(refactor) use helper function _assemble_complete_response_from_streaming_chunks to assemble complete responses in caching and logging callbacks (#6220)

* (refactor) use _assemble_complete_response_from_streaming_chunks

* add unit test for test_assemble_complete_response_from_streaming_chunks_1

* fix assemble complete_streaming_response

* config add logging_testing

* add logging_coverage in codecov

* test test_assemble_complete_response_from_streaming_chunks_3

* add unit tests for _assemble_complete_response_from_streaming_chunks

* fix remove unused / junk function

* add test for streaming_chunks when error assembling
This commit is contained in:
Ishaan Jaff 2024-10-15 12:45:12 +05:30 committed by GitHub
parent e9a46b992c
commit a69c670baa
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 571 additions and 90 deletions

View file

@ -328,6 +328,48 @@ jobs:
paths:
- llm_translation_coverage.xml
- llm_translation_coverage
logging_testing:
docker:
- image: cimg/python:3.11
auth:
username: ${DOCKERHUB_USERNAME}
password: ${DOCKERHUB_PASSWORD}
working_directory: ~/project
steps:
- checkout
- run:
name: Install Dependencies
command: |
python -m pip install --upgrade pip
python -m pip install -r requirements.txt
pip install "pytest==7.3.1"
pip install "pytest-retry==1.6.3"
pip install "pytest-cov==5.0.0"
pip install "pytest-asyncio==0.21.1"
pip install "respx==0.21.1"
# Run pytest and generate JUnit XML report
- run:
name: Run tests
command: |
pwd
ls
python -m pytest -vv tests/logging_callback_tests --cov=litellm --cov-report=xml -x -s -v --junitxml=test-results/junit.xml --durations=5
no_output_timeout: 120m
- run:
name: Rename the coverage files
command: |
mv coverage.xml logging_coverage.xml
mv .coverage logging_coverage
# Store test results
- store_test_results:
path: test-results
- persist_to_workspace:
root: .
paths:
- logging_coverage.xml
- logging_coverage
installing_litellm_on_python:
docker:
- image: circleci/python:3.8
@ -769,7 +811,7 @@ jobs:
python -m venv venv
. venv/bin/activate
pip install coverage
coverage combine llm_translation_coverage litellm_router_coverage local_testing_coverage litellm_assistants_api_coverage ui_endpoint_testing_coverage
coverage combine llm_translation_coverage logging_coverage litellm_router_coverage local_testing_coverage litellm_assistants_api_coverage ui_endpoint_testing_coverage
coverage xml
- codecov/upload:
file: ./coverage.xml
@ -1005,9 +1047,16 @@ workflows:
only:
- main
- /litellm_.*/
- logging_testing:
filters:
branches:
only:
- main
- /litellm_.*/
- upload-coverage:
requires:
- llm_translation_testing
- logging_testing
- litellm_router_testing
- local_testing
- litellm_assistants_api_testing
@ -1036,6 +1085,7 @@ workflows:
- build_and_test
- load_testing
- llm_translation_testing
- logging_testing
- litellm_router_testing
- litellm_assistants_api_testing
- ui_endpoint_testing

View file

@ -26,6 +26,9 @@ from litellm.caching.caching import (
RedisSemanticCache,
S3Cache,
)
from litellm.litellm_core_utils.logging_utils import (
_assemble_complete_response_from_streaming_chunks,
)
from litellm.types.rerank import RerankResponse
from litellm.types.utils import (
CallTypes,
@ -517,28 +520,14 @@ class LLMCachingHandler:
"""
complete_streaming_response: Optional[
Union[ModelResponse, TextCompletionResponse]
] = None
if (
processed_chunk.choices[0].finish_reason is not None
): # if it's the last chunk
self.async_streaming_chunks.append(processed_chunk)
try:
end_time: datetime.datetime = datetime.datetime.now()
complete_streaming_response = litellm.stream_chunk_builder(
self.async_streaming_chunks,
messages=self.request_kwargs.get("messages", None),
] = _assemble_complete_response_from_streaming_chunks(
result=processed_chunk,
start_time=self.start_time,
end_time=end_time,
end_time=datetime.datetime.now(),
request_kwargs=self.request_kwargs,
streaming_chunks=self.async_streaming_chunks,
is_async=True,
)
except Exception as e:
verbose_logger.exception(
"Error occurred building stream chunk in success logging: {}".format(
str(e)
)
)
complete_streaming_response = None
else:
self.async_streaming_chunks.append(processed_chunk)
# if a complete_streaming_response is assembled, add it to the cache
if complete_streaming_response is not None:

View file

@ -12,9 +12,6 @@ import litellm
from litellm._logging import verbose_logger
from litellm.integrations.custom_logger import CustomLogger
from litellm.integrations.gcs_bucket.gcs_bucket_base import GCSBucketBase
from litellm.litellm_core_utils.logging_utils import (
convert_litellm_response_object_to_dict,
)
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
from litellm.proxy._types import CommonProxyErrors, SpendLogsMetadata, SpendLogsPayload
from litellm.types.utils import (

View file

@ -10,9 +10,6 @@ from pydantic import BaseModel, Field
import litellm
from litellm._logging import verbose_logger
from litellm.integrations.custom_logger import CustomLogger
from litellm.litellm_core_utils.logging_utils import (
convert_litellm_response_object_to_dict,
)
from litellm.llms.custom_httpx.http_handler import (
get_async_httpx_client,
httpxSpecialProvider,

View file

@ -86,6 +86,7 @@ from ..integrations.supabase import Supabase
from ..integrations.traceloop import TraceloopLogger
from ..integrations.weights_biases import WeightsBiasesLogger
from .exception_mapping_utils import _get_response_headers
from .logging_utils import _assemble_complete_response_from_streaming_chunks
try:
from ..proxy.enterprise.enterprise_callbacks.generic_api_callback import (
@ -878,32 +879,24 @@ class Logging:
# print(f"original response in success handler: {self.model_call_details['original_response']}")
try:
verbose_logger.debug(f"success callbacks: {litellm.success_callback}")
## BUILD COMPLETE STREAMED RESPONSE
complete_streaming_response = None
complete_streaming_response: Optional[
Union[ModelResponse, TextCompletionResponse]
] = None
if "complete_streaming_response" in self.model_call_details:
return # break out of this.
if self.stream and isinstance(result, ModelResponse):
if (
result.choices[0].finish_reason is not None
): # if it's the last chunk
self.sync_streaming_chunks.append(result)
# print_verbose(f"final set of received chunks: {self.sync_streaming_chunks}")
try:
complete_streaming_response = litellm.stream_chunk_builder(
self.sync_streaming_chunks,
messages=self.model_call_details.get("messages", None),
if self.stream:
complete_streaming_response: Optional[
Union[ModelResponse, TextCompletionResponse]
] = _assemble_complete_response_from_streaming_chunks(
result=result,
start_time=start_time,
end_time=end_time,
request_kwargs=self.model_call_details,
streaming_chunks=self.sync_streaming_chunks,
is_async=False,
)
except Exception as e:
verbose_logger.exception(
"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while building complete streaming response in success logging {}".format(
str(e)
)
)
complete_streaming_response = None
else:
self.sync_streaming_chunks.append(result)
_caching_complete_streaming_response: Optional[
Union[ModelResponse, TextCompletionResponse]
] = None
@ -1495,29 +1488,23 @@ class Logging:
start_time=start_time, end_time=end_time, result=result, cache_hit=cache_hit
)
## BUILD COMPLETE STREAMED RESPONSE
complete_streaming_response = None
if "async_complete_streaming_response" in self.model_call_details:
return # break out of this.
if self.stream:
if result.choices[0].finish_reason is not None: # if it's the last chunk
self.streaming_chunks.append(result)
# verbose_logger.debug(f"final set of received chunks: {self.streaming_chunks}")
try:
complete_streaming_response = litellm.stream_chunk_builder(
self.streaming_chunks,
messages=self.model_call_details.get("messages", None),
complete_streaming_response: Optional[
Union[ModelResponse, TextCompletionResponse]
] = None
if self.stream is True:
complete_streaming_response: Optional[
Union[ModelResponse, TextCompletionResponse]
] = _assemble_complete_response_from_streaming_chunks(
result=result,
start_time=start_time,
end_time=end_time,
request_kwargs=self.model_call_details,
streaming_chunks=self.streaming_chunks,
is_async=True,
)
except Exception as e:
verbose_logger.exception(
"Error occurred building stream chunk in success logging: {}".format(
str(e)
)
)
complete_streaming_response = None
else:
self.streaming_chunks.append(result)
if complete_streaming_response is not None:
print_verbose("Async success callbacks: Got a complete streaming response")

View file

@ -1,4 +1,8 @@
from typing import TYPE_CHECKING, Any, Optional, Union
from datetime import datetime
from typing import TYPE_CHECKING, Any, List, Optional, Union
from litellm._logging import verbose_logger
from litellm.types.utils import ModelResponse, TextCompletionResponse
if TYPE_CHECKING:
from litellm import ModelResponse as _ModelResponse
@ -15,21 +19,6 @@ Helper utils used for logging callbacks
"""
def convert_litellm_response_object_to_dict(response_obj: Any) -> dict:
"""
Convert a LiteLLM response object to a dictionary
"""
if isinstance(response_obj, dict):
return response_obj
for _type in litellm.ALL_LITELLM_RESPONSE_TYPES:
if isinstance(response_obj, _type):
return response_obj.model_dump()
# If it's not a LiteLLM type, return the object as is
return dict(response_obj)
def convert_litellm_response_object_to_str(
response_obj: Union[Any, LiteLLMModelResponse]
) -> Optional[str]:
@ -46,3 +35,55 @@ def convert_litellm_response_object_to_str(
return response_str
return None
def _assemble_complete_response_from_streaming_chunks(
result: Union[ModelResponse, TextCompletionResponse],
start_time: datetime,
end_time: datetime,
request_kwargs: dict,
streaming_chunks: List[Any],
is_async: bool,
):
"""
Assemble a complete response from a streaming chunks
- assemble a complete streaming response if result.choices[0].finish_reason is not None
- else append the chunk to the streaming_chunks
Args:
result: ModelResponse
start_time: datetime
end_time: datetime
request_kwargs: dict
streaming_chunks: List[Any]
is_async: bool
Returns:
Optional[Union[ModelResponse, TextCompletionResponse]]: Complete streaming response
"""
complete_streaming_response: Optional[
Union[ModelResponse, TextCompletionResponse]
] = None
if result.choices[0].finish_reason is not None: # if it's the last chunk
streaming_chunks.append(result)
try:
complete_streaming_response = litellm.stream_chunk_builder(
chunks=streaming_chunks,
messages=request_kwargs.get("messages", None),
start_time=start_time,
end_time=end_time,
)
except Exception as e:
log_message = (
"Error occurred building stream chunk in {} success logging: {}".format(
"async" if is_async else "sync", str(e)
)
)
verbose_logger.exception(log_message)
complete_streaming_response = None
else:
streaming_chunks.append(result)
return complete_streaming_response

View file

@ -280,6 +280,9 @@ class CompletionCustomHandler(
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
try:
print(
"in async_log_success_event", kwargs, response_obj, start_time, end_time
)
self.states.append("async_success")
## START TIME
assert isinstance(start_time, datetime)
@ -522,6 +525,7 @@ async def test_async_chat_azure_stream():
@pytest.mark.asyncio
async def test_async_chat_openai_stream_options():
try:
litellm.set_verbose = True
customHandler = CompletionCustomHandler()
litellm.callbacks = [customHandler]
with patch.object(
@ -536,7 +540,7 @@ async def test_async_chat_openai_stream_options():
async for chunk in response:
continue
print("mock client args list=", mock_client.await_args_list)
mock_client.assert_awaited_once()
except Exception as e:
pytest.fail(f"An exception occurred: {str(e)}")

View file

@ -0,0 +1,54 @@
# conftest.py
import importlib
import os
import sys
import pytest
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
@pytest.fixture(scope="function", autouse=True)
def setup_and_teardown():
"""
This fixture reloads litellm before every function. To speed up testing by removing callbacks being chained.
"""
curr_dir = os.getcwd() # Get the current working directory
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the project directory to the system path
import litellm
from litellm import Router
importlib.reload(litellm)
import asyncio
loop = asyncio.get_event_loop_policy().new_event_loop()
asyncio.set_event_loop(loop)
print(litellm)
# from litellm import Router, completion, aembedding, acompletion, embedding
yield
# Teardown code (executes after the yield point)
loop.close() # Close the loop created earlier
asyncio.set_event_loop(None) # Remove the reference to the loop
def pytest_collection_modifyitems(config, items):
# Separate tests in 'test_amazing_proxy_custom_logger.py' and other tests
custom_logger_tests = [
item for item in items if "custom_logger" in item.parent.name
]
other_tests = [item for item in items if "custom_logger" not in item.parent.name]
# Sort tests based on their names
custom_logger_tests.sort(key=lambda x: x.name)
other_tests.sort(key=lambda x: x.name)
# Reorder the items list
items[:] = custom_logger_tests + other_tests

View file

@ -0,0 +1,362 @@
"""
Testing for _assemble_complete_response_from_streaming_chunks
- Test 1 - ModelResponse with 1 list of streaming chunks. Assert chunks are added to the streaming_chunks, after final chunk sent assert complete_streaming_response is not None
- Test 2 - TextCompletionResponse with 1 list of streaming chunks. Assert chunks are added to the streaming_chunks, after final chunk sent assert complete_streaming_response is not None
- Test 3 - Have multiple lists of streaming chunks, Assert that chunks are added to the correct list and that complete_streaming_response is None. After final chunk sent assert complete_streaming_response is not None
- Test 4 - build a complete response when 1 chunk is poorly formatted
"""
import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock
from pydantic.main import Model
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import httpx
import pytest
from respx import MockRouter
import litellm
from litellm import Choices, Message, ModelResponse, TextCompletionResponse, TextChoices
from litellm.litellm_core_utils.litellm_logging import (
_assemble_complete_response_from_streaming_chunks,
)
@pytest.mark.parametrize("is_async", [True, False])
def test_assemble_complete_response_from_streaming_chunks_1(is_async):
"""
Test 1 - ModelResponse with 1 list of streaming chunks. Assert chunks are added to the streaming_chunks, after final chunk sent assert complete_streaming_response is not None
"""
request_kwargs = {
"model": "test_model",
"messages": [{"role": "user", "content": "Hello, world!"}],
}
list_streaming_chunks = []
chunk = {
"id": "chatcmpl-9mWtyDnikZZoB75DyfUzWUxiiE2Pi",
"choices": [
litellm.utils.StreamingChoices(
delta=litellm.utils.Delta(
content="hello in response",
function_call=None,
role=None,
tool_calls=None,
),
index=0,
logprobs=None,
)
],
"created": 1721353246,
"model": "gpt-3.5-turbo",
"object": "chat.completion.chunk",
"system_fingerprint": None,
"usage": None,
}
chunk = litellm.ModelResponse(**chunk, stream=True)
complete_streaming_response = _assemble_complete_response_from_streaming_chunks(
result=chunk,
start_time=datetime.now(),
end_time=datetime.now(),
request_kwargs=request_kwargs,
streaming_chunks=list_streaming_chunks,
is_async=is_async,
)
# this is the 1st chunk - complete_streaming_response should be None
print("list_streaming_chunks", list_streaming_chunks)
print("complete_streaming_response", complete_streaming_response)
assert complete_streaming_response is None
assert len(list_streaming_chunks) == 1
assert list_streaming_chunks[0] == chunk
# Add final chunk
chunk = {
"id": "chatcmpl-9mWtyDnikZZoB75DyfUzWUxiiE2Pi",
"choices": [
litellm.utils.StreamingChoices(
finish_reason="stop",
delta=litellm.utils.Delta(
content="end of response",
function_call=None,
role=None,
tool_calls=None,
),
index=0,
logprobs=None,
)
],
"created": 1721353246,
"model": "gpt-3.5-turbo",
"object": "chat.completion.chunk",
"system_fingerprint": None,
"usage": None,
}
chunk = litellm.ModelResponse(**chunk, stream=True)
complete_streaming_response = _assemble_complete_response_from_streaming_chunks(
result=chunk,
start_time=datetime.now(),
end_time=datetime.now(),
request_kwargs=request_kwargs,
streaming_chunks=list_streaming_chunks,
is_async=is_async,
)
print("list_streaming_chunks", list_streaming_chunks)
print("complete_streaming_response", complete_streaming_response)
# this is the 2nd chunk - complete_streaming_response should not be None
assert complete_streaming_response is not None
assert len(list_streaming_chunks) == 2
assert isinstance(complete_streaming_response, ModelResponse)
assert isinstance(complete_streaming_response.choices[0], Choices)
pass
@pytest.mark.parametrize("is_async", [True, False])
def test_assemble_complete_response_from_streaming_chunks_2(is_async):
"""
Test 2 - TextCompletionResponse with 1 list of streaming chunks. Assert chunks are added to the streaming_chunks, after final chunk sent assert complete_streaming_response is not None
"""
from litellm.utils import TextCompletionStreamWrapper
_text_completion_stream_wrapper = TextCompletionStreamWrapper(
completion_stream=None, model="test_model"
)
request_kwargs = {
"model": "test_model",
"messages": [{"role": "user", "content": "Hello, world!"}],
}
list_streaming_chunks = []
chunk = {
"id": "chatcmpl-9mWtyDnikZZoB75DyfUzWUxiiE2Pi",
"choices": [
litellm.utils.StreamingChoices(
delta=litellm.utils.Delta(
content="hello in response",
function_call=None,
role=None,
tool_calls=None,
),
index=0,
logprobs=None,
)
],
"created": 1721353246,
"model": "gpt-3.5-turbo",
"object": "chat.completion.chunk",
"system_fingerprint": None,
"usage": None,
}
chunk = litellm.ModelResponse(**chunk, stream=True)
chunk = _text_completion_stream_wrapper.convert_to_text_completion_object(chunk)
complete_streaming_response = _assemble_complete_response_from_streaming_chunks(
result=chunk,
start_time=datetime.now(),
end_time=datetime.now(),
request_kwargs=request_kwargs,
streaming_chunks=list_streaming_chunks,
is_async=is_async,
)
# this is the 1st chunk - complete_streaming_response should be None
print("list_streaming_chunks", list_streaming_chunks)
print("complete_streaming_response", complete_streaming_response)
assert complete_streaming_response is None
assert len(list_streaming_chunks) == 1
assert list_streaming_chunks[0] == chunk
# Add final chunk
chunk = {
"id": "chatcmpl-9mWtyDnikZZoB75DyfUzWUxiiE2Pi",
"choices": [
litellm.utils.StreamingChoices(
finish_reason="stop",
delta=litellm.utils.Delta(
content="end of response",
function_call=None,
role=None,
tool_calls=None,
),
index=0,
logprobs=None,
)
],
"created": 1721353246,
"model": "gpt-3.5-turbo",
"object": "chat.completion.chunk",
"system_fingerprint": None,
"usage": None,
}
chunk = litellm.ModelResponse(**chunk, stream=True)
chunk = _text_completion_stream_wrapper.convert_to_text_completion_object(chunk)
complete_streaming_response = _assemble_complete_response_from_streaming_chunks(
result=chunk,
start_time=datetime.now(),
end_time=datetime.now(),
request_kwargs=request_kwargs,
streaming_chunks=list_streaming_chunks,
is_async=is_async,
)
print("list_streaming_chunks", list_streaming_chunks)
print("complete_streaming_response", complete_streaming_response)
# this is the 2nd chunk - complete_streaming_response should not be None
assert complete_streaming_response is not None
assert len(list_streaming_chunks) == 2
assert isinstance(complete_streaming_response, TextCompletionResponse)
assert isinstance(complete_streaming_response.choices[0], TextChoices)
pass
@pytest.mark.parametrize("is_async", [True, False])
def test_assemble_complete_response_from_streaming_chunks_3(is_async):
request_kwargs = {
"model": "test_model",
"messages": [{"role": "user", "content": "Hello, world!"}],
}
list_streaming_chunks_1 = []
list_streaming_chunks_2 = []
chunk = {
"id": "chatcmpl-9mWtyDnikZZoB75DyfUzWUxiiE2Pi",
"choices": [
litellm.utils.StreamingChoices(
delta=litellm.utils.Delta(
content="hello in response",
function_call=None,
role=None,
tool_calls=None,
),
index=0,
logprobs=None,
)
],
"created": 1721353246,
"model": "gpt-3.5-turbo",
"object": "chat.completion.chunk",
"system_fingerprint": None,
"usage": None,
}
chunk = litellm.ModelResponse(**chunk, stream=True)
complete_streaming_response = _assemble_complete_response_from_streaming_chunks(
result=chunk,
start_time=datetime.now(),
end_time=datetime.now(),
request_kwargs=request_kwargs,
streaming_chunks=list_streaming_chunks_1,
is_async=is_async,
)
# this is the 1st chunk - complete_streaming_response should be None
print("list_streaming_chunks_1", list_streaming_chunks_1)
print("complete_streaming_response", complete_streaming_response)
assert complete_streaming_response is None
assert len(list_streaming_chunks_1) == 1
assert list_streaming_chunks_1[0] == chunk
assert len(list_streaming_chunks_2) == 0
# now add a chunk to the 2nd list
complete_streaming_response = _assemble_complete_response_from_streaming_chunks(
result=chunk,
start_time=datetime.now(),
end_time=datetime.now(),
request_kwargs=request_kwargs,
streaming_chunks=list_streaming_chunks_2,
is_async=is_async,
)
print("list_streaming_chunks_2", list_streaming_chunks_2)
print("complete_streaming_response", complete_streaming_response)
assert complete_streaming_response is None
assert len(list_streaming_chunks_2) == 1
assert list_streaming_chunks_2[0] == chunk
assert len(list_streaming_chunks_1) == 1
# now add a chunk to the 1st list
@pytest.mark.parametrize("is_async", [True, False])
def test_assemble_complete_response_from_streaming_chunks_4(is_async):
"""
Test 4 - build a complete response when 1 chunk is poorly formatted
- Assert complete_streaming_response is None
- Assert list_streaming_chunks is not empty
"""
request_kwargs = {
"model": "test_model",
"messages": [{"role": "user", "content": "Hello, world!"}],
}
list_streaming_chunks = []
chunk = {
"id": "chatcmpl-9mWtyDnikZZoB75DyfUzWUxiiE2Pi",
"choices": [
litellm.utils.StreamingChoices(
finish_reason="stop",
delta=litellm.utils.Delta(
content="end of response",
function_call=None,
role=None,
tool_calls=None,
),
index=0,
logprobs=None,
)
],
"created": 1721353246,
"model": "gpt-3.5-turbo",
"object": "chat.completion.chunk",
"system_fingerprint": None,
"usage": None,
}
chunk = litellm.ModelResponse(**chunk, stream=True)
# remove attribute id from chunk
del chunk.id
complete_streaming_response = _assemble_complete_response_from_streaming_chunks(
result=chunk,
start_time=datetime.now(),
end_time=datetime.now(),
request_kwargs=request_kwargs,
streaming_chunks=list_streaming_chunks,
is_async=is_async,
)
print("complete_streaming_response", complete_streaming_response)
assert complete_streaming_response is None
print("list_streaming_chunks", list_streaming_chunks)
assert len(list_streaming_chunks) == 1