forked from phoenix/litellm-mirror
fix tg ai streaming
This commit is contained in:
parent
acbb611e89
commit
afc26df28f
3 changed files with 64 additions and 5 deletions
|
@ -12,7 +12,7 @@ import tiktoken
|
||||||
from concurrent.futures import ThreadPoolExecutor
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
encoding = tiktoken.get_encoding("cl100k_base")
|
encoding = tiktoken.get_encoding("cl100k_base")
|
||||||
from litellm.utils import get_secret, install_and_import, CustomStreamWrapper, read_config_args
|
from litellm.utils import get_secret, install_and_import, CustomStreamWrapper, read_config_args
|
||||||
from litellm.utils import get_ollama_response_stream, stream_to_string
|
from litellm.utils import get_ollama_response_stream, stream_to_string, together_ai_completion_streaming
|
||||||
####### ENVIRONMENT VARIABLES ###################
|
####### ENVIRONMENT VARIABLES ###################
|
||||||
dotenv.load_dotenv() # Loading env variables using dotenv
|
dotenv.load_dotenv() # Loading env variables using dotenv
|
||||||
new_response = {
|
new_response = {
|
||||||
|
@ -324,6 +324,14 @@ def completion(
|
||||||
|
|
||||||
## LOGGING
|
## LOGGING
|
||||||
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
|
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
|
||||||
|
if stream == True or optional_params['stream_tokens'] == True:
|
||||||
|
return together_ai_completion_streaming({
|
||||||
|
"model": model,
|
||||||
|
"prompt": prompt,
|
||||||
|
"request_type": "language-model-inference",
|
||||||
|
**optional_params
|
||||||
|
},
|
||||||
|
headers=headers)
|
||||||
res = requests.post(endpoint, json={
|
res = requests.post(endpoint, json={
|
||||||
"model": model,
|
"model": model,
|
||||||
"prompt": prompt,
|
"prompt": prompt,
|
||||||
|
@ -334,9 +342,6 @@ def completion(
|
||||||
)
|
)
|
||||||
## LOGGING
|
## LOGGING
|
||||||
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": res.text}, logger_fn=logger_fn)
|
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": res.text}, logger_fn=logger_fn)
|
||||||
if stream == True:
|
|
||||||
response = CustomStreamWrapper(res, "together_ai")
|
|
||||||
return response
|
|
||||||
|
|
||||||
completion_response = res.json()['output']['choices'][0]['text']
|
completion_response = res.json()['output']['choices'][0]['text']
|
||||||
prompt_tokens = len(encoding.encode(prompt))
|
prompt_tokens = len(encoding.encode(prompt))
|
||||||
|
|
|
@ -294,4 +294,20 @@ def test_petals():
|
||||||
# pytest.fail(f"Error occurred: {e}")
|
# pytest.fail(f"Error occurred: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
# import asyncio
|
||||||
|
# def test_completion_together_ai_stream():
|
||||||
|
# try:
|
||||||
|
# response = completion(model="togethercomputer/llama-2-70b-chat", messages=messages, custom_llm_provider="together_ai", stream=True, max_tokens=200)
|
||||||
|
# print(response)
|
||||||
|
# asyncio.run(get_response(response))
|
||||||
|
# # print(string_response)
|
||||||
|
# except Exception as e:
|
||||||
|
# pytest.fail(f"Error occurred: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
# async def get_response(generator):
|
||||||
|
# async for elem in generator:
|
||||||
|
# print(elem)
|
||||||
|
# return
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -857,3 +857,41 @@ async def stream_to_string(generator):
|
||||||
return response
|
return response
|
||||||
|
|
||||||
|
|
||||||
|
########## Together AI streaming #############################
|
||||||
|
async def together_ai_completion_streaming(json_data, headers):
|
||||||
|
session = aiohttp.ClientSession()
|
||||||
|
url = 'https://api.together.xyz/inference'
|
||||||
|
# headers = {
|
||||||
|
# 'Authorization': f'Bearer {together_ai_token}',
|
||||||
|
# 'Content-Type': 'application/json'
|
||||||
|
# }
|
||||||
|
|
||||||
|
# data = {
|
||||||
|
# "model": "togethercomputer/llama-2-70b-chat",
|
||||||
|
# "prompt": "write 1 page on the topic of the history of the united state",
|
||||||
|
# "max_tokens": 1000,
|
||||||
|
# "temperature": 0.7,
|
||||||
|
# "top_p": 0.7,
|
||||||
|
# "top_k": 50,
|
||||||
|
# "repetition_penalty": 1,
|
||||||
|
# "stream_tokens": True
|
||||||
|
# }
|
||||||
|
try:
|
||||||
|
async with session.post(url, json=json_data, headers=headers) as resp:
|
||||||
|
async for line in resp.content.iter_any():
|
||||||
|
# print(line)
|
||||||
|
if line:
|
||||||
|
try:
|
||||||
|
json_chunk = line.decode("utf-8")
|
||||||
|
json_string = json_chunk.split('data: ')[1]
|
||||||
|
# Convert the JSON string to a dictionary
|
||||||
|
data_dict = json.loads(json_string)
|
||||||
|
completion_response = data_dict['choices'][0]['text']
|
||||||
|
completion_obj ={ "role": "assistant", "content": ""}
|
||||||
|
completion_obj["content"] = completion_response
|
||||||
|
yield {"choices": [{"delta": completion_obj}]}
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
finally:
|
||||||
|
await session.close()
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue