forked from phoenix/litellm-mirror
Merge pull request #416 from BerriAI/ishaan/error-logging
Add Dashboard for showing error logs on exception
This commit is contained in:
commit
a669f5a738
4 changed files with 57 additions and 3 deletions
|
@ -38,6 +38,7 @@ cache: Optional[Cache] = None # cache object
|
||||||
model_alias_map: Dict[str, str] = {}
|
model_alias_map: Dict[str, str] = {}
|
||||||
max_budget: float = 0.0 # set the max budget across all providers
|
max_budget: float = 0.0 # set the max budget across all providers
|
||||||
_current_cost = 0 # private variable, used if max budget is set
|
_current_cost = 0 # private variable, used if max budget is set
|
||||||
|
error_logs: Dict = {}
|
||||||
#############################################
|
#############################################
|
||||||
|
|
||||||
def get_model_cost_map():
|
def get_model_cost_map():
|
||||||
|
|
|
@ -1069,7 +1069,7 @@ def completion(
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
## Map to OpenAI Exception
|
## Map to OpenAI Exception
|
||||||
raise exception_type(
|
raise exception_type(
|
||||||
model=model, custom_llm_provider=custom_llm_provider, original_exception=e
|
model=model, custom_llm_provider=custom_llm_provider, original_exception=e, completion_kwargs=args,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -175,12 +175,32 @@ def test_completion_with_litellm_call_id():
|
||||||
# )
|
# )
|
||||||
# # Add any assertions here to check the response
|
# # Add any assertions here to check the response
|
||||||
# print(response)
|
# print(response)
|
||||||
|
|
||||||
# except Exception as e:
|
# except Exception as e:
|
||||||
# pytest.fail(f"Error occurred: {e}")
|
# pytest.fail(f"Error occurred: {e}")
|
||||||
|
|
||||||
# hf_test_completion()
|
# hf_test_completion()
|
||||||
|
|
||||||
|
|
||||||
|
# this should throw an exception, to trigger https://logs.litellm.ai/
|
||||||
|
# def hf_test_error_logs():
|
||||||
|
# try:
|
||||||
|
# litellm.set_verbose=True
|
||||||
|
# user_message = "My name is Merve and my favorite"
|
||||||
|
# messages = [{ "content": user_message,"role": "user"}]
|
||||||
|
# response = completion(
|
||||||
|
# model="huggingface/roneneldan/TinyStories-3M",
|
||||||
|
# messages=messages,
|
||||||
|
# api_base="https://p69xlsj6rpno5drq.us-east-1.aws.endpoints.huggingface.cloud",
|
||||||
|
|
||||||
|
# )
|
||||||
|
# # Add any assertions here to check the response
|
||||||
|
# print(response)
|
||||||
|
|
||||||
|
# except Exception as e:
|
||||||
|
# pytest.fail(f"Error occurred: {e}")
|
||||||
|
|
||||||
|
# hf_test_error_logs()
|
||||||
|
|
||||||
def test_completion_cohere(): # commenting for now as the cohere endpoint is being flaky
|
def test_completion_cohere(): # commenting for now as the cohere endpoint is being flaky
|
||||||
try:
|
try:
|
||||||
response = completion(
|
response = completion(
|
||||||
|
|
|
@ -208,6 +208,7 @@ class Logging:
|
||||||
def pre_call(self, input, api_key, model=None, additional_args={}):
|
def pre_call(self, input, api_key, model=None, additional_args={}):
|
||||||
# Log the exact input to the LLM API
|
# Log the exact input to the LLM API
|
||||||
print_verbose(f"Logging Details Pre-API Call for call id {self.litellm_call_id}")
|
print_verbose(f"Logging Details Pre-API Call for call id {self.litellm_call_id}")
|
||||||
|
litellm.error_logs['PRE_CALL'] = locals()
|
||||||
try:
|
try:
|
||||||
# print_verbose(f"logging pre call for model: {self.model} with call type: {self.call_type}")
|
# print_verbose(f"logging pre call for model: {self.model} with call type: {self.call_type}")
|
||||||
self.model_call_details["input"] = input
|
self.model_call_details["input"] = input
|
||||||
|
@ -290,6 +291,7 @@ class Logging:
|
||||||
|
|
||||||
def post_call(self, original_response, input=None, api_key=None, additional_args={}):
|
def post_call(self, original_response, input=None, api_key=None, additional_args={}):
|
||||||
# Log the exact result from the LLM API, for streaming - log the type of response received
|
# Log the exact result from the LLM API, for streaming - log the type of response received
|
||||||
|
litellm.error_logs['POST_CALL'] = locals()
|
||||||
try:
|
try:
|
||||||
self.model_call_details["input"] = input
|
self.model_call_details["input"] = input
|
||||||
self.model_call_details["api_key"] = api_key
|
self.model_call_details["api_key"] = api_key
|
||||||
|
@ -1882,9 +1884,40 @@ def get_model_list():
|
||||||
)
|
)
|
||||||
|
|
||||||
####### EXCEPTION MAPPING ################
|
####### EXCEPTION MAPPING ################
|
||||||
def exception_type(model, original_exception, custom_llm_provider):
|
def exception_type(
|
||||||
|
model,
|
||||||
|
original_exception,
|
||||||
|
custom_llm_provider,
|
||||||
|
completion_kwargs={},
|
||||||
|
):
|
||||||
global user_logger_fn, liteDebuggerClient
|
global user_logger_fn, liteDebuggerClient
|
||||||
exception_mapping_worked = False
|
exception_mapping_worked = False
|
||||||
|
|
||||||
|
if litellm.set_verbose == True:
|
||||||
|
litellm.error_logs['EXCEPTION'] = original_exception
|
||||||
|
litellm.error_logs['KWARGS'] = completion_kwargs
|
||||||
|
try:
|
||||||
|
# code to show users their litellm error dashboard
|
||||||
|
import urllib.parse
|
||||||
|
import json
|
||||||
|
for log_key in litellm.error_logs:
|
||||||
|
current_logs = litellm.error_logs[log_key]
|
||||||
|
if type(current_logs) == dict:
|
||||||
|
filtered_error_logs = {key: str(value) for key, value in current_logs.items()}
|
||||||
|
litellm.error_logs[log_key] = filtered_error_logs
|
||||||
|
else:
|
||||||
|
litellm.error_logs[log_key] = str(current_logs)
|
||||||
|
|
||||||
|
# Convert the filtered_error_logs dictionary to a JSON string
|
||||||
|
error_logs_json = json.dumps(litellm.error_logs)
|
||||||
|
# URL-encode the JSON data
|
||||||
|
encoded_data = urllib.parse.quote(error_logs_json)
|
||||||
|
|
||||||
|
print("👉 view error logs:")
|
||||||
|
print("\033[91m" + '\033[4m' + 'https://logs.litellm.ai/?data=' + str(encoded_data) + "\033[0m")
|
||||||
|
|
||||||
|
except:
|
||||||
|
pass
|
||||||
try:
|
try:
|
||||||
if isinstance(original_exception, OriginalError):
|
if isinstance(original_exception, OriginalError):
|
||||||
# Handle the OpenAIError
|
# Handle the OpenAIError
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue