fix(router.py): only return 'max_tokens', 'input_cost_per_token', etc. in 'get_router_model_info' if base_model is set

This commit is contained in:
Krrish Dholakia 2024-06-26 16:02:23 -07:00
parent a7122f91a1
commit aa6f7665c4
2 changed files with 137 additions and 6 deletions

View file

@ -105,7 +105,9 @@ class Router:
def __init__(
self,
model_list: Optional[List[Union[DeploymentTypedDict, Dict]]] = None,
model_list: Optional[
Union[List[DeploymentTypedDict], List[dict[str, Any]], List[Dict[str, Any]]]
] = None,
## ASSISTANTS API ##
assistants_config: Optional[AssistantsTypedDict] = None,
## CACHING ##
@ -3970,16 +3972,36 @@ class Router:
Augment litellm info with additional params set in `model_info`.
For azure models, ignore the `model:`. Only set max tokens, cost values if base_model is set.
Returns
- ModelInfo - If found -> typed dict with max tokens, input cost, etc.
Raises:
- ValueError -> If model is not mapped yet
"""
## SET MODEL NAME
## GET BASE MODEL
base_model = deployment.get("model_info", {}).get("base_model", None)
if base_model is None:
base_model = deployment.get("litellm_params", {}).get("base_model", None)
model = base_model or deployment.get("litellm_params", {}).get("model", None)
## GET LITELLM MODEL INFO
model = base_model
## GET PROVIDER
_model, custom_llm_provider, _, _ = litellm.get_llm_provider(
model=deployment.get("litellm_params", {}).get("model", ""),
litellm_params=LiteLLM_Params(**deployment.get("litellm_params", {})),
)
## SET MODEL TO 'model=' - if base_model is None + not azure
if custom_llm_provider == "azure" and base_model is None:
verbose_router_logger.error(
"Could not identify azure model. Set azure 'base_model' for accurate max tokens, cost tracking, etc.- https://docs.litellm.ai/docs/proxy/cost_tracking#spend-tracking-for-azure-openai-models"
)
else:
model = deployment.get("litellm_params", {}).get("model", None)
## GET LITELLM MODEL INFO - raises exception, if model is not mapped
model_info = litellm.get_model_info(model=model)
## CHECK USER SET MODEL INFO
@ -4365,7 +4387,7 @@ class Router:
"""
Filter out model in model group, if:
- model context window < message length
- model context window < message length. For azure openai models, requires 'base_model' is set. - https://docs.litellm.ai/docs/proxy/cost_tracking#spend-tracking-for-azure-openai-models
- filter models above rpm limits
- if region given, filter out models not in that region / unknown region
- [TODO] function call and model doesn't support function calling
@ -4382,6 +4404,11 @@ class Router:
try:
input_tokens = litellm.token_counter(messages=messages)
except Exception as e:
verbose_router_logger.error(
"litellm.router.py::_pre_call_checks: failed to count tokens. Returning initial list of deployments. Got - {}".format(
str(e)
)
)
return _returned_deployments
_context_window_error = False
@ -4425,7 +4452,7 @@ class Router:
)
continue
except Exception as e:
verbose_router_logger.debug("An error occurs - {}".format(str(e)))
verbose_router_logger.error("An error occurs - {}".format(str(e)))
_litellm_params = deployment.get("litellm_params", {})
model_id = deployment.get("model_info", {}).get("id", "")

View file

@ -16,6 +16,7 @@ sys.path.insert(
import os
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor
from unittest.mock import AsyncMock, MagicMock, patch
import httpx
from dotenv import load_dotenv
@ -1884,3 +1885,106 @@ async def test_router_model_usage(mock_response):
else:
print(f"allowed_fails: {allowed_fails}")
raise e
@pytest.mark.parametrize(
"model, base_model, llm_provider",
[
("azure/gpt-4", None, "azure"),
("azure/gpt-4", "azure/gpt-4-0125-preview", "azure"),
("gpt-4", None, "openai"),
],
)
def test_router_get_model_info(model, base_model, llm_provider):
"""
Test if router get model info works based on provider
For azure -> only if base model set
For openai -> use model=
"""
router = Router(
model_list=[
{
"model_name": "gpt-4",
"litellm_params": {
"model": model,
"api_key": "my-fake-key",
"api_base": "my-fake-base",
},
"model_info": {"base_model": base_model, "id": "1"},
}
]
)
deployment = router.get_deployment(model_id="1")
assert deployment is not None
if llm_provider == "openai" or (base_model is not None and llm_provider == "azure"):
router.get_router_model_info(deployment=deployment.to_json())
else:
try:
router.get_router_model_info(deployment=deployment.to_json())
pytest.fail("Expected this to raise model not mapped error")
except Exception as e:
if "This model isn't mapped yet" in str(e):
pass
@pytest.mark.parametrize(
"model, base_model, llm_provider",
[
("azure/gpt-4", None, "azure"),
("azure/gpt-4", "azure/gpt-4-0125-preview", "azure"),
("gpt-4", None, "openai"),
],
)
def test_router_context_window_pre_call_check(model, base_model, llm_provider):
"""
- For an azure model
- if no base model set
- don't enforce context window limits
"""
try:
model_list = [
{
"model_name": "gpt-4",
"litellm_params": {
"model": model,
"api_key": "my-fake-key",
"api_base": "my-fake-base",
},
"model_info": {"base_model": base_model, "id": "1"},
}
]
router = Router(
model_list=model_list,
set_verbose=True,
enable_pre_call_checks=True,
num_retries=0,
)
litellm.token_counter = MagicMock()
def token_counter_side_effect(*args, **kwargs):
# Process args and kwargs if needed
return 1000000
litellm.token_counter.side_effect = token_counter_side_effect
try:
updated_list = router._pre_call_checks(
model="gpt-4",
healthy_deployments=model_list,
messages=[{"role": "user", "content": "Hey, how's it going?"}],
)
if llm_provider == "azure" and base_model is None:
assert len(updated_list) == 1
else:
pytest.fail("Expected to raise an error. Got={}".format(updated_list))
except Exception as e:
if (
llm_provider == "azure" and base_model is not None
) or llm_provider == "openai":
pass
except Exception as e:
pytest.fail(f"Got unexpected exception on router! - {str(e)}")