test(test_custom_callback_input.py): embedding callback tests for azure, openai, bedrock

This commit is contained in:
Krrish Dholakia 2023-12-11 15:32:34 -08:00
parent 8ee77d7b82
commit ad39afc0ad
6 changed files with 185 additions and 49 deletions

View file

@ -326,6 +326,7 @@ class OpenAIChatCompletion(BaseLLM):
raise OpenAIError(status_code=500, message=f"{str(e)}")
async def aembedding(
self,
input: list,
data: dict,
model_response: ModelResponse,
timeout: float,
@ -333,6 +334,7 @@ class OpenAIChatCompletion(BaseLLM):
api_base: Optional[str]=None,
client=None,
max_retries=None,
logging_obj=None
):
response = None
try:
@ -341,9 +343,24 @@ class OpenAIChatCompletion(BaseLLM):
else:
openai_aclient = client
response = await openai_aclient.embeddings.create(**data) # type: ignore
return response
stringified_response = response.model_dump_json()
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=stringified_response,
)
return convert_to_model_response_object(response_object=json.loads(stringified_response), model_response_object=model_response, response_type="embedding") # type: ignore
except Exception as e:
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
original_response=str(e),
)
raise e
def embedding(self,
model: str,
input: list,
@ -368,13 +385,7 @@ class OpenAIChatCompletion(BaseLLM):
max_retries = data.pop("max_retries", 2)
if not isinstance(max_retries, int):
raise OpenAIError(status_code=422, message="max retries must be an int")
if aembedding == True:
response = self.aembedding(data=data, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries) # type: ignore
return response
if client is None:
openai_client = OpenAI(api_key=api_key, base_url=api_base, http_client=litellm.client_session, timeout=timeout, max_retries=max_retries)
else:
openai_client = client
## LOGGING
logging_obj.pre_call(
input=input,
@ -382,6 +393,14 @@ class OpenAIChatCompletion(BaseLLM):
additional_args={"complete_input_dict": data, "api_base": api_base},
)
if aembedding == True:
response = self.aembedding(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries) # type: ignore
return response
if client is None:
openai_client = OpenAI(api_key=api_key, base_url=api_base, http_client=litellm.client_session, timeout=timeout, max_retries=max_retries)
else:
openai_client = client
## COMPLETION CALL
response = openai_client.embeddings.create(**data) # type: ignore
## LOGGING