forked from phoenix/litellm-mirror
Merge pull request #4969 from BerriAI/litellm_get_batches
[Feature]: GET /v1/batches to return list of batches
This commit is contained in:
commit
afad69b147
6 changed files with 312 additions and 33 deletions
|
@ -12,6 +12,8 @@ Covers Batches, Files
|
|||
|
||||
- Create Batch Request
|
||||
|
||||
- List Batches
|
||||
|
||||
- Retrieve the Specific Batch and File Content
|
||||
|
||||
|
||||
|
@ -56,6 +58,15 @@ curl http://localhost:4000/v1/batches/batch_abc123 \
|
|||
-H "Content-Type: application/json" \
|
||||
```
|
||||
|
||||
|
||||
**List Batches**
|
||||
|
||||
```bash
|
||||
curl http://localhost:4000/v1/batches \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-H "Content-Type: application/json" \
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="sdk" label="SDK">
|
||||
|
||||
|
@ -116,6 +127,13 @@ file_content = await litellm.afile_content(
|
|||
print("file content = ", file_content)
|
||||
```
|
||||
|
||||
**List Batches**
|
||||
|
||||
```python
|
||||
list_batches_response = litellm.list_batches(custom_llm_provider="openai", limit=2)
|
||||
print("list_batches_response=", list_batches_response)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
</Tabs>
|
||||
|
|
|
@ -20,10 +20,8 @@ import httpx
|
|||
|
||||
import litellm
|
||||
from litellm import client
|
||||
from litellm.utils import supports_httpx_timeout
|
||||
|
||||
from ..llms.openai import OpenAIBatchesAPI, OpenAIFilesAPI
|
||||
from ..types.llms.openai import (
|
||||
from litellm.llms.openai import OpenAIBatchesAPI, OpenAIFilesAPI
|
||||
from litellm.types.llms.openai import (
|
||||
Batch,
|
||||
CancelBatchRequest,
|
||||
CreateBatchRequest,
|
||||
|
@ -34,7 +32,8 @@ from ..types.llms.openai import (
|
|||
HttpxBinaryResponseContent,
|
||||
RetrieveBatchRequest,
|
||||
)
|
||||
from ..types.router import *
|
||||
from litellm.types.router import GenericLiteLLMParams
|
||||
from litellm.utils import supports_httpx_timeout
|
||||
|
||||
####### ENVIRONMENT VARIABLES ###################
|
||||
openai_batches_instance = OpenAIBatchesAPI()
|
||||
|
@ -314,17 +313,135 @@ def retrieve_batch(
|
|||
raise e
|
||||
|
||||
|
||||
def cancel_batch():
|
||||
async def alist_batches(
|
||||
after: Optional[str] = None,
|
||||
limit: Optional[int] = None,
|
||||
custom_llm_provider: Literal["openai"] = "openai",
|
||||
metadata: Optional[Dict[str, str]] = None,
|
||||
extra_headers: Optional[Dict[str, str]] = None,
|
||||
extra_body: Optional[Dict[str, str]] = None,
|
||||
**kwargs,
|
||||
) -> Batch:
|
||||
"""
|
||||
Async: List your organization's batches.
|
||||
"""
|
||||
try:
|
||||
loop = asyncio.get_event_loop()
|
||||
kwargs["alist_batches"] = True
|
||||
|
||||
# Use a partial function to pass your keyword arguments
|
||||
func = partial(
|
||||
list_batches,
|
||||
after,
|
||||
limit,
|
||||
custom_llm_provider,
|
||||
extra_headers,
|
||||
extra_body,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# Add the context to the function
|
||||
ctx = contextvars.copy_context()
|
||||
func_with_context = partial(ctx.run, func)
|
||||
init_response = await loop.run_in_executor(None, func_with_context)
|
||||
if asyncio.iscoroutine(init_response):
|
||||
response = await init_response
|
||||
else:
|
||||
response = init_response # type: ignore
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
|
||||
def list_batches(
|
||||
after: Optional[str] = None,
|
||||
limit: Optional[int] = None,
|
||||
custom_llm_provider: Literal["openai"] = "openai",
|
||||
extra_headers: Optional[Dict[str, str]] = None,
|
||||
extra_body: Optional[Dict[str, str]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Lists batches
|
||||
|
||||
List your organization's batches.
|
||||
"""
|
||||
try:
|
||||
optional_params = GenericLiteLLMParams(**kwargs)
|
||||
if custom_llm_provider == "openai":
|
||||
# for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
|
||||
api_base = (
|
||||
optional_params.api_base
|
||||
or litellm.api_base
|
||||
or os.getenv("OPENAI_API_BASE")
|
||||
or "https://api.openai.com/v1"
|
||||
)
|
||||
organization = (
|
||||
optional_params.organization
|
||||
or litellm.organization
|
||||
or os.getenv("OPENAI_ORGANIZATION", None)
|
||||
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
|
||||
)
|
||||
# set API KEY
|
||||
api_key = (
|
||||
optional_params.api_key
|
||||
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
|
||||
or litellm.openai_key
|
||||
or os.getenv("OPENAI_API_KEY")
|
||||
)
|
||||
### TIMEOUT LOGIC ###
|
||||
timeout = (
|
||||
optional_params.timeout or kwargs.get("request_timeout", 600) or 600
|
||||
)
|
||||
# set timeout for 10 minutes by default
|
||||
|
||||
if (
|
||||
timeout is not None
|
||||
and isinstance(timeout, httpx.Timeout)
|
||||
and supports_httpx_timeout(custom_llm_provider) == False
|
||||
):
|
||||
read_timeout = timeout.read or 600
|
||||
timeout = read_timeout # default 10 min timeout
|
||||
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
|
||||
timeout = float(timeout) # type: ignore
|
||||
elif timeout is None:
|
||||
timeout = 600.0
|
||||
|
||||
_is_async = kwargs.pop("alist_batches", False) is True
|
||||
|
||||
response = openai_batches_instance.list_batches(
|
||||
_is_async=_is_async,
|
||||
after=after,
|
||||
limit=limit,
|
||||
api_base=api_base,
|
||||
api_key=api_key,
|
||||
organization=organization,
|
||||
timeout=timeout,
|
||||
max_retries=optional_params.max_retries,
|
||||
)
|
||||
else:
|
||||
raise litellm.exceptions.BadRequestError(
|
||||
message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format(
|
||||
custom_llm_provider
|
||||
),
|
||||
model="n/a",
|
||||
llm_provider=custom_llm_provider,
|
||||
response=httpx.Response(
|
||||
status_code=400,
|
||||
content="Unsupported provider",
|
||||
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
|
||||
),
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
raise e
|
||||
pass
|
||||
|
||||
|
||||
def list_batch():
|
||||
def cancel_batch():
|
||||
pass
|
||||
|
||||
|
||||
async def acancel_batch():
|
||||
pass
|
||||
|
||||
|
||||
async def alist_batch():
|
||||
pass
|
||||
|
|
|
@ -2602,26 +2602,52 @@ class OpenAIBatchesAPI(BaseLLM):
|
|||
response = openai_client.batches.cancel(**cancel_batch_data)
|
||||
return response
|
||||
|
||||
# def list_batch(
|
||||
# self,
|
||||
# list_batch_data: ListBatchRequest,
|
||||
# api_key: Optional[str],
|
||||
# api_base: Optional[str],
|
||||
# timeout: Union[float, httpx.Timeout],
|
||||
# max_retries: Optional[int],
|
||||
# organization: Optional[str],
|
||||
# client: Optional[OpenAI] = None,
|
||||
# ):
|
||||
# openai_client: OpenAI = self.get_openai_client(
|
||||
# api_key=api_key,
|
||||
# api_base=api_base,
|
||||
# timeout=timeout,
|
||||
# max_retries=max_retries,
|
||||
# organization=organization,
|
||||
# client=client,
|
||||
# )
|
||||
# response = openai_client.batches.list(**list_batch_data)
|
||||
# return response
|
||||
async def alist_batches(
|
||||
self,
|
||||
openai_client: AsyncOpenAI,
|
||||
after: Optional[str] = None,
|
||||
limit: Optional[int] = None,
|
||||
):
|
||||
verbose_logger.debug("listing batches, after= %s, limit= %s", after, limit)
|
||||
response = await openai_client.batches.list(after=after, limit=limit) # type: ignore
|
||||
return response
|
||||
|
||||
def list_batches(
|
||||
self,
|
||||
_is_async: bool,
|
||||
api_key: Optional[str],
|
||||
api_base: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
organization: Optional[str],
|
||||
after: Optional[str] = None,
|
||||
limit: Optional[int] = None,
|
||||
client: Optional[OpenAI] = None,
|
||||
):
|
||||
openai_client: Optional[Union[OpenAI, AsyncOpenAI]] = self.get_openai_client(
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
timeout=timeout,
|
||||
max_retries=max_retries,
|
||||
organization=organization,
|
||||
client=client,
|
||||
_is_async=_is_async,
|
||||
)
|
||||
if openai_client is None:
|
||||
raise ValueError(
|
||||
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||||
)
|
||||
|
||||
if _is_async is True:
|
||||
if not isinstance(openai_client, AsyncOpenAI):
|
||||
raise ValueError(
|
||||
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
||||
)
|
||||
return self.alist_batches( # type: ignore
|
||||
openai_client=openai_client, after=after, limit=limit
|
||||
)
|
||||
response = openai_client.batches.list(after=after, limit=limit) # type: ignore
|
||||
return response
|
||||
|
||||
|
||||
class OpenAIAssistantsAPI(BaseLLM):
|
||||
|
|
|
@ -4898,12 +4898,12 @@ async def create_batch(
|
|||
|
||||
|
||||
@router.get(
|
||||
"/v1/batches{batch_id:path}",
|
||||
"/v1/batches/{batch_id:path}",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["batch"],
|
||||
)
|
||||
@router.get(
|
||||
"/batches{batch_id:path}",
|
||||
"/batches/{batch_id:path}",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["batch"],
|
||||
)
|
||||
|
@ -4993,6 +4993,93 @@ async def retrieve_batch(
|
|||
)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/v1/batches",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["batch"],
|
||||
)
|
||||
@router.get(
|
||||
"/batches",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["batch"],
|
||||
)
|
||||
async def list_batches(
|
||||
fastapi_response: Response,
|
||||
limit: Optional[int] = None,
|
||||
after: Optional[str] = None,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
Lists
|
||||
This is the equivalent of GET https://api.openai.com/v1/batches/
|
||||
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch/list
|
||||
|
||||
Example Curl
|
||||
```
|
||||
curl http://localhost:4000/v1/batches?limit=2 \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-H "Content-Type: application/json" \
|
||||
|
||||
```
|
||||
"""
|
||||
global proxy_logging_obj
|
||||
verbose_proxy_logger.debug("GET /v1/batches after={} limit={}".format(after, limit))
|
||||
try:
|
||||
# for now use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for acreate_batch
|
||||
response = await litellm.alist_batches(
|
||||
custom_llm_provider="openai",
|
||||
after=after,
|
||||
limit=limit,
|
||||
)
|
||||
|
||||
### RESPONSE HEADERS ###
|
||||
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
||||
model_id = hidden_params.get("model_id", None) or ""
|
||||
cache_key = hidden_params.get("cache_key", None) or ""
|
||||
api_base = hidden_params.get("api_base", None) or ""
|
||||
|
||||
fastapi_response.headers.update(
|
||||
get_custom_headers(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
model_id=model_id,
|
||||
cache_key=cache_key,
|
||||
api_base=api_base,
|
||||
version=version,
|
||||
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
|
||||
)
|
||||
)
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
await proxy_logging_obj.post_call_failure_hook(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
original_exception=e,
|
||||
request_data={"after": after, "limit": limit},
|
||||
)
|
||||
verbose_proxy_logger.error(
|
||||
"litellm.proxy.proxy_server.retrieve_batch(): Exception occured - {}".format(
|
||||
str(e)
|
||||
)
|
||||
)
|
||||
verbose_proxy_logger.debug(traceback.format_exc())
|
||||
if isinstance(e, HTTPException):
|
||||
raise ProxyException(
|
||||
message=getattr(e, "message", str(e.detail)),
|
||||
type=getattr(e, "type", "None"),
|
||||
param=getattr(e, "param", "None"),
|
||||
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
|
||||
)
|
||||
else:
|
||||
error_traceback = traceback.format_exc()
|
||||
error_msg = f"{str(e)}"
|
||||
raise ProxyException(
|
||||
message=getattr(e, "message", error_msg),
|
||||
type=getattr(e, "type", "None"),
|
||||
param=getattr(e, "param", "None"),
|
||||
code=getattr(e, "status_code", 500),
|
||||
)
|
||||
|
||||
|
||||
######################################################################
|
||||
|
||||
# END OF /v1/batches Endpoints Implementation
|
||||
|
|
|
@ -72,6 +72,10 @@ def test_create_batch():
|
|||
|
||||
assert retrieved_batch.id == create_batch_response.id
|
||||
|
||||
# list all batches
|
||||
list_batches = litellm.list_batches(custom_llm_provider="openai", limit=2)
|
||||
print("list_batches=", list_batches)
|
||||
|
||||
file_content = litellm.file_content(
|
||||
file_id=batch_input_file_id, custom_llm_provider="openai"
|
||||
)
|
||||
|
@ -140,6 +144,10 @@ async def test_async_create_batch():
|
|||
|
||||
assert retrieved_batch.id == create_batch_response.id
|
||||
|
||||
# list all batches
|
||||
list_batches = await litellm.alist_batches(custom_llm_provider="openai", limit=2)
|
||||
print("list_batches=", list_batches)
|
||||
|
||||
# try to get file content for our original file
|
||||
|
||||
file_content = await litellm.afile_content(
|
||||
|
|
|
@ -41,6 +41,19 @@ async def get_batch_by_id(session, batch_id):
|
|||
return None
|
||||
|
||||
|
||||
async def list_batches(session):
|
||||
url = f"{BASE_URL}/v1/batches"
|
||||
headers = {"Authorization": f"Bearer {API_KEY}"}
|
||||
|
||||
async with session.get(url, headers=headers) as response:
|
||||
if response.status == 200:
|
||||
result = await response.json()
|
||||
return result
|
||||
else:
|
||||
print(f"Error: Failed to get batch. Status code: {response.status}")
|
||||
return None
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_batches_operations():
|
||||
async with aiohttp.ClientSession() as session:
|
||||
|
@ -60,5 +73,15 @@ async def test_batches_operations():
|
|||
assert get_batch_response["id"] == batch_id
|
||||
assert get_batch_response["input_file_id"] == file_id
|
||||
|
||||
# test LIST Batches
|
||||
list_batch_response = await list_batches(session)
|
||||
print("response from list batch", list_batch_response)
|
||||
|
||||
assert list_batch_response is not None
|
||||
assert len(list_batch_response["data"]) > 0
|
||||
|
||||
element_0 = list_batch_response["data"][0]
|
||||
assert element_0["id"] is not None
|
||||
|
||||
# Test delete file
|
||||
await delete_file(session, file_id)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue