forked from phoenix/litellm-mirror
Merge pull request #3552 from BerriAI/litellm_predibase_support
feat(predibase.py): add support for predibase provider
This commit is contained in:
commit
a671046b45
9 changed files with 7661 additions and 73 deletions
|
@ -16,11 +16,11 @@ repos:
|
||||||
name: Check if files match
|
name: Check if files match
|
||||||
entry: python3 ci_cd/check_files_match.py
|
entry: python3 ci_cd/check_files_match.py
|
||||||
language: system
|
language: system
|
||||||
# - repo: local
|
- repo: local
|
||||||
# hooks:
|
hooks:
|
||||||
# - id: mypy
|
- id: mypy
|
||||||
# name: mypy
|
name: mypy
|
||||||
# entry: python3 -m mypy --ignore-missing-imports
|
entry: python3 -m mypy --ignore-missing-imports
|
||||||
# language: system
|
language: system
|
||||||
# types: [python]
|
types: [python]
|
||||||
# files: ^litellm/
|
files: ^litellm/
|
|
@ -74,9 +74,11 @@ maritalk_key: Optional[str] = None
|
||||||
ai21_key: Optional[str] = None
|
ai21_key: Optional[str] = None
|
||||||
ollama_key: Optional[str] = None
|
ollama_key: Optional[str] = None
|
||||||
openrouter_key: Optional[str] = None
|
openrouter_key: Optional[str] = None
|
||||||
|
predibase_key: Optional[str] = None
|
||||||
huggingface_key: Optional[str] = None
|
huggingface_key: Optional[str] = None
|
||||||
vertex_project: Optional[str] = None
|
vertex_project: Optional[str] = None
|
||||||
vertex_location: Optional[str] = None
|
vertex_location: Optional[str] = None
|
||||||
|
predibase_tenant_id: Optional[str] = None
|
||||||
togetherai_api_key: Optional[str] = None
|
togetherai_api_key: Optional[str] = None
|
||||||
cloudflare_api_key: Optional[str] = None
|
cloudflare_api_key: Optional[str] = None
|
||||||
baseten_key: Optional[str] = None
|
baseten_key: Optional[str] = None
|
||||||
|
@ -535,6 +537,7 @@ provider_list: List = [
|
||||||
"xinference",
|
"xinference",
|
||||||
"fireworks_ai",
|
"fireworks_ai",
|
||||||
"watsonx",
|
"watsonx",
|
||||||
|
"predibase",
|
||||||
"custom", # custom apis
|
"custom", # custom apis
|
||||||
]
|
]
|
||||||
|
|
||||||
|
@ -647,6 +650,7 @@ from .utils import (
|
||||||
)
|
)
|
||||||
from .llms.huggingface_restapi import HuggingfaceConfig
|
from .llms.huggingface_restapi import HuggingfaceConfig
|
||||||
from .llms.anthropic import AnthropicConfig
|
from .llms.anthropic import AnthropicConfig
|
||||||
|
from .llms.predibase import PredibaseConfig
|
||||||
from .llms.anthropic_text import AnthropicTextConfig
|
from .llms.anthropic_text import AnthropicTextConfig
|
||||||
from .llms.replicate import ReplicateConfig
|
from .llms.replicate import ReplicateConfig
|
||||||
from .llms.cohere import CohereConfig
|
from .llms.cohere import CohereConfig
|
||||||
|
|
|
@ -322,9 +322,9 @@ class Huggingface(BaseLLM):
|
||||||
encoding,
|
encoding,
|
||||||
api_key,
|
api_key,
|
||||||
logging_obj,
|
logging_obj,
|
||||||
|
optional_params: dict,
|
||||||
custom_prompt_dict={},
|
custom_prompt_dict={},
|
||||||
acompletion: bool = False,
|
acompletion: bool = False,
|
||||||
optional_params=None,
|
|
||||||
litellm_params=None,
|
litellm_params=None,
|
||||||
logger_fn=None,
|
logger_fn=None,
|
||||||
):
|
):
|
||||||
|
@ -399,10 +399,11 @@ class Huggingface(BaseLLM):
|
||||||
data = {
|
data = {
|
||||||
"inputs": prompt,
|
"inputs": prompt,
|
||||||
"parameters": optional_params,
|
"parameters": optional_params,
|
||||||
"stream": (
|
"stream": ( # type: ignore
|
||||||
True
|
True
|
||||||
if "stream" in optional_params
|
if "stream" in optional_params
|
||||||
and optional_params["stream"] == True
|
and isinstance(optional_params["stream"], bool)
|
||||||
|
and optional_params["stream"] == True # type: ignore
|
||||||
else False
|
else False
|
||||||
),
|
),
|
||||||
}
|
}
|
||||||
|
@ -433,7 +434,7 @@ class Huggingface(BaseLLM):
|
||||||
data = {
|
data = {
|
||||||
"inputs": prompt,
|
"inputs": prompt,
|
||||||
"parameters": inference_params,
|
"parameters": inference_params,
|
||||||
"stream": (
|
"stream": ( # type: ignore
|
||||||
True
|
True
|
||||||
if "stream" in optional_params
|
if "stream" in optional_params
|
||||||
and optional_params["stream"] == True
|
and optional_params["stream"] == True
|
||||||
|
|
520
litellm/llms/predibase.py
Normal file
520
litellm/llms/predibase.py
Normal file
|
@ -0,0 +1,520 @@
|
||||||
|
# What is this?
|
||||||
|
## Controller file for Predibase Integration - https://predibase.com/
|
||||||
|
|
||||||
|
|
||||||
|
import os, types
|
||||||
|
import json
|
||||||
|
from enum import Enum
|
||||||
|
import requests, copy # type: ignore
|
||||||
|
import time
|
||||||
|
from typing import Callable, Optional, List, Literal, Union
|
||||||
|
from litellm.utils import (
|
||||||
|
ModelResponse,
|
||||||
|
Usage,
|
||||||
|
map_finish_reason,
|
||||||
|
CustomStreamWrapper,
|
||||||
|
Message,
|
||||||
|
Choices,
|
||||||
|
)
|
||||||
|
import litellm
|
||||||
|
from .prompt_templates.factory import prompt_factory, custom_prompt
|
||||||
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
|
||||||
|
from .base import BaseLLM
|
||||||
|
import httpx # type: ignore
|
||||||
|
|
||||||
|
|
||||||
|
class PredibaseError(Exception):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
status_code,
|
||||||
|
message,
|
||||||
|
request: Optional[httpx.Request] = None,
|
||||||
|
response: Optional[httpx.Response] = None,
|
||||||
|
):
|
||||||
|
self.status_code = status_code
|
||||||
|
self.message = message
|
||||||
|
if request is not None:
|
||||||
|
self.request = request
|
||||||
|
else:
|
||||||
|
self.request = httpx.Request(
|
||||||
|
method="POST",
|
||||||
|
url="https://docs.predibase.com/user-guide/inference/rest_api",
|
||||||
|
)
|
||||||
|
if response is not None:
|
||||||
|
self.response = response
|
||||||
|
else:
|
||||||
|
self.response = httpx.Response(
|
||||||
|
status_code=status_code, request=self.request
|
||||||
|
)
|
||||||
|
super().__init__(
|
||||||
|
self.message
|
||||||
|
) # Call the base class constructor with the parameters it needs
|
||||||
|
|
||||||
|
|
||||||
|
class PredibaseConfig:
|
||||||
|
"""
|
||||||
|
Reference: https://docs.predibase.com/user-guide/inference/rest_api
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
adapter_id: Optional[str] = None
|
||||||
|
adapter_source: Optional[Literal["pbase", "hub", "s3"]] = None
|
||||||
|
best_of: Optional[int] = None
|
||||||
|
decoder_input_details: Optional[bool] = None
|
||||||
|
details: bool = True # enables returning logprobs + best of
|
||||||
|
max_new_tokens: int = (
|
||||||
|
256 # openai default - requests hang if max_new_tokens not given
|
||||||
|
)
|
||||||
|
repetition_penalty: Optional[float] = None
|
||||||
|
return_full_text: Optional[bool] = (
|
||||||
|
False # by default don't return the input as part of the output
|
||||||
|
)
|
||||||
|
seed: Optional[int] = None
|
||||||
|
stop: Optional[List[str]] = None
|
||||||
|
temperature: Optional[float] = None
|
||||||
|
top_k: Optional[int] = None
|
||||||
|
top_p: Optional[int] = None
|
||||||
|
truncate: Optional[int] = None
|
||||||
|
typical_p: Optional[float] = None
|
||||||
|
watermark: Optional[bool] = None
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
best_of: Optional[int] = None,
|
||||||
|
decoder_input_details: Optional[bool] = None,
|
||||||
|
details: Optional[bool] = None,
|
||||||
|
max_new_tokens: Optional[int] = None,
|
||||||
|
repetition_penalty: Optional[float] = None,
|
||||||
|
return_full_text: Optional[bool] = None,
|
||||||
|
seed: Optional[int] = None,
|
||||||
|
stop: Optional[List[str]] = None,
|
||||||
|
temperature: Optional[float] = None,
|
||||||
|
top_k: Optional[int] = None,
|
||||||
|
top_p: Optional[int] = None,
|
||||||
|
truncate: Optional[int] = None,
|
||||||
|
typical_p: Optional[float] = None,
|
||||||
|
watermark: Optional[bool] = None,
|
||||||
|
) -> None:
|
||||||
|
locals_ = locals()
|
||||||
|
for key, value in locals_.items():
|
||||||
|
if key != "self" and value is not None:
|
||||||
|
setattr(self.__class__, key, value)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def get_config(cls):
|
||||||
|
return {
|
||||||
|
k: v
|
||||||
|
for k, v in cls.__dict__.items()
|
||||||
|
if not k.startswith("__")
|
||||||
|
and not isinstance(
|
||||||
|
v,
|
||||||
|
(
|
||||||
|
types.FunctionType,
|
||||||
|
types.BuiltinFunctionType,
|
||||||
|
classmethod,
|
||||||
|
staticmethod,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
and v is not None
|
||||||
|
}
|
||||||
|
|
||||||
|
def get_supported_openai_params(self):
|
||||||
|
return ["stream", "temperature", "max_tokens", "top_p", "stop", "n"]
|
||||||
|
|
||||||
|
|
||||||
|
class PredibaseChatCompletion(BaseLLM):
|
||||||
|
def __init__(self) -> None:
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
def _validate_environment(self, api_key: Optional[str], user_headers: dict) -> dict:
|
||||||
|
if api_key is None:
|
||||||
|
raise ValueError(
|
||||||
|
"Missing Predibase API Key - A call is being made to predibase but no key is set either in the environment variables or via params"
|
||||||
|
)
|
||||||
|
headers = {
|
||||||
|
"content-type": "application/json",
|
||||||
|
"Authorization": "Bearer {}".format(api_key),
|
||||||
|
}
|
||||||
|
if user_headers is not None and isinstance(user_headers, dict):
|
||||||
|
headers = {**headers, **user_headers}
|
||||||
|
return headers
|
||||||
|
|
||||||
|
def output_parser(self, generated_text: str):
|
||||||
|
"""
|
||||||
|
Parse the output text to remove any special characters. In our current approach we just check for ChatML tokens.
|
||||||
|
|
||||||
|
Initial issue that prompted this - https://github.com/BerriAI/litellm/issues/763
|
||||||
|
"""
|
||||||
|
chat_template_tokens = [
|
||||||
|
"<|assistant|>",
|
||||||
|
"<|system|>",
|
||||||
|
"<|user|>",
|
||||||
|
"<s>",
|
||||||
|
"</s>",
|
||||||
|
]
|
||||||
|
for token in chat_template_tokens:
|
||||||
|
if generated_text.strip().startswith(token):
|
||||||
|
generated_text = generated_text.replace(token, "", 1)
|
||||||
|
if generated_text.endswith(token):
|
||||||
|
generated_text = generated_text[::-1].replace(token[::-1], "", 1)[::-1]
|
||||||
|
return generated_text
|
||||||
|
|
||||||
|
def process_response(
|
||||||
|
self,
|
||||||
|
model: str,
|
||||||
|
response: Union[requests.Response, httpx.Response],
|
||||||
|
model_response: ModelResponse,
|
||||||
|
stream: bool,
|
||||||
|
logging_obj: litellm.utils.Logging,
|
||||||
|
optional_params: dict,
|
||||||
|
api_key: str,
|
||||||
|
data: dict,
|
||||||
|
messages: list,
|
||||||
|
print_verbose,
|
||||||
|
encoding,
|
||||||
|
) -> ModelResponse:
|
||||||
|
## LOGGING
|
||||||
|
logging_obj.post_call(
|
||||||
|
input=messages,
|
||||||
|
api_key=api_key,
|
||||||
|
original_response=response.text,
|
||||||
|
additional_args={"complete_input_dict": data},
|
||||||
|
)
|
||||||
|
print_verbose(f"raw model_response: {response.text}")
|
||||||
|
## RESPONSE OBJECT
|
||||||
|
try:
|
||||||
|
completion_response = response.json()
|
||||||
|
except:
|
||||||
|
raise PredibaseError(
|
||||||
|
message=response.text, status_code=response.status_code
|
||||||
|
)
|
||||||
|
if "error" in completion_response:
|
||||||
|
raise PredibaseError(
|
||||||
|
message=str(completion_response["error"]),
|
||||||
|
status_code=response.status_code,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
if (
|
||||||
|
not isinstance(completion_response, dict)
|
||||||
|
or "generated_text" not in completion_response
|
||||||
|
):
|
||||||
|
raise PredibaseError(
|
||||||
|
status_code=422,
|
||||||
|
message=f"response is not in expected format - {completion_response}",
|
||||||
|
)
|
||||||
|
|
||||||
|
if len(completion_response["generated_text"]) > 0:
|
||||||
|
model_response["choices"][0]["message"]["content"] = self.output_parser(
|
||||||
|
completion_response["generated_text"]
|
||||||
|
)
|
||||||
|
## GETTING LOGPROBS + FINISH REASON
|
||||||
|
if (
|
||||||
|
"details" in completion_response
|
||||||
|
and "tokens" in completion_response["details"]
|
||||||
|
):
|
||||||
|
model_response.choices[0].finish_reason = completion_response[
|
||||||
|
"details"
|
||||||
|
]["finish_reason"]
|
||||||
|
sum_logprob = 0
|
||||||
|
for token in completion_response["details"]["tokens"]:
|
||||||
|
if token["logprob"] != None:
|
||||||
|
sum_logprob += token["logprob"]
|
||||||
|
model_response["choices"][0][
|
||||||
|
"message"
|
||||||
|
]._logprob = (
|
||||||
|
sum_logprob # [TODO] move this to using the actual logprobs
|
||||||
|
)
|
||||||
|
if "best_of" in optional_params and optional_params["best_of"] > 1:
|
||||||
|
if (
|
||||||
|
"details" in completion_response
|
||||||
|
and "best_of_sequences" in completion_response["details"]
|
||||||
|
):
|
||||||
|
choices_list = []
|
||||||
|
for idx, item in enumerate(
|
||||||
|
completion_response["details"]["best_of_sequences"]
|
||||||
|
):
|
||||||
|
sum_logprob = 0
|
||||||
|
for token in item["tokens"]:
|
||||||
|
if token["logprob"] != None:
|
||||||
|
sum_logprob += token["logprob"]
|
||||||
|
if len(item["generated_text"]) > 0:
|
||||||
|
message_obj = Message(
|
||||||
|
content=self.output_parser(item["generated_text"]),
|
||||||
|
logprobs=sum_logprob,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
message_obj = Message(content=None)
|
||||||
|
choice_obj = Choices(
|
||||||
|
finish_reason=item["finish_reason"],
|
||||||
|
index=idx + 1,
|
||||||
|
message=message_obj,
|
||||||
|
)
|
||||||
|
choices_list.append(choice_obj)
|
||||||
|
model_response["choices"].extend(choices_list)
|
||||||
|
|
||||||
|
## CALCULATING USAGE
|
||||||
|
prompt_tokens = 0
|
||||||
|
try:
|
||||||
|
prompt_tokens = len(
|
||||||
|
encoding.encode(model_response["choices"][0]["message"]["content"])
|
||||||
|
) ##[TODO] use a model-specific tokenizer here
|
||||||
|
except:
|
||||||
|
# this should remain non blocking we should not block a response returning if calculating usage fails
|
||||||
|
pass
|
||||||
|
output_text = model_response["choices"][0]["message"].get("content", "")
|
||||||
|
if output_text is not None and len(output_text) > 0:
|
||||||
|
completion_tokens = 0
|
||||||
|
try:
|
||||||
|
completion_tokens = len(
|
||||||
|
encoding.encode(
|
||||||
|
model_response["choices"][0]["message"].get("content", "")
|
||||||
|
)
|
||||||
|
) ##[TODO] use a model-specific tokenizer
|
||||||
|
except:
|
||||||
|
# this should remain non blocking we should not block a response returning if calculating usage fails
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
completion_tokens = 0
|
||||||
|
|
||||||
|
total_tokens = prompt_tokens + completion_tokens
|
||||||
|
|
||||||
|
model_response["created"] = int(time.time())
|
||||||
|
model_response["model"] = model
|
||||||
|
usage = Usage(
|
||||||
|
prompt_tokens=prompt_tokens,
|
||||||
|
completion_tokens=completion_tokens,
|
||||||
|
total_tokens=total_tokens,
|
||||||
|
)
|
||||||
|
model_response.usage = usage # type: ignore
|
||||||
|
return model_response
|
||||||
|
|
||||||
|
def completion(
|
||||||
|
self,
|
||||||
|
model: str,
|
||||||
|
messages: list,
|
||||||
|
api_base: str,
|
||||||
|
custom_prompt_dict: dict,
|
||||||
|
model_response: ModelResponse,
|
||||||
|
print_verbose: Callable,
|
||||||
|
encoding,
|
||||||
|
api_key: str,
|
||||||
|
logging_obj,
|
||||||
|
optional_params: dict,
|
||||||
|
tenant_id: str,
|
||||||
|
acompletion=None,
|
||||||
|
litellm_params=None,
|
||||||
|
logger_fn=None,
|
||||||
|
headers: dict = {},
|
||||||
|
) -> Union[ModelResponse, CustomStreamWrapper]:
|
||||||
|
headers = self._validate_environment(api_key, headers)
|
||||||
|
completion_url = ""
|
||||||
|
input_text = ""
|
||||||
|
base_url = "https://serving.app.predibase.com"
|
||||||
|
if "https" in model:
|
||||||
|
completion_url = model
|
||||||
|
elif api_base:
|
||||||
|
base_url = api_base
|
||||||
|
elif "PREDIBASE_API_BASE" in os.environ:
|
||||||
|
base_url = os.getenv("PREDIBASE_API_BASE", "")
|
||||||
|
|
||||||
|
completion_url = f"{base_url}/{tenant_id}/deployments/v2/llms/{model}"
|
||||||
|
|
||||||
|
if optional_params.get("stream", False) == True:
|
||||||
|
completion_url += "/generate_stream"
|
||||||
|
else:
|
||||||
|
completion_url += "/generate"
|
||||||
|
|
||||||
|
if model in custom_prompt_dict:
|
||||||
|
# check if the model has a registered custom prompt
|
||||||
|
model_prompt_details = custom_prompt_dict[model]
|
||||||
|
prompt = custom_prompt(
|
||||||
|
role_dict=model_prompt_details["roles"],
|
||||||
|
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
||||||
|
final_prompt_value=model_prompt_details["final_prompt_value"],
|
||||||
|
messages=messages,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
prompt = prompt_factory(model=model, messages=messages)
|
||||||
|
|
||||||
|
## Load Config
|
||||||
|
config = litellm.PredibaseConfig.get_config()
|
||||||
|
for k, v in config.items():
|
||||||
|
if (
|
||||||
|
k not in optional_params
|
||||||
|
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||||
|
optional_params[k] = v
|
||||||
|
|
||||||
|
stream = optional_params.pop("stream", False)
|
||||||
|
|
||||||
|
data = {
|
||||||
|
"inputs": prompt,
|
||||||
|
"parameters": optional_params,
|
||||||
|
}
|
||||||
|
input_text = prompt
|
||||||
|
## LOGGING
|
||||||
|
logging_obj.pre_call(
|
||||||
|
input=input_text,
|
||||||
|
api_key=api_key,
|
||||||
|
additional_args={
|
||||||
|
"complete_input_dict": data,
|
||||||
|
"headers": headers,
|
||||||
|
"api_base": completion_url,
|
||||||
|
"acompletion": acompletion,
|
||||||
|
},
|
||||||
|
)
|
||||||
|
## COMPLETION CALL
|
||||||
|
if acompletion is True:
|
||||||
|
### ASYNC STREAMING
|
||||||
|
if stream == True:
|
||||||
|
return self.async_streaming(
|
||||||
|
model=model,
|
||||||
|
messages=messages,
|
||||||
|
data=data,
|
||||||
|
api_base=completion_url,
|
||||||
|
model_response=model_response,
|
||||||
|
print_verbose=print_verbose,
|
||||||
|
encoding=encoding,
|
||||||
|
api_key=api_key,
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
optional_params=optional_params,
|
||||||
|
litellm_params=litellm_params,
|
||||||
|
logger_fn=logger_fn,
|
||||||
|
headers=headers,
|
||||||
|
) # type: ignore
|
||||||
|
else:
|
||||||
|
### ASYNC COMPLETION
|
||||||
|
return self.async_completion(
|
||||||
|
model=model,
|
||||||
|
messages=messages,
|
||||||
|
data=data,
|
||||||
|
api_base=completion_url,
|
||||||
|
model_response=model_response,
|
||||||
|
print_verbose=print_verbose,
|
||||||
|
encoding=encoding,
|
||||||
|
api_key=api_key,
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
optional_params=optional_params,
|
||||||
|
stream=False,
|
||||||
|
litellm_params=litellm_params,
|
||||||
|
logger_fn=logger_fn,
|
||||||
|
headers=headers,
|
||||||
|
) # type: ignore
|
||||||
|
|
||||||
|
### SYNC STREAMING
|
||||||
|
if stream == True:
|
||||||
|
response = requests.post(
|
||||||
|
completion_url,
|
||||||
|
headers=headers,
|
||||||
|
data=json.dumps(data),
|
||||||
|
stream=stream,
|
||||||
|
)
|
||||||
|
_response = CustomStreamWrapper(
|
||||||
|
response.iter_lines(),
|
||||||
|
model,
|
||||||
|
custom_llm_provider="predibase",
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
)
|
||||||
|
return _response
|
||||||
|
### SYNC COMPLETION
|
||||||
|
else:
|
||||||
|
response = requests.post(
|
||||||
|
url=completion_url,
|
||||||
|
headers=headers,
|
||||||
|
data=json.dumps(data),
|
||||||
|
)
|
||||||
|
|
||||||
|
return self.process_response(
|
||||||
|
model=model,
|
||||||
|
response=response,
|
||||||
|
model_response=model_response,
|
||||||
|
stream=optional_params.get("stream", False),
|
||||||
|
logging_obj=logging_obj, # type: ignore
|
||||||
|
optional_params=optional_params,
|
||||||
|
api_key=api_key,
|
||||||
|
data=data,
|
||||||
|
messages=messages,
|
||||||
|
print_verbose=print_verbose,
|
||||||
|
encoding=encoding,
|
||||||
|
)
|
||||||
|
|
||||||
|
async def async_completion(
|
||||||
|
self,
|
||||||
|
model: str,
|
||||||
|
messages: list,
|
||||||
|
api_base: str,
|
||||||
|
model_response: ModelResponse,
|
||||||
|
print_verbose: Callable,
|
||||||
|
encoding,
|
||||||
|
api_key,
|
||||||
|
logging_obj,
|
||||||
|
stream,
|
||||||
|
data: dict,
|
||||||
|
optional_params: dict,
|
||||||
|
litellm_params=None,
|
||||||
|
logger_fn=None,
|
||||||
|
headers={},
|
||||||
|
) -> ModelResponse:
|
||||||
|
self.async_handler = AsyncHTTPHandler(
|
||||||
|
timeout=httpx.Timeout(timeout=600.0, connect=5.0)
|
||||||
|
)
|
||||||
|
response = await self.async_handler.post(
|
||||||
|
api_base, headers=headers, data=json.dumps(data)
|
||||||
|
)
|
||||||
|
return self.process_response(
|
||||||
|
model=model,
|
||||||
|
response=response,
|
||||||
|
model_response=model_response,
|
||||||
|
stream=stream,
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
api_key=api_key,
|
||||||
|
data=data,
|
||||||
|
messages=messages,
|
||||||
|
print_verbose=print_verbose,
|
||||||
|
optional_params=optional_params,
|
||||||
|
encoding=encoding,
|
||||||
|
)
|
||||||
|
|
||||||
|
async def async_streaming(
|
||||||
|
self,
|
||||||
|
model: str,
|
||||||
|
messages: list,
|
||||||
|
api_base: str,
|
||||||
|
model_response: ModelResponse,
|
||||||
|
print_verbose: Callable,
|
||||||
|
encoding,
|
||||||
|
api_key,
|
||||||
|
logging_obj,
|
||||||
|
data: dict,
|
||||||
|
optional_params=None,
|
||||||
|
litellm_params=None,
|
||||||
|
logger_fn=None,
|
||||||
|
headers={},
|
||||||
|
) -> CustomStreamWrapper:
|
||||||
|
self.async_handler = AsyncHTTPHandler(
|
||||||
|
timeout=httpx.Timeout(timeout=600.0, connect=5.0)
|
||||||
|
)
|
||||||
|
data["stream"] = True
|
||||||
|
response = await self.async_handler.post(
|
||||||
|
url=api_base,
|
||||||
|
headers=headers,
|
||||||
|
data=json.dumps(data),
|
||||||
|
stream=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
if response.status_code != 200:
|
||||||
|
raise PredibaseError(
|
||||||
|
status_code=response.status_code, message=response.text
|
||||||
|
)
|
||||||
|
|
||||||
|
completion_stream = response.aiter_lines()
|
||||||
|
|
||||||
|
streamwrapper = CustomStreamWrapper(
|
||||||
|
completion_stream=completion_stream,
|
||||||
|
model=model,
|
||||||
|
custom_llm_provider="predibase",
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
)
|
||||||
|
return streamwrapper
|
||||||
|
|
||||||
|
def embedding(self, *args, **kwargs):
|
||||||
|
pass
|
|
@ -74,6 +74,7 @@ from .llms.azure_text import AzureTextCompletion
|
||||||
from .llms.anthropic import AnthropicChatCompletion
|
from .llms.anthropic import AnthropicChatCompletion
|
||||||
from .llms.anthropic_text import AnthropicTextCompletion
|
from .llms.anthropic_text import AnthropicTextCompletion
|
||||||
from .llms.huggingface_restapi import Huggingface
|
from .llms.huggingface_restapi import Huggingface
|
||||||
|
from .llms.predibase import PredibaseChatCompletion
|
||||||
from .llms.prompt_templates.factory import (
|
from .llms.prompt_templates.factory import (
|
||||||
prompt_factory,
|
prompt_factory,
|
||||||
custom_prompt,
|
custom_prompt,
|
||||||
|
@ -110,6 +111,7 @@ anthropic_text_completions = AnthropicTextCompletion()
|
||||||
azure_chat_completions = AzureChatCompletion()
|
azure_chat_completions = AzureChatCompletion()
|
||||||
azure_text_completions = AzureTextCompletion()
|
azure_text_completions = AzureTextCompletion()
|
||||||
huggingface = Huggingface()
|
huggingface = Huggingface()
|
||||||
|
predibase_chat_completions = PredibaseChatCompletion()
|
||||||
####### COMPLETION ENDPOINTS ################
|
####### COMPLETION ENDPOINTS ################
|
||||||
|
|
||||||
|
|
||||||
|
@ -318,6 +320,7 @@ async def acompletion(
|
||||||
or custom_llm_provider == "gemini"
|
or custom_llm_provider == "gemini"
|
||||||
or custom_llm_provider == "sagemaker"
|
or custom_llm_provider == "sagemaker"
|
||||||
or custom_llm_provider == "anthropic"
|
or custom_llm_provider == "anthropic"
|
||||||
|
or custom_llm_provider == "predibase"
|
||||||
or custom_llm_provider in litellm.openai_compatible_providers
|
or custom_llm_provider in litellm.openai_compatible_providers
|
||||||
): # currently implemented aiohttp calls for just azure, openai, hf, ollama, vertex ai soon all.
|
): # currently implemented aiohttp calls for just azure, openai, hf, ollama, vertex ai soon all.
|
||||||
init_response = await loop.run_in_executor(None, func_with_context)
|
init_response = await loop.run_in_executor(None, func_with_context)
|
||||||
|
@ -1785,6 +1788,52 @@ def completion(
|
||||||
)
|
)
|
||||||
return response
|
return response
|
||||||
response = model_response
|
response = model_response
|
||||||
|
elif custom_llm_provider == "predibase":
|
||||||
|
tenant_id = (
|
||||||
|
optional_params.pop("tenant_id", None)
|
||||||
|
or optional_params.pop("predibase_tenant_id", None)
|
||||||
|
or litellm.predibase_tenant_id
|
||||||
|
or get_secret("PREDIBASE_TENANT_ID")
|
||||||
|
)
|
||||||
|
|
||||||
|
api_base = (
|
||||||
|
optional_params.pop("api_base", None)
|
||||||
|
or optional_params.pop("base_url", None)
|
||||||
|
or litellm.api_base
|
||||||
|
or get_secret("PREDIBASE_API_BASE")
|
||||||
|
)
|
||||||
|
|
||||||
|
api_key = (
|
||||||
|
api_key
|
||||||
|
or litellm.api_key
|
||||||
|
or litellm.predibase_key
|
||||||
|
or get_secret("PREDIBASE_API_KEY")
|
||||||
|
)
|
||||||
|
|
||||||
|
_model_response = predibase_chat_completions.completion(
|
||||||
|
model=model,
|
||||||
|
messages=messages,
|
||||||
|
model_response=model_response,
|
||||||
|
print_verbose=print_verbose,
|
||||||
|
optional_params=optional_params,
|
||||||
|
litellm_params=litellm_params,
|
||||||
|
logger_fn=logger_fn,
|
||||||
|
encoding=encoding,
|
||||||
|
logging_obj=logging,
|
||||||
|
acompletion=acompletion,
|
||||||
|
api_base=api_base,
|
||||||
|
custom_prompt_dict=custom_prompt_dict,
|
||||||
|
api_key=api_key,
|
||||||
|
tenant_id=tenant_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
if (
|
||||||
|
"stream" in optional_params
|
||||||
|
and optional_params["stream"] == True
|
||||||
|
and acompletion == False
|
||||||
|
):
|
||||||
|
return _model_response
|
||||||
|
response = _model_response
|
||||||
elif custom_llm_provider == "ai21":
|
elif custom_llm_provider == "ai21":
|
||||||
custom_llm_provider = "ai21"
|
custom_llm_provider = "ai21"
|
||||||
ai21_key = (
|
ai21_key = (
|
||||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -85,6 +85,42 @@ def test_completion_azure_command_r():
|
||||||
pytest.fail(f"Error occurred: {e}")
|
pytest.fail(f"Error occurred: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
# @pytest.mark.skip(reason="local test")
|
||||||
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_completion_predibase(sync_mode):
|
||||||
|
try:
|
||||||
|
litellm.set_verbose = True
|
||||||
|
|
||||||
|
if sync_mode:
|
||||||
|
response = completion(
|
||||||
|
model="predibase/llama-3-8b-instruct",
|
||||||
|
tenant_id="c4768f95",
|
||||||
|
api_base="https://serving.app.predibase.com",
|
||||||
|
api_key=os.getenv("PREDIBASE_API_KEY"),
|
||||||
|
messages=[{"role": "user", "content": "What is the meaning of life?"}],
|
||||||
|
)
|
||||||
|
|
||||||
|
print(response)
|
||||||
|
else:
|
||||||
|
response = await litellm.acompletion(
|
||||||
|
model="predibase/llama-3-8b-instruct",
|
||||||
|
tenant_id="c4768f95",
|
||||||
|
api_base="https://serving.app.predibase.com",
|
||||||
|
api_key=os.getenv("PREDIBASE_API_KEY"),
|
||||||
|
messages=[{"role": "user", "content": "What is the meaning of life?"}],
|
||||||
|
)
|
||||||
|
|
||||||
|
print(response)
|
||||||
|
except litellm.Timeout as e:
|
||||||
|
pass
|
||||||
|
except Exception as e:
|
||||||
|
pytest.fail(f"Error occurred: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
# test_completion_predibase()
|
||||||
|
|
||||||
|
|
||||||
def test_completion_claude():
|
def test_completion_claude():
|
||||||
litellm.set_verbose = True
|
litellm.set_verbose = True
|
||||||
litellm.cache = None
|
litellm.cache = None
|
||||||
|
|
|
@ -5,6 +5,7 @@ import sys, os, asyncio
|
||||||
import traceback
|
import traceback
|
||||||
import time, pytest
|
import time, pytest
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
sys.path.insert(
|
sys.path.insert(
|
||||||
0, os.path.abspath("../..")
|
0, os.path.abspath("../..")
|
||||||
|
@ -142,7 +143,7 @@ def validate_last_format(chunk):
|
||||||
), "'finish_reason' should be a string."
|
), "'finish_reason' should be a string."
|
||||||
|
|
||||||
|
|
||||||
def streaming_format_tests(idx, chunk):
|
def streaming_format_tests(idx, chunk) -> Tuple[str, bool]:
|
||||||
extracted_chunk = ""
|
extracted_chunk = ""
|
||||||
finished = False
|
finished = False
|
||||||
print(f"chunk: {chunk}")
|
print(f"chunk: {chunk}")
|
||||||
|
@ -306,6 +307,70 @@ def test_completion_azure_stream():
|
||||||
|
|
||||||
|
|
||||||
# test_completion_azure_stream()
|
# test_completion_azure_stream()
|
||||||
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_completion_predibase_streaming(sync_mode):
|
||||||
|
try:
|
||||||
|
litellm.set_verbose = True
|
||||||
|
|
||||||
|
if sync_mode:
|
||||||
|
response = completion(
|
||||||
|
model="predibase/llama-3-8b-instruct",
|
||||||
|
tenant_id="c4768f95",
|
||||||
|
api_base="https://serving.app.predibase.com",
|
||||||
|
api_key=os.getenv("PREDIBASE_API_KEY"),
|
||||||
|
messages=[{"role": "user", "content": "What is the meaning of life?"}],
|
||||||
|
stream=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
complete_response = ""
|
||||||
|
for idx, init_chunk in enumerate(response):
|
||||||
|
chunk, finished = streaming_format_tests(idx, init_chunk)
|
||||||
|
complete_response += chunk
|
||||||
|
custom_llm_provider = init_chunk._hidden_params["custom_llm_provider"]
|
||||||
|
print(f"custom_llm_provider: {custom_llm_provider}")
|
||||||
|
assert custom_llm_provider == "predibase"
|
||||||
|
if finished:
|
||||||
|
assert isinstance(
|
||||||
|
init_chunk.choices[0], litellm.utils.StreamingChoices
|
||||||
|
)
|
||||||
|
break
|
||||||
|
if complete_response.strip() == "":
|
||||||
|
raise Exception("Empty response received")
|
||||||
|
else:
|
||||||
|
response = await litellm.acompletion(
|
||||||
|
model="predibase/llama-3-8b-instruct",
|
||||||
|
tenant_id="c4768f95",
|
||||||
|
api_base="https://serving.app.predibase.com",
|
||||||
|
api_key=os.getenv("PREDIBASE_API_KEY"),
|
||||||
|
messages=[{"role": "user", "content": "What is the meaning of life?"}],
|
||||||
|
stream=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# await response
|
||||||
|
|
||||||
|
complete_response = ""
|
||||||
|
idx = 0
|
||||||
|
async for init_chunk in response:
|
||||||
|
chunk, finished = streaming_format_tests(idx, init_chunk)
|
||||||
|
complete_response += chunk
|
||||||
|
custom_llm_provider = init_chunk._hidden_params["custom_llm_provider"]
|
||||||
|
print(f"custom_llm_provider: {custom_llm_provider}")
|
||||||
|
assert custom_llm_provider == "predibase"
|
||||||
|
idx += 1
|
||||||
|
if finished:
|
||||||
|
assert isinstance(
|
||||||
|
init_chunk.choices[0], litellm.utils.StreamingChoices
|
||||||
|
)
|
||||||
|
break
|
||||||
|
if complete_response.strip() == "":
|
||||||
|
raise Exception("Empty response received")
|
||||||
|
|
||||||
|
print(f"complete_response: {complete_response}")
|
||||||
|
except litellm.Timeout as e:
|
||||||
|
pass
|
||||||
|
except Exception as e:
|
||||||
|
pytest.fail(f"Error occurred: {e}")
|
||||||
|
|
||||||
|
|
||||||
def test_completion_azure_function_calling_stream():
|
def test_completion_azure_function_calling_stream():
|
||||||
|
|
|
@ -369,7 +369,7 @@ class ChatCompletionMessageToolCall(OpenAIObject):
|
||||||
class Message(OpenAIObject):
|
class Message(OpenAIObject):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
content="default",
|
content: Optional[str] = "default",
|
||||||
role="assistant",
|
role="assistant",
|
||||||
logprobs=None,
|
logprobs=None,
|
||||||
function_call=None,
|
function_call=None,
|
||||||
|
@ -9757,6 +9757,50 @@ class CustomStreamWrapper:
|
||||||
"finish_reason": finish_reason,
|
"finish_reason": finish_reason,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
def handle_predibase_chunk(self, chunk):
|
||||||
|
try:
|
||||||
|
if type(chunk) != str:
|
||||||
|
chunk = chunk.decode(
|
||||||
|
"utf-8"
|
||||||
|
) # DO NOT REMOVE this: This is required for HF inference API + Streaming
|
||||||
|
text = ""
|
||||||
|
is_finished = False
|
||||||
|
finish_reason = ""
|
||||||
|
print_verbose(f"chunk: {chunk}")
|
||||||
|
if chunk.startswith("data:"):
|
||||||
|
data_json = json.loads(chunk[5:])
|
||||||
|
print_verbose(f"data json: {data_json}")
|
||||||
|
if "token" in data_json and "text" in data_json["token"]:
|
||||||
|
text = data_json["token"]["text"]
|
||||||
|
if data_json.get("details", False) and data_json["details"].get(
|
||||||
|
"finish_reason", False
|
||||||
|
):
|
||||||
|
is_finished = True
|
||||||
|
finish_reason = data_json["details"]["finish_reason"]
|
||||||
|
elif data_json.get(
|
||||||
|
"generated_text", False
|
||||||
|
): # if full generated text exists, then stream is complete
|
||||||
|
text = "" # don't return the final bos token
|
||||||
|
is_finished = True
|
||||||
|
finish_reason = "stop"
|
||||||
|
elif data_json.get("error", False):
|
||||||
|
raise Exception(data_json.get("error"))
|
||||||
|
return {
|
||||||
|
"text": text,
|
||||||
|
"is_finished": is_finished,
|
||||||
|
"finish_reason": finish_reason,
|
||||||
|
}
|
||||||
|
elif "error" in chunk:
|
||||||
|
raise ValueError(chunk)
|
||||||
|
return {
|
||||||
|
"text": text,
|
||||||
|
"is_finished": is_finished,
|
||||||
|
"finish_reason": finish_reason,
|
||||||
|
}
|
||||||
|
except Exception as e:
|
||||||
|
traceback.print_exc()
|
||||||
|
raise e
|
||||||
|
|
||||||
def handle_huggingface_chunk(self, chunk):
|
def handle_huggingface_chunk(self, chunk):
|
||||||
try:
|
try:
|
||||||
if type(chunk) != str:
|
if type(chunk) != str:
|
||||||
|
@ -10394,6 +10438,11 @@ class CustomStreamWrapper:
|
||||||
completion_obj["content"] = response_obj["text"]
|
completion_obj["content"] = response_obj["text"]
|
||||||
if response_obj["is_finished"]:
|
if response_obj["is_finished"]:
|
||||||
self.received_finish_reason = response_obj["finish_reason"]
|
self.received_finish_reason = response_obj["finish_reason"]
|
||||||
|
elif self.custom_llm_provider and self.custom_llm_provider == "predibase":
|
||||||
|
response_obj = self.handle_predibase_chunk(chunk)
|
||||||
|
completion_obj["content"] = response_obj["text"]
|
||||||
|
if response_obj["is_finished"]:
|
||||||
|
self.received_finish_reason = response_obj["finish_reason"]
|
||||||
elif (
|
elif (
|
||||||
self.custom_llm_provider and self.custom_llm_provider == "baseten"
|
self.custom_llm_provider and self.custom_llm_provider == "baseten"
|
||||||
): # baseten doesn't provide streaming
|
): # baseten doesn't provide streaming
|
||||||
|
@ -11016,6 +11065,7 @@ class CustomStreamWrapper:
|
||||||
or self.custom_llm_provider == "sagemaker"
|
or self.custom_llm_provider == "sagemaker"
|
||||||
or self.custom_llm_provider == "gemini"
|
or self.custom_llm_provider == "gemini"
|
||||||
or self.custom_llm_provider == "cached_response"
|
or self.custom_llm_provider == "cached_response"
|
||||||
|
or self.custom_llm_provider == "predibase"
|
||||||
or self.custom_llm_provider in litellm.openai_compatible_endpoints
|
or self.custom_llm_provider in litellm.openai_compatible_endpoints
|
||||||
):
|
):
|
||||||
async for chunk in self.completion_stream:
|
async for chunk in self.completion_stream:
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue