forked from phoenix/litellm-mirror
adding helicone integration
This commit is contained in:
parent
13e800493c
commit
aa598d506f
8 changed files with 74 additions and 8 deletions
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
litellm/integrations/__pycache__/helicone.cpython-311.pyc
Normal file
BIN
litellm/integrations/__pycache__/helicone.cpython-311.pyc
Normal file
Binary file not shown.
49
litellm/integrations/helicone.py
Normal file
49
litellm/integrations/helicone.py
Normal file
|
@ -0,0 +1,49 @@
|
|||
#### What this does ####
|
||||
# On success, logs events to Helicone
|
||||
import dotenv, os
|
||||
import requests
|
||||
dotenv.load_dotenv() # Loading env variables using dotenv
|
||||
import traceback
|
||||
class HeliconeLogger:
|
||||
# Class variables or attributes
|
||||
helicone_model_list = ["gpt", "claude"]
|
||||
def __init__(self):
|
||||
# Instance variables
|
||||
self.provider_url = "https://api.openai.com/v1"
|
||||
self.key = os.getenv('HELICONE_API_KEY')
|
||||
|
||||
def log_success(self, model, messages, response_obj, start_time, end_time):
|
||||
# Method definition
|
||||
try:
|
||||
model = model if any(accepted_model in model for accepted_model in self.helicone_model_list) else "gpt-3.5-turbo"
|
||||
provider_request = {"model": model, "messages": messages}
|
||||
|
||||
providerResponse = {
|
||||
"json": response_obj,
|
||||
"headers": {"openai-version": "2020-10-01"},
|
||||
"status": 200
|
||||
}
|
||||
|
||||
# Code to be executed
|
||||
url = "https://api.hconeai.com/oai/v1/log"
|
||||
headers = {
|
||||
'Authorization': f'Bearer {self.key}',
|
||||
'Content-Type': 'application/json'
|
||||
}
|
||||
start_time_seconds = int(start_time.timestamp())
|
||||
start_time_milliseconds = int((start_time.timestamp() - start_time_seconds) * 1000)
|
||||
end_time_seconds = int(end_time.timestamp())
|
||||
end_time_milliseconds = int((end_time.timestamp() - end_time_seconds) * 1000)
|
||||
data = {
|
||||
"providerRequest": {"url": self.provider_url, "json": provider_request, "meta": {"Helicone-Auth": f"Bearer {self.key}"}},
|
||||
"providerResponse": providerResponse,
|
||||
"timing": {"startTime": {"seconds": start_time_seconds, "milliseconds": start_time_milliseconds}, "endTime": {"seconds": end_time_seconds, "milliseconds": end_time_milliseconds}} # {"seconds": .., "milliseconds": ..}
|
||||
}
|
||||
response = requests.post(url, headers=headers, json=data)
|
||||
# if response.status_code == 200:
|
||||
# print("Success!")
|
||||
# else:
|
||||
# print("Request was not successful. Status Code:", response.status_code)
|
||||
except:
|
||||
# traceback.print_exc()
|
||||
pass
|
|
@ -9,10 +9,10 @@ sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the
|
|||
import litellm
|
||||
from litellm import embedding, completion
|
||||
|
||||
litellm.success_callback = ["posthog"]
|
||||
litellm.success_callback = ["posthog", "helicone"]
|
||||
litellm.failure_callback = ["slack", "sentry", "posthog"]
|
||||
|
||||
# litellm.set_verbose = True
|
||||
litellm.set_verbose = True
|
||||
|
||||
def logger_fn(model_call_object: dict):
|
||||
# print(f"model call details: {model_call_object}")
|
||||
|
@ -23,11 +23,14 @@ messages = [{ "content": user_message,"role": "user"}]
|
|||
|
||||
def test_completion_openai():
|
||||
try:
|
||||
print("running query")
|
||||
response = completion(model="gpt-3.5-turbo", messages=messages, logger_fn=logger_fn)
|
||||
print(f"response: {response}")
|
||||
# Add any assertions here to check the response
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
test_completion_openai()
|
||||
def test_completion_non_openai():
|
||||
try:
|
||||
response = completion(model="claude-instant-1", messages=messages, logger_fn=logger_fn)
|
||||
|
|
|
@ -2,6 +2,7 @@ import dotenv, json, traceback, threading
|
|||
import subprocess, os
|
||||
import litellm, openai
|
||||
import random, uuid, requests
|
||||
import datetime
|
||||
from openai.error import AuthenticationError, InvalidRequestError, RateLimitError, ServiceUnavailableError, OpenAIError
|
||||
####### ENVIRONMENT VARIABLES ###################
|
||||
dotenv.load_dotenv() # Loading env variables using dotenv
|
||||
|
@ -11,6 +12,7 @@ add_breadcrumb = None
|
|||
posthog = None
|
||||
slack_app = None
|
||||
alerts_channel = None
|
||||
heliconeLogger = None
|
||||
callback_list = []
|
||||
user_logger_fn = None
|
||||
additional_details = {}
|
||||
|
@ -68,7 +70,7 @@ def client(original_function):
|
|||
global callback_list, add_breadcrumb
|
||||
if (len(litellm.success_callback) > 0 or len(litellm.failure_callback) > 0) and len(callback_list) == 0:
|
||||
callback_list = list(set(litellm.success_callback + litellm.failure_callback))
|
||||
set_callbacks(callback_list=callback_list)
|
||||
set_callbacks(callback_list=callback_list,)
|
||||
if add_breadcrumb:
|
||||
add_breadcrumb(
|
||||
category="litellm.llm_call",
|
||||
|
@ -83,9 +85,11 @@ def client(original_function):
|
|||
try:
|
||||
function_setup(args, kwargs)
|
||||
## MODEL CALL
|
||||
start_time = datetime.datetime.now()
|
||||
result = original_function(*args, **kwargs)
|
||||
end_time = datetime.datetime.now()
|
||||
## LOG SUCCESS
|
||||
my_thread = threading.Thread(target=handle_success, args=(args, kwargs)) # don't interrupt execution of main thread
|
||||
my_thread = threading.Thread(target=handle_success, args=(args, kwargs, result, start_time, end_time)) # don't interrupt execution of main thread
|
||||
my_thread.start()
|
||||
return result
|
||||
except Exception as e:
|
||||
|
@ -97,7 +101,7 @@ def client(original_function):
|
|||
|
||||
####### HELPER FUNCTIONS ################
|
||||
def set_callbacks(callback_list):
|
||||
global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel
|
||||
global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel, heliconeLogger
|
||||
try:
|
||||
for callback in callback_list:
|
||||
if callback == "sentry":
|
||||
|
@ -134,6 +138,10 @@ def set_callbacks(callback_list):
|
|||
)
|
||||
alerts_channel = os.environ["SLACK_API_CHANNEL"]
|
||||
print_verbose(f"Initialized Slack App: {slack_app}")
|
||||
elif callback == "helicone":
|
||||
from .integrations.helicone import HeliconeLogger
|
||||
|
||||
heliconeLogger = HeliconeLogger()
|
||||
except:
|
||||
pass
|
||||
|
||||
|
@ -200,7 +208,8 @@ def handle_failure(exception, traceback_exception, args, kwargs):
|
|||
except:
|
||||
pass
|
||||
|
||||
def handle_success(*args, **kwargs):
|
||||
def handle_success(args, kwargs, result, start_time, end_time):
|
||||
global heliconeLogger
|
||||
try:
|
||||
success_handler = additional_details.pop("success_handler", None)
|
||||
failure_handler = additional_details.pop("failure_handler", None)
|
||||
|
@ -223,6 +232,11 @@ def handle_success(*args, **kwargs):
|
|||
for detail in additional_details:
|
||||
slack_msg += f"{detail}: {additional_details[detail]}\n"
|
||||
slack_app.client.chat_postMessage(channel=alerts_channel, text=slack_msg)
|
||||
elif callback == "helicone":
|
||||
print_verbose("reaches helicone for logging!")
|
||||
model = args[0] if len(args) > 0 else kwargs["model"]
|
||||
messages = args[1] if len(args) > 1 else kwargs["messages"]
|
||||
heliconeLogger.log_success(model=model, messages=messages, response_obj=result, start_time=start_time, end_time=end_time)
|
||||
except:
|
||||
pass
|
||||
|
||||
|
|
2
setup.py
2
setup.py
|
@ -2,7 +2,7 @@ from setuptools import setup, find_packages
|
|||
|
||||
setup(
|
||||
name='litellm',
|
||||
version='0.1.220',
|
||||
version='0.1.221',
|
||||
description='Library to easily interface with LLM API providers',
|
||||
author='BerriAI',
|
||||
packages=[
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue