTTPHandler:
|
||||||
def __init__(self, concurrent_limit=1000):
|
def __init__(
|
||||||
|
self, timeout: httpx.Timeout = _DEFAULT_TIMEOUT, concurrent_limit=1000
|
||||||
|
):
|
||||||
# Create a client with a connection pool
|
# Create a client with a connection pool
|
||||||
self.client = httpx.AsyncClient(
|
self.client = httpx.AsyncClient(
|
||||||
|
timeout=timeout,
|
||||||
limits=httpx.Limits(
|
limits=httpx.Limits(
|
||||||
max_connections=concurrent_limit,
|
max_connections=concurrent_limit,
|
||||||
max_keepalive_connections=concurrent_limit,
|
max_keepalive_connections=concurrent_limit,
|
||||||
)
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
async def close(self):
|
async def close(self):
|
||||||
# Close the client when you're done with it
|
# Close the client when you're done with it
|
||||||
await self.client.aclose()
|
await self.client.aclose()
|
||||||
|
|
||||||
|
async def __aenter__(self):
|
||||||
|
return self.client
|
||||||
|
|
||||||
|
async def __aexit__(self):
|
||||||
|
# close the client when exiting
|
||||||
|
await self.client.aclose()
|
||||||
|
|
||||||
async def get(
|
async def get(
|
||||||
self, url: str, params: Optional[dict] = None, headers: Optional[dict] = None
|
self, url: str, params: Optional[dict] = None, headers: Optional[dict] = None
|
||||||
):
|
):
|
||||||
|
@ -25,12 +38,15 @@ class AsyncHTTPHandler:
|
||||||
async def post(
|
async def post(
|
||||||
self,
|
self,
|
||||||
url: str,
|
url: str,
|
||||||
data: Optional[dict] = None,
|
data: Optional[Union[dict, str]] = None, # type: ignore
|
||||||
params: Optional[dict] = None,
|
params: Optional[dict] = None,
|
||||||
headers: Optional[dict] = None,
|
headers: Optional[dict] = None,
|
||||||
):
|
):
|
||||||
response = await self.client.post(
|
response = await self.client.post(
|
||||||
url, data=data, params=params, headers=headers
|
url,
|
||||||
|
data=data, # type: ignore
|
||||||
|
params=params,
|
||||||
|
headers=headers,
|
||||||
)
|
)
|
||||||
return response
|
return response
|
||||||
|
|
||||||
|
|
|
@ -39,7 +39,6 @@ from litellm.utils import (
|
||||||
get_optional_params_image_gen,
|
get_optional_params_image_gen,
|
||||||
)
|
)
|
||||||
from .llms import (
|
from .llms import (
|
||||||
anthropic,
|
|
||||||
anthropic_text,
|
anthropic_text,
|
||||||
together_ai,
|
together_ai,
|
||||||
ai21,
|
ai21,
|
||||||
|
@ -68,6 +67,7 @@ from .llms import (
|
||||||
from .llms.openai import OpenAIChatCompletion, OpenAITextCompletion
|
from .llms.openai import OpenAIChatCompletion, OpenAITextCompletion
|
||||||
from .llms.azure import AzureChatCompletion
|
from .llms.azure import AzureChatCompletion
|
||||||
from .llms.azure_text import AzureTextCompletion
|
from .llms.azure_text import AzureTextCompletion
|
||||||
|
from .llms.anthropic import AnthropicChatCompletion
|
||||||
from .llms.huggingface_restapi import Huggingface
|
from .llms.huggingface_restapi import Huggingface
|
||||||
from .llms.prompt_templates.factory import (
|
from .llms.prompt_templates.factory import (
|
||||||
prompt_factory,
|
prompt_factory,
|
||||||
|
@ -99,6 +99,7 @@ from litellm.utils import (
|
||||||
dotenv.load_dotenv() # Loading env variables using dotenv
|
dotenv.load_dotenv() # Loading env variables using dotenv
|
||||||
openai_chat_completions = OpenAIChatCompletion()
|
openai_chat_completions = OpenAIChatCompletion()
|
||||||
openai_text_completions = OpenAITextCompletion()
|
openai_text_completions = OpenAITextCompletion()
|
||||||
|
anthropic_chat_completions = AnthropicChatCompletion()
|
||||||
azure_chat_completions = AzureChatCompletion()
|
azure_chat_completions = AzureChatCompletion()
|
||||||
azure_text_completions = AzureTextCompletion()
|
azure_text_completions = AzureTextCompletion()
|
||||||
huggingface = Huggingface()
|
huggingface = Huggingface()
|
||||||
|
@ -304,6 +305,7 @@ async def acompletion(
|
||||||
or custom_llm_provider == "vertex_ai"
|
or custom_llm_provider == "vertex_ai"
|
||||||
or custom_llm_provider == "gemini"
|
or custom_llm_provider == "gemini"
|
||||||
or custom_llm_provider == "sagemaker"
|
or custom_llm_provider == "sagemaker"
|
||||||
|
or custom_llm_provider == "anthropic"
|
||||||
or custom_llm_provider in litellm.openai_compatible_providers
|
or custom_llm_provider in litellm.openai_compatible_providers
|
||||||
): # currently implemented aiohttp calls for just azure, openai, hf, ollama, vertex ai soon all.
|
): # currently implemented aiohttp calls for just azure, openai, hf, ollama, vertex ai soon all.
|
||||||
init_response = await loop.run_in_executor(None, func_with_context)
|
init_response = await loop.run_in_executor(None, func_with_context)
|
||||||
|
@ -1180,10 +1182,11 @@ def completion(
|
||||||
or get_secret("ANTHROPIC_API_BASE")
|
or get_secret("ANTHROPIC_API_BASE")
|
||||||
or "https://api.anthropic.com/v1/messages"
|
or "https://api.anthropic.com/v1/messages"
|
||||||
)
|
)
|
||||||
response = anthropic.completion(
|
response = anthropic_chat_completions.completion(
|
||||||
model=model,
|
model=model,
|
||||||
messages=messages,
|
messages=messages,
|
||||||
api_base=api_base,
|
api_base=api_base,
|
||||||
|
acompletion=acompletion,
|
||||||
custom_prompt_dict=litellm.custom_prompt_dict,
|
custom_prompt_dict=litellm.custom_prompt_dict,
|
||||||
model_response=model_response,
|
model_response=model_response,
|
||||||
print_verbose=print_verbose,
|
print_verbose=print_verbose,
|
||||||
|
@ -1195,19 +1198,6 @@ def completion(
|
||||||
logging_obj=logging,
|
logging_obj=logging,
|
||||||
headers=headers,
|
headers=headers,
|
||||||
)
|
)
|
||||||
if (
|
|
||||||
"stream" in optional_params
|
|
||||||
and optional_params["stream"] == True
|
|
||||||
and not isinstance(response, CustomStreamWrapper)
|
|
||||||
):
|
|
||||||
# don't try to access stream object,
|
|
||||||
response = CustomStreamWrapper(
|
|
||||||
response,
|
|
||||||
model,
|
|
||||||
custom_llm_provider="anthropic",
|
|
||||||
logging_obj=logging,
|
|
||||||
)
|
|
||||||
|
|
||||||
if optional_params.get("stream", False) or acompletion == True:
|
if optional_params.get("stream", False) or acompletion == True:
|
||||||
## LOGGING
|
## LOGGING
|
||||||
logging.post_call(
|
logging.post_call(
|
||||||
|
|
|
@ -831,22 +831,25 @@ def test_bedrock_claude_3_streaming():
|
||||||
pytest.fail(f"Error occurred: {e}")
|
pytest.fail(f"Error occurred: {e}")
|
||||||
|
|
||||||
|
|
||||||
def test_claude_3_streaming_finish_reason():
|
@pytest.mark.asyncio
|
||||||
|
async def test_claude_3_streaming_finish_reason():
|
||||||
try:
|
try:
|
||||||
litellm.set_verbose = True
|
litellm.set_verbose = True
|
||||||
messages = [
|
messages = [
|
||||||
{"role": "system", "content": "Be helpful"},
|
{"role": "system", "content": "Be helpful"},
|
||||||
{"role": "user", "content": "What do you know?"},
|
{"role": "user", "content": "What do you know?"},
|
||||||
]
|
]
|
||||||
response: ModelResponse = completion( # type: ignore
|
response: ModelResponse = await litellm.acompletion( # type: ignore
|
||||||
model="claude-3-opus-20240229",
|
model="claude-3-opus-20240229",
|
||||||
messages=messages,
|
messages=messages,
|
||||||
stream=True,
|
stream=True,
|
||||||
|
max_tokens=10,
|
||||||
)
|
)
|
||||||
complete_response = ""
|
complete_response = ""
|
||||||
# Add any assertions here to check the response
|
# Add any assertions here to-check the response
|
||||||
num_finish_reason = 0
|
num_finish_reason = 0
|
||||||
for idx, chunk in enumerate(response):
|
async for chunk in response:
|
||||||
|
print(f"chunk: {chunk}")
|
||||||
if isinstance(chunk, ModelResponse):
|
if isinstance(chunk, ModelResponse):
|
||||||
if chunk.choices[0].finish_reason is not None:
|
if chunk.choices[0].finish_reason is not None:
|
||||||
num_finish_reason += 1
|
num_finish_reason += 1
|
||||||
|
@ -2285,7 +2288,7 @@ async def test_acompletion_claude_3_function_call_with_streaming():
|
||||||
elif chunk.choices[0].finish_reason is not None: # last chunk
|
elif chunk.choices[0].finish_reason is not None: # last chunk
|
||||||
validate_final_streaming_function_calling_chunk(chunk=chunk)
|
validate_final_streaming_function_calling_chunk(chunk=chunk)
|
||||||
idx += 1
|
idx += 1
|
||||||
# raise Exception("it worked!")
|
# raise Exception("it worked! ")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
pytest.fail(f"Error occurred: {e}")
|
pytest.fail(f"Error occurred: {e}")
|
||||||
|
|
||||||
|
|
|
@ -8764,6 +8764,8 @@ class CustomStreamWrapper:
|
||||||
return hold, curr_chunk
|
return hold, curr_chunk
|
||||||
|
|
||||||
def handle_anthropic_chunk(self, chunk):
|
def handle_anthropic_chunk(self, chunk):
|
||||||
|
str_line = chunk
|
||||||
|
if isinstance(chunk, bytes): # Handle binary data
|
||||||
str_line = chunk.decode("utf-8") # Convert bytes to string
|
str_line = chunk.decode("utf-8") # Convert bytes to string
|
||||||
text = ""
|
text = ""
|
||||||
is_finished = False
|
is_finished = False
|
||||||
|
@ -10024,6 +10026,7 @@ class CustomStreamWrapper:
|
||||||
or self.custom_llm_provider == "custom_openai"
|
or self.custom_llm_provider == "custom_openai"
|
||||||
or self.custom_llm_provider == "text-completion-openai"
|
or self.custom_llm_provider == "text-completion-openai"
|
||||||
or self.custom_llm_provider == "azure_text"
|
or self.custom_llm_provider == "azure_text"
|
||||||
|
or self.custom_llm_provider == "anthropic"
|
||||||
or self.custom_llm_provider == "huggingface"
|
or self.custom_llm_provider == "huggingface"
|
||||||
or self.custom_llm_provider == "ollama"
|
or self.custom_llm_provider == "ollama"
|
||||||
or self.custom_llm_provider == "ollama_chat"
|
or self.custom_llm_provider == "ollama_chat"
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue