Merge branch 'main' into main

This commit is contained in:
Ayush Somani 2023-12-06 10:32:59 +05:30 committed by GitHub
commit b0fcc5af67
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
61 changed files with 2782 additions and 712 deletions

View file

@ -35,6 +35,7 @@ jobs:
pip install numpydoc
pip install traceloop-sdk==0.0.69
pip install openai
pip install prisma
- save_cache:
paths:
- ./venv
@ -44,7 +45,7 @@ jobs:
command: |
cd litellm
python -m pip install types-requests types-setuptools types-redis
if ! python -m mypy . --ignore-missing-imports --explicit-package-bases; then
if ! python -m mypy . --ignore-missing-imports; then
echo "mypy detected errors"
exit 1
fi

View file

@ -5,7 +5,7 @@
<p align="center">Call all LLM APIs using the OpenAI format [Bedrock, Huggingface, Cohere, TogetherAI, Azure, OpenAI, etc.]
<br>
</p>
<h4 align="center"><a href="https://github.com/BerriAI/litellm/tree/main/litellm/proxy" target="_blank">OpenAI-Compatible Server</a></h4>
<h4 align="center"><a href="https://docs.litellm.ai/docs/simple_proxy" target="_blank">OpenAI Proxy Server</a></h4>
<h4 align="center">
<a href="https://pypi.org/project/litellm/" target="_blank">
<img src="https://img.shields.io/pypi/v/litellm.svg" alt="PyPI Version">

View file

@ -1,11 +1,14 @@
# Redis Cache
[**See Code**](https://github.com/BerriAI/litellm/blob/4d7ff1b33b9991dcf38d821266290631d9bcd2dd/litellm/caching.py#L71)
### Pre-requisites
Install redis
```
pip install redis
```
For the hosted version you can setup your own Redis DB here: https://app.redislabs.com/
### Usage
### Quick Start
```python
import litellm
from litellm import completion
@ -55,6 +58,11 @@ litellm.cache = cache # set litellm.cache to your cache
### Detecting Cached Responses
For resposes that were returned as cache hit, the response includes a param `cache` = True
:::info
Only valid for OpenAI <= 0.28.1 [Let us know if you still need this](https://github.com/BerriAI/litellm/issues/new?assignees=&labels=bug&projects=&template=bug_report.yml&title=%5BBug%5D%3A+)
:::
Example response with cache hit
```python
{

View file

@ -6,7 +6,7 @@ import TabItem from '@theme/TabItem';
## Common Params
LiteLLM accepts and translates the [OpenAI Chat Completion params](https://platform.openai.com/docs/api-reference/chat/create) across all providers.
### usage
### Usage
```python
import litellm
@ -23,7 +23,7 @@ response = litellm.completion(
print(response)
```
### translated OpenAI params
### Translated OpenAI params
This is a list of openai params we translate across providers.
This list is constantly being updated.
@ -40,7 +40,7 @@ This list is constantly being updated.
|AI21| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | |
|VertexAI| ✅ | ✅ | | ✅ | | | | | | |
|Bedrock| ✅ | ✅ | ✅ | ✅ | ✅ | | | | | |
|Sagemaker| ✅ | ✅ | | ✅ | | | | | | |
|Sagemaker| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | | |
|TogetherAI| ✅ | ✅ | ✅ | ✅ | ✅ | | | | | |
|AlephAlpha| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | | |
|Palm| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | | |
@ -185,6 +185,25 @@ def completion(
- `metadata`: *dict (optional)* - Any additional data you want to be logged when the call is made (sent to logging integrations, eg. promptlayer and accessible via custom callback function)
**CUSTOM MODEL COST**
- `input_cost_per_token`: *float (optional)* - The cost per input token for the completion call
- `output_cost_per_token`: *float (optional)* - The cost per output token for the completion call
**CUSTOM PROMPT TEMPLATE** (See [prompt formatting for more info](./prompt_formatting.md#format-prompt-yourself))
- `initial_prompt_value`: *string (optional)* - Initial string applied at the start of the input messages
- `roles`: *dict (optional)* - Dictionary specifying how to format the prompt based on the role + message passed in via `messages`.
- `final_prompt_value`: *string (optional)* - Final string applied at the end of the input messages
- `bos_token`: *string (optional)* - Initial string applied at the start of a sequence
- `eos_token`: *string (optional)* - Initial string applied at the end of a sequence
- `hf_model_name`: *string (optional)* - [Sagemaker Only] The corresponding huggingface name of the model, used to pull the right chat template for the model.
## Provider-specific Params
Providers might offer params not supported by OpenAI (e.g. top_k). You can pass those in 2 ways:
- via completion(): We'll pass the non-openai param, straight to the provider as part of the request body.

View file

@ -182,6 +182,17 @@ response = embedding(
input=["good morning from litellm"]
)
```
### Usage - Custom API Base
```python
from litellm import embedding
import os
os.environ['HUGGINGFACE_API_KEY'] = ""
response = embedding(
model='huggingface/microsoft/codebert-base',
input=["good morning from litellm"],
api_base = "https://p69xlsj6rpno5drq.us-east-1.aws.endpoints.huggingface.cloud"
)
```
| Model Name | Function Call | Required OS Variables |
|-----------------------|--------------------------------------------------------------|-------------------------------------------------|

View file

@ -85,6 +85,43 @@ print(response)
```
## Async Callback Functions
LiteLLM currently supports just async success callback functions for async completion/embedding calls.
```python
import asyncio, litellm
async def async_test_logging_fn(kwargs, completion_obj, start_time, end_time):
print(f"On Async Success!")
async def test_chat_openai():
try:
# litellm.set_verbose = True
litellm.success_callback = [async_test_logging_fn]
response = await litellm.acompletion(model="gpt-3.5-turbo",
messages=[{
"role": "user",
"content": "Hi 👋 - i'm openai"
}],
stream=True)
async for chunk in response:
continue
except Exception as e:
print(e)
pytest.fail(f"An error occurred - {str(e)}")
asyncio.run(test_chat_openai())
```
:::info
We're actively trying to expand this to other event types. [Tell us if you need this!](https://github.com/BerriAI/litellm/issues/1007)
:::
## What's in kwargs?
Notice we pass in a kwargs argument to custom callback.

View file

@ -1,5 +1,5 @@
# AWS Sagemaker
LiteLLM supports Llama2 on Sagemaker
LiteLLM supports All Sagemaker Huggingface Jumpstart Models
### API KEYS
```python
@ -42,6 +42,27 @@ response = completion(
)
```
### Specifying HF Model Name
To apply the correct prompt template for your sagemaker deployment, pass in it's hf model name as well.
```python
import os
from litellm import completion
os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""
response = completion(
model="sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b",
messages=messages,
temperature=0.2,
max_tokens=80,
hf_model_name="meta-llama/Llama-2-7b",
)
```
### Usage - Streaming
Sagemaker currently does not support streaming - LiteLLM fakes streaming by returning chunks of the response string

View file

@ -49,8 +49,8 @@ Below are examples on how to call replicate LLMs using liteLLM
Model Name | Function Call | Required OS Variables |
-----------------------------|----------------------------------------------------------------|--------------------------------------|
replicate/llama-2-70b-chat | `completion(model='replicate/llama-2-70b-chat:2796ee9483c3fd7aa2e171d38f4ca12251a30609463dcfd4cd76703f22e96cdf', messages)` | `os.environ['REPLICATE_API_KEY']` |
a16z-infra/llama-2-13b-chat| `completion(model='replicate/a16z-infra/llama-2-13b-chat:2a7f981751ec7fdf87b5b91ad4db53683a98082e9ff7bfd12c8cd5ea85980a52', messages)`| `os.environ['REPLICATE_API_KEY']` |
replicate/llama-2-70b-chat | `completion(model='replicate/llama-2-70b-chat:2796ee9483c3fd7aa2e171d38f4ca12251a30609463dcfd4cd76703f22e96cdf', messages, supports_system_prompt=True)` | `os.environ['REPLICATE_API_KEY']` |
a16z-infra/llama-2-13b-chat| `completion(model='replicate/a16z-infra/llama-2-13b-chat:2a7f981751ec7fdf87b5b91ad4db53683a98082e9ff7bfd12c8cd5ea85980a52', messages, supports_system_prompt=True)`| `os.environ['REPLICATE_API_KEY']` |
replicate/vicuna-13b | `completion(model='replicate/vicuna-13b:6282abe6a492de4145d7bb601023762212f9ddbbe78278bd6771c8b3b2f2a13b', messages)` | `os.environ['REPLICATE_API_KEY']` |
daanelson/flan-t5-large | `completion(model='replicate/daanelson/flan-t5-large:ce962b3f6792a57074a601d3979db5839697add2e4e02696b3ced4c022d4767f', messages)` | `os.environ['REPLICATE_API_KEY']` |
custom-llm | `completion(model='replicate/custom-llm-version-id', messages)` | `os.environ['REPLICATE_API_KEY']` |

View file

@ -12,17 +12,27 @@ model_list:
litellm_settings:
set_verbose: True
cache: # init cache
type: redis # tell litellm to use redis caching
type: redis # tell litellm to use redis caching (Also: `pip install redis`)
```
#### Step 2: Add Redis Credentials to .env
LiteLLM requires the following REDIS credentials in your env to enable caching
Set either `REDIS_URL` or the `REDIS_HOST` in your os environment, to enable caching.
```shell
REDIS_URL = "" # REDIS_URL='redis://username:password@hostname:port/database'
## OR ##
REDIS_HOST = "" # REDIS_HOST='redis-18841.c274.us-east-1-3.ec2.cloud.redislabs.com'
REDIS_PORT = "" # REDIS_PORT='18841'
REDIS_PASSWORD = "" # REDIS_PASSWORD='liteLlmIsAmazing'
```
**Additional kwargs**
You can pass in any additional redis.Redis arg, by storing the variable + value in your os environment, like this:
```shell
REDIS_<redis-kwarg-name> = ""
```
[**See how it's read from the environment**](https://github.com/BerriAI/litellm/blob/4d7ff1b33b9991dcf38d821266290631d9bcd2dd/litellm/_redis.py#L40)
#### Step 3: Run proxy with config
```shell
$ litellm --config /path/to/config.yaml

View file

@ -1,3 +1,7 @@
import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Proxy Config.yaml
Set model list, `api_base`, `api_key`, `temperature` & proxy server settings (`master-key`) on the config.yaml.
@ -8,84 +12,71 @@ Set model list, `api_base`, `api_key`, `temperature` & proxy server settings (`m
| `general_settings` | Server settings, example setting `master_key: sk-my_special_key` |
| `environment_variables` | Environment Variables example, `REDIS_HOST`, `REDIS_PORT` |
#### Example Config
## Quick Start
Set a model alias for your deployments.
In the `config.yaml` the model_name parameter is the user-facing name to use for your deployment.
In the config below requests with:
- `model=vllm-models` will route to `openai/facebook/opt-125m`.
- `model=gpt-3.5-turbo` will load balance between `azure/gpt-turbo-small-eu` and `azure/gpt-turbo-small-ca`
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
- model_name: gpt-3.5-turbo # user-facing model alias
litellm_params: # all params accepted by litellm.completion() - https://docs.litellm.ai/docs/completion/input
model: azure/gpt-turbo-small-eu
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
api_key:
api_key: "os.environ/AZURE_API_KEY_EU" # does os.getenv("AZURE_API_KEY_EU")
rpm: 6 # Rate limit for this deployment: in requests per minute (rpm)
- model_name: bedrock-claude-v1
litellm_params:
model: bedrock/anthropic.claude-instant-v1
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-ca
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
api_key:
api_key: "os.environ/AZURE_API_KEY_CA"
rpm: 6
- model_name: gpt-3.5-turbo
- model_name: vllm-models
litellm_params:
model: azure/gpt-turbo-large
api_base: https://openai-france-1234.openai.azure.com/
api_key:
model: openai/facebook/opt-125m # the `openai/` prefix tells litellm it's openai compatible
api_base: http://0.0.0.0:8000
rpm: 1440
model_info:
version: 2
litellm_settings:
litellm_settings: # module level litellm settings - https://github.com/BerriAI/litellm/blob/main/litellm/__init__.py
drop_params: True
set_verbose: True
general_settings:
master_key: sk-1234 # [OPTIONAL] Only use this if you to require all calls to contain this key (Authorization: Bearer sk-1234)
environment_variables:
OPENAI_API_KEY: sk-123
REPLICATE_API_KEY: sk-cohere-is-okay
REDIS_HOST: redis-16337.c322.us-east-1-2.ec2.cloud.redislabs.com
REDIS_PORT: "16337"
REDIS_PASSWORD:
```
### Config for Multiple Models - GPT-4, Claude-2
Here's how you can use multiple llms with one proxy `config.yaml`.
#### Step 1: Setup Config
```yaml
model_list:
- model_name: zephyr-alpha # the 1st model is the default on the proxy
litellm_params: # params for litellm.completion() - https://docs.litellm.ai/docs/completion/input#input---request-body
model: huggingface/HuggingFaceH4/zephyr-7b-alpha
api_base: http://0.0.0.0:8001
- model_name: gpt-4
litellm_params:
model: gpt-4
api_key: sk-1233
- model_name: claude-2
litellm_params:
model: claude-2
api_key: sk-claude
```
:::info
The proxy uses the first model in the config as the default model - in this config the default model is `zephyr-alpha`
:::
#### Step 2: Start Proxy with config
```shell
$ litellm --config /path/to/config.yaml
```
#### Step 3: Use proxy
Curl Command
### Using Proxy - Curl Request, OpenAI Package, Langchain, Langchain JS
Calling a model group
<Tabs>
<TabItem value="Curl" label="Curl Request">
Sends request to model where `model_name=gpt-3.5-turbo` on config.yaml.
If multiple with `model_name=gpt-3.5-turbo` does [Load Balancing](https://docs.litellm.ai/docs/proxy/load_balancing)
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "zephyr-alpha",
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
@ -95,33 +86,109 @@ curl --location 'http://0.0.0.0:8000/chat/completions' \
}
'
```
</TabItem>
### Config for Embedding Models - xorbitsai/inference
<TabItem value="Curl2" label="Curl Request: Bedrock">
Here's how you can use multiple llms with one proxy `config.yaml`.
Here is how [LiteLLM calls OpenAI Compatible Embedding models](https://docs.litellm.ai/docs/embedding/supported_embedding#openai-compatible-embedding-models)
Sends this request to model where `model_name=bedrock-claude-v1` on config.yaml
#### Config
```yaml
model_list:
- model_name: custom_embedding_model
litellm_params:
model: openai/custom_embedding # the `openai/` prefix tells litellm it's openai compatible
api_base: http://0.0.0.0:8000/
- model_name: custom_embedding_model
litellm_params:
model: openai/custom_embedding # the `openai/` prefix tells litellm it's openai compatible
api_base: http://0.0.0.0:8001/
```
Run the proxy using this config
```shell
$ litellm --config /path/to/config.yaml
curl --location 'http://0.0.0.0:8000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "bedrock-claude-v1",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}
'
```
</TabItem>
<TabItem value="openai" label="OpenAI v1.0.0+">
```python
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:8000"
)
# Sends request to model where `model_name=gpt-3.5-turbo` on config.yaml.
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)
# Sends this request to model where `model_name=bedrock-claude-v1` on config.yaml
response = client.chat.completions.create(model="bedrock-claude-v1", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)
```
### Save Model-specific params (API Base, API Keys, Temperature, Headers etc.)
</TabItem>
<TabItem value="langchain" label="Langchain Python">
```python
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
# Sends request to model where `model_name=gpt-3.5-turbo` on config.yaml.
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:8000", # set openai base to the proxy
model = "gpt-3.5-turbo",
temperature=0.1
)
response = chat(messages)
print(response)
# Sends request to model where `model_name=bedrock-claude-v1` on config.yaml.
claude_chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:8000", # set openai base to the proxy
model = "bedrock-claude-v1",
temperature=0.1
)
response = claude_chat(messages)
print(response)
```
</TabItem>
</Tabs>
## Save Model-specific params (API Base, API Keys, Temperature, Headers etc.)
You can use the config to save model-specific information like api_base, api_key, temperature, max_tokens, etc.
[**All input params**](https://docs.litellm.ai/docs/completion/input#input-params-1)
**Step 1**: Create a `config.yaml` file
```yaml
model_list:
@ -152,9 +219,11 @@ model_list:
$ litellm --config /path/to/config.yaml
```
### Load API Keys from Vault
## Load API Keys
If you have secrets saved in Azure Vault, etc. and don't want to expose them in the config.yaml, here's how to load model-specific keys from the environment.
### Load API Keys from Environment
If you have secrets saved in your environment, and don't want to expose them in the config.yaml, here's how to load model-specific keys from the environment.
```python
os.environ["AZURE_NORTH_AMERICA_API_KEY"] = "your-azure-api-key"
@ -174,30 +243,42 @@ model_list:
s/o to [@David Manouchehri](https://www.linkedin.com/in/davidmanouchehri/) for helping with this.
### Config for setting Model Aliases
### Load API Keys from Azure Vault
Set a model alias for your deployments.
1. Install Proxy dependencies
```bash
$ pip install litellm[proxy] litellm[extra_proxy]
```
In the `config.yaml` the model_name parameter is the user-facing name to use for your deployment.
In the config below requests with `model=gpt-4` will route to `ollama/llama2`
2. Save Azure details in your environment
```bash
export["AZURE_CLIENT_ID"]="your-azure-app-client-id"
export["AZURE_CLIENT_SECRET"]="your-azure-app-client-secret"
export["AZURE_TENANT_ID"]="your-azure-tenant-id"
export["AZURE_KEY_VAULT_URI"]="your-azure-key-vault-uri"
```
3. Add to proxy config.yaml
```yaml
model_list:
- model_name: text-davinci-003
- model_name: "my-azure-models" # model alias
litellm_params:
model: ollama/zephyr
- model_name: gpt-4
litellm_params:
model: ollama/llama2
- model_name: gpt-3.5-turbo
litellm_params:
model: ollama/llama2
model: "azure/<your-deployment-name>"
api_key: "os.environ/AZURE-API-KEY" # reads from key vault - get_secret("AZURE_API_KEY")
api_base: "os.environ/AZURE-API-BASE" # reads from key vault - get_secret("AZURE_API_BASE")
general_settings:
use_azure_key_vault: True
```
You can now test this by starting your proxy:
```bash
litellm --config /path/to/config.yaml
```
### Set Custom Prompt Templates
LiteLLM by default checks if a model has a [prompt template and applies it](./completion/prompt_formatting.md) (e.g. if a huggingface model has a saved chat template in it's tokenizer_config.json). However, you can also set a custom prompt template on your proxy in the `config.yaml`:
LiteLLM by default checks if a model has a [prompt template and applies it](../completion/prompt_formatting.md) (e.g. if a huggingface model has a saved chat template in it's tokenizer_config.json). However, you can also set a custom prompt template on your proxy in the `config.yaml`:
**Step 1**: Save your prompt template in a `config.yaml`
```yaml

View file

@ -3,38 +3,39 @@
Load balance multiple instances of the same model
The proxy will handle routing requests (using LiteLLM's Router). **Set `rpm` in the config if you want maximize throughput**
## Quick Start - Load Balancing
### Step 1 - Set deployments on config
#### Example config
requests with `model=gpt-3.5-turbo` will be routed across multiple instances of `azure/gpt-3.5-turbo`
**Example config below**. Here requests with `model=gpt-3.5-turbo` will be routed across multiple instances of `azure/gpt-3.5-turbo`
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-eu
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
api_key:
model: azure/<your-deployment-name>
api_base: <your-azure-endpoint>
api_key: <your-azure-api-key>
rpm: 6 # Rate limit for this deployment: in requests per minute (rpm)
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-ca
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
api_key:
api_key: <your-azure-api-key>
rpm: 6
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-large
api_base: https://openai-france-1234.openai.azure.com/
api_key:
api_key: <your-azure-api-key>
rpm: 1440
```
#### Step 2: Start Proxy with config
### Step 2: Start Proxy with config
```shell
$ litellm --config /path/to/config.yaml
```
#### Step 3: Use proxy
### Step 3: Use proxy - Call a model group [Load Balancing]
Curl Command
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
@ -51,7 +52,28 @@ curl --location 'http://0.0.0.0:8000/chat/completions' \
'
```
### Fallbacks + Cooldowns + Retries + Timeouts
### Usage - Call a specific model deployment
If you want to call a specific model defined in the `config.yaml`, you can call the `litellm_params: model`
In this example it will call `azure/gpt-turbo-small-ca`. Defined in the config on Step 1
```bash
curl --location 'http://0.0.0.0:8000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "azure/gpt-turbo-small-ca",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}
'
```
## Fallbacks + Cooldowns + Retries + Timeouts
If a call fails after num_retries, fall back to another model group.
@ -85,7 +107,7 @@ model_list:
litellm_settings:
num_retries: 3 # retry call 3 times on each model_name (e.g. zephyr-beta)
request_timeout: 10 # raise Timeout error if call takes longer than 10s
request_timeout: 10 # raise Timeout error if call takes longer than 10s. Sets litellm.request_timeout
fallbacks: [{"zephyr-beta": ["gpt-3.5-turbo"]}] # fallback to gpt-3.5-turbo if call fails num_retries
context_window_fallbacks: [{"zephyr-beta": ["gpt-3.5-turbo-16k"]}, {"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]}] # fallback to gpt-3.5-turbo-16k if context window error
allowed_fails: 3 # cooldown model if it fails > 1 call in a minute.
@ -107,7 +129,71 @@ curl --location 'http://0.0.0.0:8000/chat/completions' \
"fallbacks": [{"zephyr-beta": ["gpt-3.5-turbo"]}],
"context_window_fallbacks": [{"zephyr-beta": ["gpt-3.5-turbo"]}],
"num_retries": 2,
"request_timeout": 10
"timeout": 10
}
'
```
## Custom Timeouts, Stream Timeouts - Per Model
For each model you can set `timeout` & `stream_timeout` under `litellm_params`
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-eu
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
api_key: <your-key>
timeout: 0.1 # timeout in (seconds)
stream_timeout: 0.01 # timeout for stream requests (seconds)
max_retries: 5
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-ca
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
api_key:
timeout: 0.1 # timeout in (seconds)
stream_timeout: 0.01 # timeout for stream requests (seconds)
max_retries: 5
```
#### Start Proxy
```shell
$ litellm --config /path/to/config.yaml
```
## Health Check LLMs on Proxy
Use this to health check all LLMs defined in your config.yaml
#### Request
Make a GET Request to `/health` on the proxy
```shell
curl --location 'http://0.0.0.0:8000/health'
```
You can also run `litellm -health` it makes a `get` request to `http://0.0.0.0:8000/health` for you
```
litellm --health
```
#### Response
```shell
{
"healthy_endpoints": [
{
"model": "azure/gpt-35-turbo",
"api_base": "https://my-endpoint-canada-berri992.openai.azure.com/"
},
{
"model": "azure/gpt-35-turbo",
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com/"
}
],
"unhealthy_endpoints": [
{
"model": "azure/gpt-35-turbo",
"api_base": "https://openai-france-1234.openai.azure.com/"
}
]
}
```

View file

@ -1,5 +1,125 @@
# Logging - OpenTelemetry, Langfuse, ElasticSearch
Log Proxy Input, Output, Exceptions to Langfuse, OpenTelemetry
# Logging - Custom Callbacks, OpenTelemetry, Langfuse
Log Proxy Input, Output, Exceptions using Custom Callbacks, Langfuse, OpenTelemetry
## Custom Callbacks
Use this when you want to run custom callbacks in `python`
### Step 1 - Create your custom `litellm` callback class
We use `litellm.integrations.custom_logger` for this, **more details about litellm custom callbacks [here](https://docs.litellm.ai/docs/observability/custom_callback)**
Define your custom callback class in a python file.
Here's an example custom logger for tracking `key, user, model, prompt, response, tokens, cost`. We create a file called `custom_callbacks.py` and initialize `proxy_handler_instance`
```python
from litellm.integrations.custom_logger import CustomLogger
import litellm
# This file includes the custom callbacks for LiteLLM Proxy
# Once defined, these can be passed in proxy_config.yaml
class MyCustomHandler(CustomLogger):
def log_pre_api_call(self, model, messages, kwargs):
print(f"Pre-API Call")
def log_post_api_call(self, kwargs, response_obj, start_time, end_time):
print(f"Post-API Call")
def log_stream_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Stream")
def log_success_event(self, kwargs, response_obj, start_time, end_time):
# Logging key details: key, user, model, prompt, response, tokens, cost
print("\nOn Success")
# Access kwargs passed to litellm.completion()
model = kwargs.get("model", None)
messages = kwargs.get("messages", None)
user = kwargs.get("user", None)
# Access litellm_params passed to litellm.completion(), example access `metadata`
litellm_params = kwargs.get("litellm_params", {})
metadata = litellm_params.get("metadata", {}) # Headers passed to LiteLLM proxy
# Calculate cost using litellm.completion_cost()
cost = litellm.completion_cost(completion_response=response_obj)
usage = response_obj["usage"] # Tokens used in response
print(
f"""
Model: {model},
Messages: {messages},
User: {user},
Usage: {usage},
Cost: {cost},
Response: {response}
Proxy Metadata: {metadata}
"""
)
return
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Failure")
proxy_handler_instance = MyCustomHandler()
# Set litellm.callbacks = [proxy_handler_instance] on the proxy
# need to set litellm.callbacks = [proxy_handler_instance] # on the proxy
```
### Step 2 - Pass your custom callback class in `config.yaml`
We pass the custom callback class defined in **Step1** to the config.yaml.
Set `callbacks` to `python_filename.logger_instance_name`
In the config below, we pass
- python_filename: `custom_callbacks.py`
- logger_instance_name: `proxy_handler_instance`. This is defined in Step 1
`callbacks: custom_callbacks.proxy_handler_instance`
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
litellm_settings:
callbacks: custom_callbacks.proxy_handler_instance # sets litellm.callbacks = [proxy_handler_instance]
```
### Step 3 - Start proxy + test request
```shell
litellm --config proxy_config.yaml
```
```shell
curl --location 'http://0.0.0.0:8000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "good morning good sir"
}
],
"user": "ishaan-app",
"temperature": 0.2
}'
```
#### Resulting Log on Proxy
```shell
On Success
Model: gpt-3.5-turbo,
Messages: [{'role': 'user', 'content': 'good morning good sir'}],
User: ishaan-app,
Usage: {'completion_tokens': 10, 'prompt_tokens': 11, 'total_tokens': 21},
Cost: 3.65e-05,
Response: {'id': 'chatcmpl-8S8avKJ1aVBg941y5xzGMSKrYCMvN', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'Good morning! How can I assist you today?', 'role': 'assistant'}}], 'created': 1701716913, 'model': 'gpt-3.5-turbo-0613', 'object': 'chat.completion', 'system_fingerprint': None, 'usage': {'completion_tokens': 10, 'prompt_tokens': 11, 'total_tokens': 21}}
Proxy Metadata: {'user_api_key': None, 'headers': Headers({'host': '0.0.0.0:8000', 'user-agent': 'curl/7.88.1', 'accept': '*/*', 'authorization': 'Bearer sk-1234', 'content-length': '199', 'content-type': 'application/x-www-form-urlencoded'}), 'model_group': 'gpt-3.5-turbo', 'deployment': 'gpt-3.5-turbo-ModelID-gpt-3.5-turbo'}
```
## OpenTelemetry, ElasticSearch
### Step 1 Start OpenTelemetry Collecter Docker Container

View file

@ -0,0 +1,74 @@
# Model Management
Add new models + Get model info without restarting proxy.
## Get Model Information
Retrieve detailed information about each model listed in the `/models` endpoint, including descriptions from the `config.yaml` file, and additional model info (e.g. max tokens, cost per input token, etc.) pulled the model_info you set and the litellm model cost map. Sensitive details like API keys are excluded for security purposes.
<Tabs
defaultValue="curl"
values={[
{ label: 'cURL', value: 'curl', },
]}>
<TabItem value="curl">
```bash
curl -X GET "http://0.0.0.0:8000/model/info" \
-H "accept: application/json" \
```
</TabItem>
</Tabs>
## Add a New Model
Add a new model to the list in the `config.yaml` by providing the model parameters. This allows you to update the model list without restarting the proxy.
<Tabs
defaultValue="curl"
values={[
{ label: 'cURL', value: 'curl', },
]}>
<TabItem value="curl">
```bash
curl -X POST "http://0.0.0.0:8000/model/new" \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d '{ "model_name": "azure-gpt-turbo", "litellm_params": {"model": "azure/gpt-3.5-turbo", "api_key": "os.environ/AZURE_API_KEY", "api_base": "my-azure-api-base"} }'
```
</TabItem>
</Tabs>
### Model Parameters Structure
When adding a new model, your JSON payload should conform to the following structure:
- `model_name`: The name of the new model (required).
- `litellm_params`: A dictionary containing parameters specific to the Litellm setup (required).
- `model_info`: An optional dictionary to provide additional information about the model.
Here's an example of how to structure your `ModelParams`:
```json
{
"model_name": "my_awesome_model",
"litellm_params": {
"some_parameter": "some_value",
"another_parameter": "another_value"
},
"model_info": {
"author": "Your Name",
"version": "1.0",
"description": "A brief description of the model."
}
}
```
---
Keep in mind that as both endpoints are in [BETA], you may need to visit the associated GitHub issues linked in the API descriptions to check for updates or provide feedback:
- Get Model Information: [Issue #933](https://github.com/BerriAI/litellm/issues/933)
- Add a New Model: [Issue #964](https://github.com/BerriAI/litellm/issues/964)
Feedback on the beta endpoints is valuable and helps improve the API for all users.

View file

@ -43,7 +43,7 @@ litellm --test
This will now automatically route any requests for gpt-3.5-turbo to bigcode starcoder, hosted on huggingface inference endpoints.
### Using LiteLLM Proxy - Curl Request, OpenAI Package
### Using LiteLLM Proxy - Curl Request, OpenAI Package, Langchain, Langchain JS
<Tabs>
<TabItem value="Curl" label="Curl Request">
@ -84,109 +84,40 @@ print(response)
```
</TabItem>
<TabItem value="langchain" label="Langchain">
```python
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:8000", # set openai_api_base to the LiteLLM Proxy
model = "gpt-3.5-turbo",
temperature=0.1
)
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
response = chat(messages)
print(response)
```
</TabItem>
</Tabs>
## Quick Start - LiteLLM Proxy + Config.yaml
The config allows you to create a model list and set `api_base`, `max_tokens` (all litellm params). See more details about the config [here](https://docs.litellm.ai/docs/proxy/configs)
### Create a Config for LiteLLM Proxy
Example config
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/<your-deployment-name>
api_base: <your-azure-api-endpoint>
api_key: <your-azure-api-key>
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-ca
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
api_key: <your-azure-api-key>
```
### Run proxy with config
```shell
litellm --config your_config.yaml
```
## Quick Start Docker Image: Github Container Registry
### Pull the litellm ghcr docker image
See the latest available ghcr docker image here:
https://github.com/berriai/litellm/pkgs/container/litellm
```shell
docker pull ghcr.io/berriai/litellm:main-v1.10.1
```
### Run the Docker Image
```shell
docker run ghcr.io/berriai/litellm:main-v1.10.0
```
#### Run the Docker Image with LiteLLM CLI args
See all supported CLI args [here](https://docs.litellm.ai/docs/proxy/cli):
Here's how you can run the docker image and pass your config to `litellm`
```shell
docker run ghcr.io/berriai/litellm:main-v1.10.0 --config your_config.yaml
```
Here's how you can run the docker image and start litellm on port 8002 with `num_workers=8`
```shell
docker run ghcr.io/berriai/litellm:main-v1.10.0 --port 8002 --num_workers 8
```
#### Run the Docker Image using docker compose
**Step 1**
(Recommended) Use the `docker-compose.yml` given in the project root. e.g. https://github.com/BerriAI/litellm/blob/main/docker-compose.yml
Here's an example `docker-compose.yml` file
```yaml
version: "3.9"
services:
litellm:
image: ghcr.io/berriai/litellm:main-v1.10.3
ports:
- "8000:8000" # Map the container port to the host, change the host port if necessary
volumes:
- ./litellm-config.yaml:/app/config.yaml # Mount the local configuration file
# You can change the port or number of workers as per your requirements or pass any new supported CLI augument. Make sure the port passed here matches with the container port defined above in `ports` value
command: [ "--config", "/app/config.yaml", "--port", "8000", "--num_workers", "8" ]
# ...rest of your docker-compose config if any
```
**Step 2**
Create a `litellm-config.yaml` file with your LiteLLM config relative to your `docker-compose.yml` file.
Check the config doc [here](https://docs.litellm.ai/docs/proxy/configs)
**Step 3**
Run the command `docker-compose up` or `docker compose up` as per your docker installation.
> Use `-d` flag to run the container in detached mode (background) e.g. `docker compose up -d`
Your LiteLLM container should be running now on the defined port e.g. `8000`.
## Server Endpoints
- POST `/chat/completions` - chat completions endpoint to call 100+ LLMs
- POST `/completions` - completions endpoint
- POST `/embeddings` - embedding endpoint for Azure, OpenAI, Huggingface endpoints
- GET `/models` - available models on server
- POST `/key/generate` - generate a key to access the proxy
## Supported LLMs
### Supported LLMs
All LiteLLM supported LLMs are supported on the Proxy. Seel all [supported llms](https://docs.litellm.ai/docs/providers)
<Tabs>
<TabItem value="bedrock" label="AWS Bedrock">
@ -338,6 +269,105 @@ $ litellm --model command-nightly
</Tabs>
## Quick Start - LiteLLM Proxy + Config.yaml
The config allows you to create a model list and set `api_base`, `max_tokens` (all litellm params). See more details about the config [here](https://docs.litellm.ai/docs/proxy/configs)
### Create a Config for LiteLLM Proxy
Example config
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/<your-deployment-name>
api_base: <your-azure-api-endpoint>
api_key: <your-azure-api-key>
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-ca
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
api_key: <your-azure-api-key>
```
### Run proxy with config
```shell
litellm --config your_config.yaml
```
## Quick Start Docker Image: Github Container Registry
### Pull the litellm ghcr docker image
See the latest available ghcr docker image here:
https://github.com/berriai/litellm/pkgs/container/litellm
```shell
docker pull ghcr.io/berriai/litellm:main-v1.10.1
```
### Run the Docker Image
```shell
docker run ghcr.io/berriai/litellm:main-v1.10.0
```
#### Run the Docker Image with LiteLLM CLI args
See all supported CLI args [here](https://docs.litellm.ai/docs/proxy/cli):
Here's how you can run the docker image and pass your config to `litellm`
```shell
docker run ghcr.io/berriai/litellm:main-v1.10.0 --config your_config.yaml
```
Here's how you can run the docker image and start litellm on port 8002 with `num_workers=8`
```shell
docker run ghcr.io/berriai/litellm:main-v1.10.0 --port 8002 --num_workers 8
```
#### Run the Docker Image using docker compose
**Step 1**
(Recommended) Use the `docker-compose.yml` given in the project root. e.g. https://github.com/BerriAI/litellm/blob/main/docker-compose.yml
Here's an example `docker-compose.yml` file
```yaml
version: "3.9"
services:
litellm:
image: ghcr.io/berriai/litellm:main-v1.10.3
ports:
- "8000:8000" # Map the container port to the host, change the host port if necessary
volumes:
- ./litellm-config.yaml:/app/config.yaml # Mount the local configuration file
# You can change the port or number of workers as per your requirements or pass any new supported CLI augument. Make sure the port passed here matches with the container port defined above in `ports` value
command: [ "--config", "/app/config.yaml", "--port", "8000", "--num_workers", "8" ]
# ...rest of your docker-compose config if any
```
**Step 2**
Create a `litellm-config.yaml` file with your LiteLLM config relative to your `docker-compose.yml` file.
Check the config doc [here](https://docs.litellm.ai/docs/proxy/configs)
**Step 3**
Run the command `docker-compose up` or `docker compose up` as per your docker installation.
> Use `-d` flag to run the container in detached mode (background) e.g. `docker compose up -d`
Your LiteLLM container should be running now on the defined port e.g. `8000`.
## Server Endpoints
- POST `/chat/completions` - chat completions endpoint to call 100+ LLMs
- POST `/completions` - completions endpoint
- POST `/embeddings` - embedding endpoint for Azure, OpenAI, Huggingface endpoints
- GET `/models` - available models on server
- POST `/key/generate` - generate a key to access the proxy
## Using with OpenAI compatible projects
Set `base_url` to the LiteLLM Proxy server
@ -511,36 +541,3 @@ https://api.openai.com/v1/chat/completions \
-H 'content-type: application/json' -H 'Authorization: Bearer sk-qnWGUIW9****************************************' \
-d '{"model": "gpt-3.5-turbo", "messages": [{"role": "user", "content": "this is a test request, write a short poem"}]}'
```
## Health Check LLMs on Proxy
Use this to health check all LLMs defined in your config.yaml
#### Request
```shell
curl --location 'http://0.0.0.0:8000/health'
```
You can also run `litellm -health` it makes a `get` request to `http://0.0.0.0:8000/health` for you
```
litellm --health
```
#### Response
```shell
{
"healthy_endpoints": [
{
"model": "azure/gpt-35-turbo",
"api_base": "https://my-endpoint-canada-berri992.openai.azure.com/"
},
{
"model": "azure/gpt-35-turbo",
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com/"
}
],
"unhealthy_endpoints": [
{
"model": "azure/gpt-35-turbo",
"api_base": "https://openai-france-1234.openai.azure.com/"
}
]
}
```

View file

@ -1,5 +1,4 @@
# Cost Tracking & Virtual Keys
# Key Management
Track Spend and create virtual keys for the proxy
Grant other's temporary access to your proxy, with keys that expire after a set duration.

View file

@ -356,6 +356,16 @@ router = Router(model_list=model_list,
print(response)
```
**Pass in Redis URL, additional kwargs**
```python
router = Router(model_list: Optional[list] = None,
## CACHING ##
redis_url=os.getenv("REDIS_URL")",
cache_kwargs= {}, # additional kwargs to pass to RedisCache (see caching.py)
cache_responses=True)
```
#### Default litellm.completion/embedding params
You can also set default params for litellm completion/embedding calls. Here's how to do that:

View file

@ -99,6 +99,7 @@ const sidebars = {
"proxy/configs",
"proxy/load_balancing",
"proxy/virtual_keys",
"proxy/model_management",
"proxy/caching",
"proxy/logging",
"proxy/cli",

View file

@ -8,6 +8,7 @@ input_callback: List[Union[str, Callable]] = []
success_callback: List[Union[str, Callable]] = []
failure_callback: List[Union[str, Callable]] = []
callbacks: List[Callable] = []
_async_success_callback: List[Callable] = [] # internal variable - async custom callbacks are routed here.
pre_call_rules: List[Callable] = []
post_call_rules: List[Callable] = []
set_verbose = False

85
litellm/_redis.py Normal file
View file

@ -0,0 +1,85 @@
# +-----------------------------------------------+
# | |
# | Give Feedback / Get Help |
# | https://github.com/BerriAI/litellm/issues/new |
# | |
# +-----------------------------------------------+
#
# Thank you users! We ❤️ you! - Krrish & Ishaan
# s/o [@Frank Colson](https://www.linkedin.com/in/frank-colson-422b9b183/) for this redis implementation
import os
import inspect
import redis, litellm
def _get_redis_kwargs():
arg_spec = inspect.getfullargspec(redis.Redis)
# Only allow primitive arguments
exclude_args = {
"self",
"connection_pool",
"retry",
}
include_args = [
"url"
]
available_args = [
x for x in arg_spec.args if x not in exclude_args
] + include_args
return available_args
def _get_redis_env_kwarg_mapping():
PREFIX = "REDIS_"
return {
f"{PREFIX}{x.upper()}": x for x in _get_redis_kwargs()
}
def _redis_kwargs_from_environment():
mapping = _get_redis_env_kwarg_mapping()
return_dict = {}
for k, v in mapping.items():
value = litellm.get_secret(k, default_value=None) # check os.environ/key vault
if value is not None:
return_dict[v] = value
return return_dict
def get_redis_url_from_environment():
if "REDIS_URL" in os.environ:
return os.environ["REDIS_URL"]
if "REDIS_HOST" not in os.environ or "REDIS_PORT" not in os.environ:
raise ValueError("Either 'REDIS_URL' or both 'REDIS_HOST' and 'REDIS_PORT' must be specified for Redis.")
if "REDIS_PASSWORD" in os.environ:
redis_password = f":{os.environ['REDIS_PASSWORD']}@"
else:
redis_password = ""
return f"redis://{redis_password}{os.environ['REDIS_HOST']}:{os.environ['REDIS_PORT']}"
def get_redis_client(**env_overrides):
redis_kwargs = {
**_redis_kwargs_from_environment(),
**env_overrides,
}
if "url" in redis_kwargs and redis_kwargs['url'] is not None:
redis_kwargs.pop("host", None)
redis_kwargs.pop("port", None)
redis_kwargs.pop("db", None)
redis_kwargs.pop("password", None)
return redis.Redis.from_url(**redis_kwargs)
elif "host" not in redis_kwargs or redis_kwargs['host'] is None:
raise ValueError("Either 'host' or 'url' must be specified for redis.")
return redis.Redis(**redis_kwargs)

View file

@ -69,10 +69,22 @@ class InMemoryCache(BaseCache):
class RedisCache(BaseCache):
def __init__(self, host, port, password):
def __init__(self, host=None, port=None, password=None, **kwargs):
import redis
# if users don't provider one, use the default litellm cache
self.redis_client = redis.Redis(host=host, port=port, password=password)
from ._redis import get_redis_client
redis_kwargs = {}
if host is not None:
redis_kwargs["host"] = host
if port is not None:
redis_kwargs["port"] = port
if password is not None:
redis_kwargs["password"] = password
redis_kwargs.update(kwargs)
self.redis_client = get_redis_client(**redis_kwargs)
def set_cache(self, key, value, **kwargs):
ttl = kwargs.get("ttl", None)
@ -168,7 +180,8 @@ class Cache:
type="local",
host=None,
port=None,
password=None
password=None,
**kwargs
):
"""
Initializes the cache based on the given type.
@ -178,6 +191,7 @@ class Cache:
host (str, optional): The host address for the Redis cache. Required if type is "redis".
port (int, optional): The port number for the Redis cache. Required if type is "redis".
password (str, optional): The password for the Redis cache. Required if type is "redis".
**kwargs: Additional keyword arguments for redis.Redis() cache
Raises:
ValueError: If an invalid cache type is provided.
@ -186,7 +200,7 @@ class Cache:
None
"""
if type == "redis":
self.cache = RedisCache(host, port, password)
self.cache = RedisCache(host, port, password, **kwargs)
if type == "local":
self.cache = InMemoryCache()
if "cache" not in litellm.input_callback:

View file

@ -8,7 +8,7 @@ dotenv.load_dotenv() # Loading env variables using dotenv
import traceback
class CustomLogger:
class CustomLogger: # https://docs.litellm.ai/docs/observability/custom_callback#callback-class
# Class variables or attributes
def __init__(self):
pass
@ -29,7 +29,7 @@ class CustomLogger:
pass
#### DEPRECATED ####
#### SINGLE-USE #### - https://docs.litellm.ai/docs/observability/custom_callback#using-your-custom-callback-function
def log_input_event(self, model, messages, kwargs, print_verbose, callback_func):
try:
@ -63,3 +63,21 @@ class CustomLogger:
# traceback.print_exc()
print_verbose(f"Custom Logger Error - {traceback.format_exc()}")
pass
async def async_log_event(self, kwargs, response_obj, start_time, end_time, print_verbose, callback_func):
# Method definition
try:
kwargs["log_event_type"] = "post_api_call"
await callback_func(
kwargs, # kwargs to func
response_obj,
start_time,
end_time,
)
print_verbose(
f"Custom Logger - final response object: {response_obj}"
)
except:
# traceback.print_exc()
print_verbose(f"Custom Logger Error - {traceback.format_exc()}")
pass

View file

@ -170,6 +170,11 @@ class Huggingface(BaseLLM):
"content"
] = completion_response["generated_text"] # type: ignore
elif task == "text-generation-inference":
if (not isinstance(completion_response, list)
or not isinstance(completion_response[0], dict)
or "generated_text" not in completion_response[0]):
raise HuggingfaceError(status_code=422, message=f"response is not in expected format - {completion_response}")
if len(completion_response[0]["generated_text"]) > 0:
model_response["choices"][0]["message"][
"content"

View file

@ -100,7 +100,7 @@ def start_prediction(version_id, input_data, api_token, api_base, logging_obj, p
logging_obj.pre_call(
input=input_data["prompt"],
api_key="",
additional_args={"complete_input_dict": initial_prediction_data, "headers": headers},
additional_args={"complete_input_dict": initial_prediction_data, "headers": headers, "api_base": base_url},
)
response = requests.post(f"{base_url}/predictions", json=initial_prediction_data, headers=headers)
@ -170,6 +170,7 @@ def handle_prediction_response_streaming(prediction_url, api_token, print_verbos
# this can fail temporarily but it does not mean the replicate request failed, replicate request fails when status=="failed"
print_verbose(f"Replicate: Failed to fetch prediction status and output.{response.status_code}{response.text}")
# Function to extract version ID from model string
def model_to_version_id(model):
if ":" in model:
@ -194,27 +195,25 @@ def completion(
):
# Start a prediction and get the prediction URL
version_id = model_to_version_id(model)
## Load Config
config = litellm.ReplicateConfig.get_config()
for k, v in config.items():
if k not in optional_params: # completion(top_k=3) > replicate_config(top_k=3) <- allows for dynamic variables to be passed in
optional_params[k] = v
if "meta/llama-2-13b-chat" in model:
system_prompt = ""
prompt = ""
for message in messages:
if message["role"] == "system":
system_prompt = message["content"]
else:
prompt += message["content"]
input_data = {
"system_prompt": system_prompt,
"prompt": prompt,
**optional_params
}
system_prompt = None
if optional_params is not None and "supports_system_prompt" in optional_params:
supports_sys_prompt = optional_params.pop("supports_system_prompt")
else:
supports_sys_prompt = False
if supports_sys_prompt:
for i in range(len(messages)):
if messages[i]["role"] == "system":
first_sys_message = messages.pop(i)
system_prompt = first_sys_message["content"]
break
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
@ -229,6 +228,14 @@ def completion(
else:
prompt = prompt_factory(model=model, messages=messages)
# If system prompt is supported, and a system prompt is provided, use it
if system_prompt is not None:
input_data = {
"prompt": prompt,
"system_prompt": system_prompt
}
# Otherwise, use the prompt as is
else:
input_data = {
"prompt": prompt,
**optional_params

View file

@ -9,6 +9,7 @@ from litellm.utils import ModelResponse, get_secret, Usage
import sys
from copy import deepcopy
import httpx
from .prompt_templates.factory import prompt_factory, custom_prompt
class SagemakerError(Exception):
def __init__(self, status_code, message):
@ -61,6 +62,8 @@ def completion(
print_verbose: Callable,
encoding,
logging_obj,
custom_prompt_dict={},
hf_model_name=None,
optional_params=None,
litellm_params=None,
logger_fn=None,
@ -107,19 +110,24 @@ def completion(
inference_params[k] = v
model = model
prompt = ""
for message in messages:
if "role" in message:
if message["role"] == "user":
prompt += (
f"{message['content']}"
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details.get("roles", None),
initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""),
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
messages=messages
)
else:
prompt += (
f"{message['content']}"
)
else:
prompt += f"{message['content']}"
if hf_model_name is None:
if "llama-2" in model.lower(): # llama-2 model
if "chat" in model.lower(): # apply llama2 chat template
hf_model_name = "meta-llama/Llama-2-7b-chat-hf"
else: # apply regular llama2 template
hf_model_name = "meta-llama/Llama-2-7b"
hf_model_name = hf_model_name or model # pass in hf model name for pulling it's prompt template - (e.g. `hf_model_name="meta-llama/Llama-2-7b-chat-hf` applies the llama2 chat template to the prompt)
prompt = prompt_factory(model=hf_model_name, messages=messages)
data = json.dumps({
"inputs": prompt,
@ -138,15 +146,18 @@ def completion(
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={"complete_input_dict": data, "request_str": request_str},
additional_args={"complete_input_dict": data, "request_str": request_str, "hf_model_name": hf_model_name},
)
## COMPLETION CALL
try:
response = client.invoke_endpoint(
EndpointName=model,
ContentType="application/json",
Body=data,
CustomAttributes="accept_eula=true",
)
except Exception as e:
raise SagemakerError(status_code=500, message=f"{str(e)}")
response = response["Body"].read().decode("utf8")
## LOGGING
logging_obj.post_call(

View file

@ -341,11 +341,13 @@ def completion(
final_prompt_value = kwargs.get("final_prompt_value", None)
bos_token = kwargs.get("bos_token", None)
eos_token = kwargs.get("eos_token", None)
hf_model_name = kwargs.get("hf_model_name", None)
### ASYNC CALLS ###
acompletion = kwargs.get("acompletion", False)
client = kwargs.get("client", None)
######## end of unpacking kwargs ###########
openai_params = ["functions", "function_call", "temperature", "temperature", "top_p", "n", "stream", "stop", "max_tokens", "presence_penalty", "frequency_penalty", "logit_bias", "user", "request_timeout", "api_base", "api_version", "api_key", "deployment_id", "organization", "base_url", "default_headers", "timeout", "response_format", "seed", "tools", "tool_choice", "max_retries"]
litellm_params = ["metadata", "acompletion", "caching", "return_async", "mock_response", "api_key", "api_version", "api_base", "force_timeout", "logger_fn", "verbose", "custom_llm_provider", "litellm_logging_obj", "litellm_call_id", "use_client", "id", "fallbacks", "azure", "headers", "model_list", "num_retries", "context_window_fallback_dict", "roles", "final_prompt_value", "bos_token", "eos_token", "request_timeout", "complete_response", "self", "client", "rpm", "tpm", "input_cost_per_token", "output_cost_per_token"]
litellm_params = ["metadata", "acompletion", "caching", "return_async", "mock_response", "api_key", "api_version", "api_base", "force_timeout", "logger_fn", "verbose", "custom_llm_provider", "litellm_logging_obj", "litellm_call_id", "use_client", "id", "fallbacks", "azure", "headers", "model_list", "num_retries", "context_window_fallback_dict", "roles", "final_prompt_value", "bos_token", "eos_token", "request_timeout", "complete_response", "self", "client", "rpm", "tpm", "input_cost_per_token", "output_cost_per_token", "hf_model_name"]
default_params = openai_params + litellm_params
non_default_params = {k: v for k,v in kwargs.items() if k not in default_params} # model-specific params - pass them straight to the model/provider
if mock_response:
@ -1166,6 +1168,8 @@ def completion(
print_verbose=print_verbose,
optional_params=optional_params,
litellm_params=litellm_params,
custom_prompt_dict=custom_prompt_dict,
hf_model_name=hf_model_name,
logger_fn=logger_fn,
encoding=encoding,
logging_obj=logging

View file

@ -0,0 +1,14 @@
from litellm.proxy.types import UserAPIKeyAuth
from fastapi import Request
from dotenv import load_dotenv
import os
load_dotenv()
async def user_api_key_auth(request: Request, api_key: str) -> UserAPIKeyAuth:
try:
modified_master_key = f"{os.getenv('PROXY_MASTER_KEY')}-1234"
if api_key == modified_master_key:
return UserAPIKeyAuth(api_key=api_key)
raise Exception
except:
raise Exception

View file

@ -0,0 +1,53 @@
from litellm.integrations.custom_logger import CustomLogger
import litellm
# This file includes the custom callbacks for LiteLLM Proxy
# Once defined, these can be passed in proxy_config.yaml
class MyCustomHandler(CustomLogger):
def log_pre_api_call(self, model, messages, kwargs):
print(f"Pre-API Call")
def log_post_api_call(self, kwargs, response_obj, start_time, end_time):
print(f"Post-API Call")
def log_stream_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Stream")
def log_success_event(self, kwargs, response_obj, start_time, end_time):
# log: key, user, model, prompt, response, tokens, cost
print("\nOn Success")
### Access kwargs passed to litellm.completion()
model = kwargs.get("model", None)
messages = kwargs.get("messages", None)
user = kwargs.get("user", None)
#### Access litellm_params passed to litellm.completion(), example access `metadata`
litellm_params = kwargs.get("litellm_params", {})
metadata = litellm_params.get("metadata", {}) # headers passed to LiteLLM proxy, can be found here
#################################################
##### Calculate cost using litellm.completion_cost() #######################
cost = litellm.completion_cost(completion_response=response_obj)
response = response_obj
# tokens used in response
usage = response_obj["usage"]
print(
f"""
Model: {model},
Messages: {messages},
User: {user},
Usage: {usage},
Cost: {cost},
Response: {response}
Proxy Metadata: {metadata}
"""
)
return
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Failure")
proxy_handler_instance = MyCustomHandler()
# need to set litellm.callbacks = [customHandler] # on the proxy

View file

@ -4,14 +4,18 @@ model_list:
model: azure/chatgpt-v-2
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
api_version: "2023-05-15"
azure_ad_token: eyJ0eXAiOiJ
api_key: os.environ/AZURE_API_KEY
tpm: 20_000
timeout: 5 # 1 second timeout
stream_timeout: 0.5 # 0.5 second timeout for streaming requests
max_retries: 4
- model_name: gpt-4-team2
litellm_params:
model: azure/gpt-4
api_key: sk-123
api_key: os.environ/AZURE_API_KEY
api_base: https://openai-gpt-4-test-v-2.openai.azure.com/
- model_name: gpt-4-team3
litellm_params:
model: azure/gpt-4
api_key: sk-123
tpm: 100_000
timeout: 5 # 1 second timeout
stream_timeout: 0.5 # 0.5 second timeout for streaming requests
max_retries: 4

View file

@ -1,13 +0,0 @@
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-35-1
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
api_key: 73g
tpm: 80_000
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-35-2
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
api_key: 9kj
tpm: 80_000

View file

@ -1,8 +0,0 @@
litellm_settings:
set_verbose: True
general_settings:
master_key: sk-hosted-litellm
use_queue: True
database_url: " # [OPTIONAL] use for token-based auth to proxy

View file

@ -1,11 +0,0 @@
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
api_key:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/chatgpt-v-2 # actual model name
api_key:
api_version: 2023-07-01-preview
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/

View file

@ -0,0 +1,4 @@
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo

View file

@ -73,8 +73,7 @@ def is_port_in_use(port):
@click.option('--request_timeout', default=600, type=int, help='Set timeout in seconds for completion calls')
@click.option('--drop_params', is_flag=True, help='Drop any unmapped params')
@click.option('--add_function_to_prompt', is_flag=True, help='If function passed but unsupported, pass it as prompt')
@click.option('--config', '-c', default=None, help='Configure Litellm')
@click.option('--file', '-f', help='Path to config file')
@click.option('--config', '-c', default=None, help='Path to the proxy configuration file (e.g. config.yaml). Usage `litellm --config config.yaml`')
@click.option('--max_budget', default=None, type=float, help='Set max budget for API calls - works for hosted models like OpenAI, TogetherAI, Anthropic, etc.`')
@click.option('--telemetry', default=True, type=bool, help='Helps us know if people are using this feature. Turn this off by doing `--telemetry False`')
@click.option('--logs', flag_value=False, type=int, help='Gets the "n" most recent logs. By default gets most recent log.')
@ -83,7 +82,7 @@ def is_port_in_use(port):
@click.option('--test_async', default=False, is_flag=True, help='Calls async endpoints /queue/requests and /queue/response')
@click.option('--num_requests', default=10, type=int, help='Number of requests to hit async endpoint with')
@click.option('--local', is_flag=True, default=False, help='for local debugging')
def run_server(host, port, api_base, api_version, model, alias, add_key, headers, save, debug, temperature, max_tokens, request_timeout, drop_params, add_function_to_prompt, config, file, max_budget, telemetry, logs, test, local, num_workers, test_async, num_requests, use_queue, health):
def run_server(host, port, api_base, api_version, model, alias, add_key, headers, save, debug, temperature, max_tokens, request_timeout, drop_params, add_function_to_prompt, config, max_budget, telemetry, logs, test, local, num_workers, test_async, num_requests, use_queue, health):
global feature_telemetry
args = locals()
if local:

View file

@ -3,6 +3,9 @@ model_list:
litellm_params:
model: gpt-3.5-turbo
litellm_settings:
# callbacks: custom_callbacks.proxy_handler_instance # sets litellm.callbacks = [proxy_handler_instance]
general_settings:
# otel: True # OpenTelemetry Logger
# master_key: sk-1234 # [OPTIONAL] Only use this if you to require all calls to contain this key (Authorization: Bearer sk-1234)

View file

@ -6,6 +6,7 @@ from typing import Optional, List
import secrets, subprocess
import hashlib, uuid
import warnings
import importlib
messages: list = []
sys.path.insert(
0, os.path.abspath("../..")
@ -91,12 +92,16 @@ def generate_feedback_box():
import litellm
from litellm.proxy.utils import (
PrismaClient
PrismaClient,
get_instance_fn
)
import pydantic
from litellm.proxy.types import *
from litellm.caching import DualCache
litellm.suppress_debug_info = True
from fastapi import FastAPI, Request, HTTPException, status, Depends, BackgroundTasks
from fastapi.routing import APIRouter
from fastapi.security import OAuth2PasswordBearer
from fastapi.encoders import jsonable_encoder
from fastapi.responses import StreamingResponse, FileResponse, ORJSONResponse
from fastapi.middleware.cors import CORSMiddleware
@ -117,7 +122,9 @@ app.add_middleware(
allow_methods=["*"],
allow_headers=["*"],
)
def log_input_output(request, response):
def log_input_output(request, response, custom_logger=None):
if custom_logger is not None:
custom_logger(request, response)
global otel_logging
if otel_logging != True:
return
@ -160,70 +167,8 @@ def log_input_output(request, response):
return True
from typing import Dict
from pydantic import BaseModel
######### Request Class Definition ######
class ProxyChatCompletionRequest(BaseModel):
model: str
messages: List[Dict[str, str]]
temperature: Optional[float] = None
top_p: Optional[float] = None
n: Optional[int] = None
stream: Optional[bool] = None
stop: Optional[List[str]] = None
max_tokens: Optional[int] = None
presence_penalty: Optional[float] = None
frequency_penalty: Optional[float] = None
logit_bias: Optional[Dict[str, float]] = None
user: Optional[str] = None
response_format: Optional[Dict[str, str]] = None
seed: Optional[int] = None
tools: Optional[List[str]] = None
tool_choice: Optional[str] = None
functions: Optional[List[str]] = None # soon to be deprecated
function_call: Optional[str] = None # soon to be deprecated
# Optional LiteLLM params
caching: Optional[bool] = None
api_base: Optional[str] = None
api_version: Optional[str] = None
api_key: Optional[str] = None
num_retries: Optional[int] = None
context_window_fallback_dict: Optional[Dict[str, str]] = None
fallbacks: Optional[List[str]] = None
metadata: Optional[Dict[str, str]] = {}
deployment_id: Optional[str] = None
request_timeout: Optional[int] = None
class Config:
extra='allow' # allow params not defined here, these fall in litellm.completion(**kwargs)
class ModelParams(BaseModel):
model_name: str
litellm_params: dict
model_info: Optional[dict]
class Config:
protected_namespaces = ()
class GenerateKeyRequest(BaseModel):
duration: str = "1h"
models: list = []
aliases: dict = {}
config: dict = {}
spend: int = 0
user_id: Optional[str]
class GenerateKeyResponse(BaseModel):
key: str
expires: str
user_id: str
class _DeleteKeyObject(BaseModel):
key: str
class DeleteKeyRequest(BaseModel):
keys: List[_DeleteKeyObject]
api_key_header = APIKeyHeader(name="Authorization", auto_error=False)
user_api_base = None
user_model = None
user_debug = False
@ -246,6 +191,7 @@ master_key = None
otel_logging = False
prisma_client: Optional[PrismaClient] = None
user_api_key_cache = DualCache()
user_custom_auth = None
### REDIS QUEUE ###
async_result = None
celery_app_conn = None
@ -265,23 +211,33 @@ def usage_telemetry(
target=litellm.utils.litellm_telemetry, args=(data,), daemon=True
).start()
api_key_header = APIKeyHeader(name="Authorization", auto_error=False)
async def user_api_key_auth(request: Request, api_key: str = fastapi.Security(api_key_header)):
global master_key, prisma_client, llm_model_list
if master_key is None:
return {
"api_key": None
}
async def user_api_key_auth(request: Request, api_key: str = fastapi.Security(api_key_header)) -> UserAPIKeyAuth:
global master_key, prisma_client, llm_model_list, user_custom_auth
try:
if isinstance(api_key, str):
assert api_key.startswith("Bearer ") # ensure Bearer token passed in
api_key = api_key.replace("Bearer ", "") # extract the token
### USER-DEFINED AUTH FUNCTION ###
if user_custom_auth:
response = await user_custom_auth(request=request, api_key=api_key)
return UserAPIKeyAuth.model_validate(response)
if master_key is None:
if isinstance(api_key, str):
return UserAPIKeyAuth(api_key=api_key)
else:
return UserAPIKeyAuth()
if api_key is None: # only require api key if master key is set
raise Exception("No api key passed in.")
route = request.url.path
# note: never string compare api keys, this is vulenerable to a time attack. Use secrets.compare_digest instead
is_master_key_valid = secrets.compare_digest(api_key, master_key) or secrets.compare_digest(api_key, "Bearer " + master_key)
is_master_key_valid = secrets.compare_digest(api_key, master_key)
if is_master_key_valid:
return {
"api_key": master_key
}
return UserAPIKeyAuth(api_key=master_key)
if (route == "/key/generate" or route == "/key/delete" or route == "/key/info") and not is_master_key_valid:
raise Exception(f"If master key is set, only master key can be used to generate, delete or get info for new keys")
@ -289,9 +245,9 @@ async def user_api_key_auth(request: Request, api_key: str = fastapi.Security(ap
if prisma_client:
## check for cache hit (In-Memory Cache)
valid_token = user_api_key_cache.get_cache(key=api_key)
if valid_token is None and "Bearer " in api_key:
if valid_token is None:
## check db
cleaned_api_key = api_key[len("Bearer "):]
cleaned_api_key = api_key
valid_token = await prisma_client.get_data(token=cleaned_api_key, expires=datetime.utcnow())
user_api_key_cache.set_cache(key=api_key, value=valid_token, ttl=60)
elif valid_token is not None:
@ -307,7 +263,7 @@ async def user_api_key_auth(request: Request, api_key: str = fastapi.Security(ap
return_dict = {"api_key": valid_token.token}
if valid_token.user_id:
return_dict["user_id"] = valid_token.user_id
return return_dict
return UserAPIKeyAuth(**return_dict)
else:
data = await request.json()
model = data.get("model", None)
@ -318,14 +274,17 @@ async def user_api_key_auth(request: Request, api_key: str = fastapi.Security(ap
return_dict = {"api_key": valid_token.token}
if valid_token.user_id:
return_dict["user_id"] = valid_token.user_id
return return_dict
return UserAPIKeyAuth(**return_dict)
else:
raise Exception(f"Invalid token")
except Exception as e:
print(f"An exception occurred - {traceback.format_exc()}")
if isinstance(e, HTTPException):
raise e
else:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail={"error": "invalid user key"},
detail="invalid user key",
)
def prisma_setup(database_url: Optional[str]):
@ -377,8 +336,8 @@ def load_from_azure_key_vault(use_azure_key_vault: bool = False):
print("Error when loading keys from Azure Key Vault. Ensure you run `pip install azure-identity azure-keyvault-secrets`")
def cost_tracking():
global prisma_client, master_key
if prisma_client is not None and master_key is not None:
global prisma_client
if prisma_client is not None:
if isinstance(litellm.success_callback, list):
print("setting litellm success callback to track cost")
if (track_cost_callback) not in litellm.success_callback: # type: ignore
@ -386,7 +345,7 @@ def cost_tracking():
else:
litellm.success_callback = track_cost_callback # type: ignore
def track_cost_callback(
async def track_cost_callback(
kwargs, # kwargs to completion
completion_response: litellm.ModelResponse, # response from completion
start_time = None,
@ -415,31 +374,13 @@ def track_cost_callback(
response_cost = litellm.completion_cost(completion_response=completion_response, completion=input_text)
print("regular response_cost", response_cost)
user_api_key = kwargs["litellm_params"]["metadata"].get("user_api_key", None)
print(f"user_api_key - {user_api_key}; prisma_client - {prisma_client}")
if user_api_key and prisma_client:
# asyncio.run(update_prisma_database(user_api_key, response_cost))
# Create new event loop for async function execution in the new thread
new_loop = asyncio.new_event_loop()
asyncio.set_event_loop(new_loop)
try:
# Run the async function using the newly created event loop
existing_spend_obj = new_loop.run_until_complete(prisma_client.get_data(token=user_api_key))
if existing_spend_obj is None:
existing_spend = 0
else:
existing_spend = existing_spend_obj.spend
# Calculate the new cost by adding the existing cost and response_cost
new_spend = existing_spend + response_cost
print(f"new cost: {new_spend}")
# Update the cost column for the given token
new_loop.run_until_complete(prisma_client.update_data(token=user_api_key, data={"spend": new_spend}))
print(f"Prisma database updated for token {user_api_key}. New cost: {new_spend}")
except Exception as e:
print(f"error in creating async loop - {str(e)}")
await update_prisma_database(token=user_api_key, response_cost=response_cost)
except Exception as e:
print(f"error in tracking cost callback - {str(e)}")
async def update_prisma_database(token, response_cost):
try:
print(f"Enters prisma db call, token: {token}")
# Fetch the existing cost for the given token
@ -455,8 +396,6 @@ async def update_prisma_database(token, response_cost):
print(f"new cost: {new_spend}")
# Update the cost column for the given token
await prisma_client.update_data(token=token, data={"spend": new_spend})
print(f"Prisma database updated for token {token}. New cost: {new_spend}")
except Exception as e:
print(f"Error updating Prisma database: {traceback.format_exc()}")
pass
@ -473,7 +412,7 @@ def run_ollama_serve():
""")
def load_router_config(router: Optional[litellm.Router], config_file_path: str):
global master_key, user_config_file_path, otel_logging
global master_key, user_config_file_path, otel_logging, user_custom_auth
config = {}
try:
if os.path.exists(config_file_path):
@ -488,10 +427,8 @@ def load_router_config(router: Optional[litellm.Router], config_file_path: str):
## PRINT YAML FOR CONFIRMING IT WORKS
printed_yaml = copy.deepcopy(config)
printed_yaml.pop("environment_variables", None)
for model in printed_yaml["model_list"]:
model["litellm_params"].pop("api_key", None)
print(f"Loaded config YAML (api_key and environment_variables are not shown):\n{json.dumps(printed_yaml, indent=2)}")
print_verbose(f"Loaded config YAML (api_key and environment_variables are not shown):\n{json.dumps(printed_yaml, indent=2)}")
## ENVIRONMENT VARIABLES
environment_variables = config.get('environment_variables', None)
@ -504,28 +441,31 @@ def load_router_config(router: Optional[litellm.Router], config_file_path: str):
if general_settings is None:
general_settings = {}
if general_settings:
### MASTER KEY ###
master_key = general_settings.get("master_key", None)
if master_key and master_key.startswith("os.environ/"):
master_key_env_name = master_key.replace("os.environ/", "")
master_key = os.getenv(master_key_env_name)
### LOAD FROM AZURE KEY VAULT ###
use_azure_key_vault = general_settings.get("use_azure_key_vault", False)
load_from_azure_key_vault(use_azure_key_vault=use_azure_key_vault)
### CONNECT TO DATABASE ###
database_url = general_settings.get("database_url", None)
if database_url and database_url.startswith("os.environ/"):
database_url = litellm.get_secret(database_url)
prisma_setup(database_url=database_url)
## COST TRACKING ##
cost_tracking()
### START REDIS QUEUE ###
use_queue = general_settings.get("use_queue", False)
celery_setup(use_queue=use_queue)
### LOAD FROM AZURE KEY VAULT ###
use_azure_key_vault = general_settings.get("use_azure_key_vault", False)
load_from_azure_key_vault(use_azure_key_vault=use_azure_key_vault)
### MASTER KEY ###
master_key = general_settings.get("master_key", None)
if master_key and master_key.startswith("os.environ/"):
master_key = litellm.get_secret(master_key)
#### OpenTelemetry Logging (OTEL) ########
otel_logging = general_settings.get("otel", False)
if otel_logging == True:
print("\nOpenTelemetry Logging Activated")
### CUSTOM API KEY AUTH ###
custom_auth = general_settings.get("custom_auth", None)
if custom_auth:
user_custom_auth = get_instance_fn(value=custom_auth, config_file_path=config_file_path)
## LITELLM MODULE SETTINGS (e.g. litellm.drop_params=True,..)
litellm_settings = config.get('litellm_settings', None)
if litellm_settings:
@ -537,9 +477,9 @@ def load_router_config(router: Optional[litellm.Router], config_file_path: str):
print(f"{blue_color_code}\nSetting Cache on Proxy")
from litellm.caching import Cache
cache_type = value["type"]
cache_host = os.environ.get("REDIS_HOST")
cache_port = os.environ.get("REDIS_PORT")
cache_password = os.environ.get("REDIS_PASSWORD")
cache_host = litellm.get_secret("REDIS_HOST", None)
cache_port = litellm.get_secret("REDIS_PORT", None)
cache_password = litellm.get_secret("REDIS_PASSWORD", None)
# Assuming cache_type, cache_host, cache_port, and cache_password are strings
print(f"{blue_color_code}Cache Type:{reset_color_code} {cache_type}")
@ -548,12 +488,15 @@ def load_router_config(router: Optional[litellm.Router], config_file_path: str):
print(f"{blue_color_code}Cache Password:{reset_color_code} {cache_password}")
print()
## to pass a complete url, just set it as `os.environ[REDIS_URL] = <your-redis-url>`, _redis.py checks for REDIS specific environment variables
litellm.cache = Cache(
type=cache_type,
host=cache_host,
port=cache_port,
password=cache_password
)
elif key == "callbacks":
litellm.callbacks = [get_instance_fn(value=value)]
else:
setattr(litellm, key, value)
@ -622,7 +565,7 @@ async def generate_key_helper_fn(duration_str: Optional[str], models: list, alia
except Exception as e:
traceback.print_exc()
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR)
return {"token": new_verification_token.token, "expires": new_verification_token.expires, "user_id": user_id}
return {"token": token, "expires": new_verification_token.expires, "user_id": user_id}
async def delete_verification_token(tokens: List):
global prisma_client
@ -659,13 +602,19 @@ def initialize(
config,
use_queue
):
global user_model, user_api_base, user_debug, user_max_tokens, user_request_timeout, user_temperature, user_telemetry, user_headers, experimental, llm_model_list, llm_router, general_settings
global user_model, user_api_base, user_debug, user_max_tokens, user_request_timeout, user_temperature, user_telemetry, user_headers, experimental, llm_model_list, llm_router, general_settings, master_key, user_custom_auth
generate_feedback_box()
user_model = model
user_debug = debug
if debug==True: # this needs to be first, so users can see Router init debugg
litellm.set_verbose = True
dynamic_config = {"general": {}, user_model: {}}
if config:
llm_router, llm_model_list, general_settings = load_router_config(router=llm_router, config_file_path=config)
else:
# reset auth if config not passed, needed for consecutive tests on proxy
master_key = None
user_custom_auth = None
if headers: # model-specific param
user_headers = headers
dynamic_config[user_model]["headers"] = headers
@ -696,8 +645,6 @@ def initialize(
if max_budget: # litellm-specific param
litellm.max_budget = max_budget
dynamic_config["general"]["max_budget"] = max_budget
if debug==True: # litellm-specific param
litellm.set_verbose = True
if use_queue:
celery_setup(use_queue=use_queue)
if experimental:
@ -773,12 +720,14 @@ def litellm_completion(*args, **kwargs):
return StreamingResponse(data_generator(response), media_type='text/event-stream')
return response
@app.on_event("startup")
@router.on_event("startup")
async def startup_event():
global prisma_client, master_key
import json
worker_config = json.loads(os.getenv("WORKER_CONFIG"))
print_verbose(f"worker_config: {worker_config}")
initialize(**worker_config)
print_verbose(f"prisma client - {prisma_client}")
if prisma_client:
await prisma_client.connect()
@ -786,7 +735,7 @@ async def startup_event():
# add master key to db
await generate_key_helper_fn(duration_str=None, models=[], aliases={}, config={}, spend=0, token=master_key)
@app.on_event("shutdown")
@router.on_event("shutdown")
async def shutdown_event():
global prisma_client
if prisma_client:
@ -830,7 +779,7 @@ def model_list():
@router.post("/v1/completions", dependencies=[Depends(user_api_key_auth)])
@router.post("/completions", dependencies=[Depends(user_api_key_auth)])
@router.post("/engines/{model:path}/completions", dependencies=[Depends(user_api_key_auth)])
async def completion(request: Request, model: Optional[str] = None, user_api_key_dict: dict = Depends(user_api_key_auth)):
async def completion(request: Request, model: Optional[str] = None, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth)):
try:
body = await request.body()
body_str = body.decode()
@ -839,7 +788,7 @@ async def completion(request: Request, model: Optional[str] = None, user_api_key
except:
data = json.loads(body_str)
data["user"] = user_api_key_dict.get("user_id", None)
data["user"] = user_api_key_dict.user_id
data["model"] = (
general_settings.get("completion_model", None) # server default
or user_model # model name passed via cli args
@ -850,9 +799,9 @@ async def completion(request: Request, model: Optional[str] = None, user_api_key
data["model"] = user_model
data["call_type"] = "text_completion"
if "metadata" in data:
data["metadata"]["user_api_key"] = user_api_key_dict["api_key"]
data["metadata"]["user_api_key"] = user_api_key_dict.api_key
else:
data["metadata"] = {"user_api_key": user_api_key_dict["api_key"]}
data["metadata"] = {"user_api_key": user_api_key_dict.api_key}
return litellm_completion(
**data
@ -870,11 +819,10 @@ async def completion(request: Request, model: Optional[str] = None, user_api_key
detail=error_msg
)
@router.post("/v1/chat/completions", dependencies=[Depends(user_api_key_auth)], tags=["chat/completions"])
@router.post("/chat/completions", dependencies=[Depends(user_api_key_auth)], tags=["chat/completions"])
@router.post("/openai/deployments/{model:path}/chat/completions", dependencies=[Depends(user_api_key_auth)], tags=["chat/completions"]) # azure compatible endpoint
async def chat_completion(request: Request, model: Optional[str] = None, user_api_key_dict: dict = Depends(user_api_key_auth), background_tasks: BackgroundTasks = BackgroundTasks()):
async def chat_completion(request: Request, model: Optional[str] = None, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), background_tasks: BackgroundTasks = BackgroundTasks()):
global general_settings, user_debug
try:
data = {}
@ -888,13 +836,17 @@ async def chat_completion(request: Request, model: Optional[str] = None, user_ap
or data["model"] # default passed in http request
)
data["user"] = user_api_key_dict.get("user_id", None)
# users can pass in 'user' param to /chat/completions. Don't override it
if data.get("user", None) is None:
# if users are using user_api_key_auth, set `user` in `data`
data["user"] = user_api_key_dict.user_id
if "metadata" in data:
data["metadata"]["user_api_key"] = user_api_key_dict["api_key"]
data["metadata"]["user_api_key"] = user_api_key_dict.api_key
data["metadata"]["headers"] = request.headers
else:
data["metadata"] = {"user_api_key": user_api_key_dict["api_key"]}
data["metadata"] = {"user_api_key": user_api_key_dict.api_key}
data["metadata"]["headers"] = request.headers
global user_temperature, user_request_timeout, user_max_tokens, user_api_base
# override with user settings, these are params passed via cli
if user_temperature:
@ -908,7 +860,9 @@ async def chat_completion(request: Request, model: Optional[str] = None, user_ap
router_model_names = [m["model_name"] for m in llm_model_list] if llm_model_list is not None else []
if llm_router is not None and data["model"] in router_model_names: # model in router model list
response = await llm_router.acompletion(**data)
else:
elif llm_router is not None and data["model"] in llm_router.deployment_names: # model in router deployments, calling a specific deployment on the router
response = await llm_router.acompletion(**data)
else: # router is not set
response = await litellm.acompletion(**data)
if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
return StreamingResponse(async_data_generator(response), media_type='text/event-stream')
@ -944,14 +898,14 @@ async def chat_completion(request: Request, model: Optional[str] = None, user_ap
@router.post("/v1/embeddings", dependencies=[Depends(user_api_key_auth)], response_class=ORJSONResponse)
@router.post("/embeddings", dependencies=[Depends(user_api_key_auth)], response_class=ORJSONResponse)
async def embeddings(request: Request, user_api_key_dict: dict = Depends(user_api_key_auth), background_tasks: BackgroundTasks = BackgroundTasks()):
async def embeddings(request: Request, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), background_tasks: BackgroundTasks = BackgroundTasks()):
try:
# Use orjson to parse JSON data, orjson speeds up requests significantly
body = await request.body()
data = orjson.loads(body)
data["user"] = user_api_key_dict.get("user_id", None)
data["user"] = user_api_key_dict.user_id
data["model"] = (
general_settings.get("embedding_model", None) # server default
or user_model # model name passed via cli args
@ -960,14 +914,16 @@ async def embeddings(request: Request, user_api_key_dict: dict = Depends(user_ap
if user_model:
data["model"] = user_model
if "metadata" in data:
data["metadata"]["user_api_key"] = user_api_key_dict["api_key"]
data["metadata"]["user_api_key"] = user_api_key_dict.api_key
else:
data["metadata"] = {"user_api_key": user_api_key_dict["api_key"]}
data["metadata"] = {"user_api_key": user_api_key_dict.api_key}
## ROUTE TO CORRECT ENDPOINT ##
router_model_names = [m["model_name"] for m in llm_model_list] if llm_model_list is not None else []
if llm_router is not None and data["model"] in router_model_names: # model in router model list
response = await llm_router.aembedding(**data)
elif llm_router is not None and data["model"] in llm_router.deployment_names: # model in router deployments, calling a specific deployment on the router
response = await llm_router.aembedding(**data)
else:
response = await litellm.aembedding(**data)
background_tasks.add_task(log_input_output, request, response) # background task for logging to OTEL
@ -998,8 +954,7 @@ async def generate_key_fn(request: Request, data: GenerateKeyRequest):
- key: The generated api key
- expires: Datetime object for when key expires.
"""
data = await request.json()
# data = await request.json()
duration_str = data.duration # Default to 1 hour if duration is not provided
models = data.models # Default to an empty list (meaning allow token to call all models)
aliases = data.aliases # Default to an empty dict (no alias mappings, on top of anything in the config.yaml model_list)
@ -1018,8 +973,6 @@ async def generate_key_fn(request: Request, data: GenerateKeyRequest):
@router.post("/key/delete", tags=["key management"], dependencies=[Depends(user_api_key_auth)])
async def delete_key_fn(request: Request, data: DeleteKeyRequest):
try:
data = await request.json()
keys = data.keys
deleted_keys = await delete_verification_token(tokens=keys)

View file

@ -45,7 +45,7 @@ celery_app.conf.update(
@celery_app.task(name='process_job', max_retries=3)
def process_job(*args, **kwargs):
try:
llm_router: litellm.Router = litellm.Router(model_list=kwargs.pop("llm_model_list"))
llm_router: litellm.Router = litellm.Router(model_list=kwargs.pop("llm_model_list")) # type: ignore
response = llm_router.completion(*args, **kwargs) # type: ignore
if isinstance(response, litellm.ModelResponse):
response = response.model_dump_json()

View file

@ -0,0 +1,40 @@
## LOCAL TEST
# from langchain.chat_models import ChatOpenAI
# from langchain.prompts.chat import (
# ChatPromptTemplate,
# HumanMessagePromptTemplate,
# SystemMessagePromptTemplate,
# )
# from langchain.schema import HumanMessage, SystemMessage
# chat = ChatOpenAI(
# openai_api_base="http://0.0.0.0:8000",
# model = "gpt-3.5-turbo",
# temperature=0.1
# )
# messages = [
# SystemMessage(
# content="You are a helpful assistant that im using to make a test request to."
# ),
# HumanMessage(
# content="test from litellm. tell me why it's amazing in 1 sentence"
# ),
# ]
# response = chat(messages)
# print(response)
# claude_chat = ChatOpenAI(
# openai_api_base="http://0.0.0.0:8000",
# model = "claude-v1",
# temperature=0.1
# )
# response = claude_chat(messages)
# print(response)

70
litellm/proxy/types.py Normal file
View file

@ -0,0 +1,70 @@
from pydantic import BaseModel
from typing import Optional, List, Union, Dict
from datetime import datetime
######### Request Class Definition ######
class ProxyChatCompletionRequest(BaseModel):
model: str
messages: List[Dict[str, str]]
temperature: Optional[float] = None
top_p: Optional[float] = None
n: Optional[int] = None
stream: Optional[bool] = None
stop: Optional[List[str]] = None
max_tokens: Optional[int] = None
presence_penalty: Optional[float] = None
frequency_penalty: Optional[float] = None
logit_bias: Optional[Dict[str, float]] = None
user: Optional[str] = None
response_format: Optional[Dict[str, str]] = None
seed: Optional[int] = None
tools: Optional[List[str]] = None
tool_choice: Optional[str] = None
functions: Optional[List[str]] = None # soon to be deprecated
function_call: Optional[str] = None # soon to be deprecated
# Optional LiteLLM params
caching: Optional[bool] = None
api_base: Optional[str] = None
api_version: Optional[str] = None
api_key: Optional[str] = None
num_retries: Optional[int] = None
context_window_fallback_dict: Optional[Dict[str, str]] = None
fallbacks: Optional[List[str]] = None
metadata: Optional[Dict[str, str]] = {}
deployment_id: Optional[str] = None
request_timeout: Optional[int] = None
class Config:
extra='allow' # allow params not defined here, these fall in litellm.completion(**kwargs)
class ModelParams(BaseModel):
model_name: str
litellm_params: dict
model_info: Optional[dict]
class Config:
protected_namespaces = ()
class GenerateKeyRequest(BaseModel):
duration: str = "1h"
models: list = []
aliases: dict = {}
config: dict = {}
spend: int = 0
user_id: Optional[str] = None
class GenerateKeyResponse(BaseModel):
key: str
expires: datetime
user_id: str
class _DeleteKeyObject(BaseModel):
key: str
class DeleteKeyRequest(BaseModel):
keys: List[_DeleteKeyObject]
class UserAPIKeyAuth(BaseModel): # the expected response object for user api key auth
api_key: Optional[str] = None
user_id: Optional[str] = None

View file

@ -1,14 +1,25 @@
from typing import Optional, List, Any
import os, subprocess, hashlib
import os, subprocess, hashlib, importlib
### DB CONNECTOR ###
class PrismaClient:
def __init__(self, database_url: str):
print("LiteLLM: DATABASE_URL Set in config, trying to 'pip install prisma'")
os.environ["DATABASE_URL"] = database_url
# Save the current working directory
original_dir = os.getcwd()
# set the working directory to where this script is
abspath = os.path.abspath(__file__)
dname = os.path.dirname(abspath)
os.chdir(dname)
try:
subprocess.run(['prisma', 'generate'])
subprocess.run(['prisma', 'db', 'push', '--accept-data-loss']) # this looks like a weird edge case when prisma just wont start on render. we need to have the --accept-data-loss
finally:
os.chdir(original_dir)
# Now you can import the Prisma Client
from prisma import Client
from prisma import Client # type: ignore
self.db = Client() #Client to connect to Prisma db
def hash_token(self, token: str):
@ -85,3 +96,60 @@ class PrismaClient:
async def disconnect(self):
await self.db.disconnect()
# ### CUSTOM FILE ###
# def get_instance_fn(value: str, config_file_path: Optional[str]=None):
# try:
# # Split the path by dots to separate module from instance
# parts = value.split(".")
# # The module path is all but the last part, and the instance is the last part
# module_path = ".".join(parts[:-1])
# instance_name = parts[-1]
# if config_file_path is not None:
# directory = os.path.dirname(config_file_path)
# module_path = os.path.join(directory, module_path)
# # Dynamically import the module
# module = importlib.import_module(module_path)
# # Get the instance from the module
# instance = getattr(module, instance_name)
# return instance
# except ImportError as e:
# print(e)
# raise ImportError(f"Could not import file at {value}")
def get_instance_fn(value: str, config_file_path: Optional[str] = None) -> Any:
try:
print(f"value: {value}")
# Split the path by dots to separate module from instance
parts = value.split(".")
# The module path is all but the last part, and the instance_name is the last part
module_name = ".".join(parts[:-1])
instance_name = parts[-1]
# If config_file_path is provided, use it to determine the module spec and load the module
if config_file_path is not None:
directory = os.path.dirname(config_file_path)
module_file_path = os.path.join(directory, *module_name.split('.'))
module_file_path += '.py'
spec = importlib.util.spec_from_file_location(module_name, module_file_path)
if spec is None:
raise ImportError(f"Could not find a module specification for {module_file_path}")
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module) # type: ignore
else:
# Dynamically import the module
module = importlib.import_module(module_name)
# Get the instance from the module
instance = getattr(module, instance_name)
return instance
except ImportError as e:
# Re-raise the exception with a user-friendly message
raise ImportError(f"Could not import {instance_name} from {module_name}") from e
except Exception as e:
raise e

View file

@ -60,10 +60,14 @@ class Router:
def __init__(self,
model_list: Optional[list] = None,
## CACHING ##
redis_url: Optional[str] = None,
redis_host: Optional[str] = None,
redis_port: Optional[int] = None,
redis_password: Optional[str] = None,
cache_responses: bool = False,
cache_kwargs: dict = {}, # additional kwargs to pass to RedisCache (see caching.py)
## RELIABILITY ##
num_retries: int = 0,
timeout: Optional[float] = None,
default_litellm_params = {}, # default params for Router.chat.completion.create
@ -74,6 +78,7 @@ class Router:
routing_strategy: Literal["simple-shuffle", "least-busy", "usage-based-routing", "latency-based-routing"] = "simple-shuffle") -> None:
self.set_verbose = set_verbose
self.deployment_names: List = [] # names of models under litellm_params. ex. azure/chatgpt-v-2
if model_list:
self.set_model_list(model_list)
self.healthy_deployments: List = self.model_list
@ -107,21 +112,29 @@ class Router:
if self.routing_strategy == "least-busy":
self._start_health_check_thread()
### CACHING ###
cache_type = "local" # default to an in-memory cache
redis_cache = None
if redis_host is not None and redis_port is not None and redis_password is not None:
cache_config = {
'type': 'redis',
'host': redis_host,
'port': redis_port,
'password': redis_password
}
redis_cache = RedisCache(host=redis_host, port=redis_port, password=redis_password)
else: # use an in-memory cache
cache_config = {
"type": "local"
}
cache_config = {}
if redis_url is not None or (redis_host is not None and redis_port is not None and redis_password is not None):
cache_type = "redis"
if redis_url is not None:
cache_config['url'] = redis_url
if redis_host is not None:
cache_config['host'] = redis_host
if redis_port is not None:
cache_config['port'] = str(redis_port) # type: ignore
if redis_password is not None:
cache_config['password'] = redis_password
# Add additional key-value pairs from cache_kwargs
cache_config.update(cache_kwargs)
redis_cache = RedisCache(**cache_config)
if cache_responses:
litellm.cache = litellm.Cache(**cache_config) # use Redis for caching completion requests
litellm.cache = litellm.Cache(type=cache_type, **cache_config)
self.cache_responses = cache_responses
self.cache = DualCache(redis_cache=redis_cache, in_memory_cache=InMemoryCache()) # use a dual cache (Redis+In-Memory) for tracking cooldowns, usage, etc.
## USAGE TRACKING ##
@ -188,7 +201,7 @@ class Router:
data["model"] = original_model_string[:index_of_model_id]
else:
data["model"] = original_model_string
model_client = deployment.get("client", None)
model_client = self._get_client(deployment=deployment, kwargs=kwargs)
return litellm.completion(**{**data, "messages": messages, "caching": self.cache_responses, "client": model_client, **kwargs})
except Exception as e:
raise e
@ -234,7 +247,7 @@ class Router:
data["model"] = original_model_string[:index_of_model_id]
else:
data["model"] = original_model_string
model_client = deployment.get("async_client", None)
model_client = self._get_client(deployment=deployment, kwargs=kwargs, client_type="async")
self.total_calls[original_model_string] +=1
response = await litellm.acompletion(**{**data, "messages": messages, "caching": self.cache_responses, "client": model_client, **kwargs})
self.success_calls[original_model_string] +=1
@ -303,7 +316,7 @@ class Router:
data["model"] = original_model_string[:index_of_model_id]
else:
data["model"] = original_model_string
model_client = deployment.get("client", None)
model_client = self._get_client(deployment=deployment, kwargs=kwargs)
# call via litellm.embedding()
return litellm.embedding(**{**data, "input": input, "caching": self.cache_responses, "client": model_client, **kwargs})
@ -328,7 +341,7 @@ class Router:
data["model"] = original_model_string[:index_of_model_id]
else:
data["model"] = original_model_string
model_client = deployment.get("async_client", None)
model_client = self._get_client(deployment=deployment, kwargs=kwargs, client_type="async")
return await litellm.aembedding(**{**data, "input": input, "caching": self.cache_responses, "client": model_client, **kwargs})
@ -857,8 +870,26 @@ class Router:
if api_version and api_version.startswith("os.environ/"):
api_version_env_name = api_version.replace("os.environ/", "")
api_version = litellm.get_secret(api_version_env_name)
self.print_verbose(f"Initializing OpenAI Client for {model_name}, {str(api_base)}")
timeout = litellm_params.pop("timeout", None)
if isinstance(timeout, str) and timeout.startswith("os.environ/"):
timeout_env_name = api_version.replace("os.environ/", "")
timeout = litellm.get_secret(timeout_env_name)
stream_timeout = litellm_params.pop("stream_timeout", timeout) # if no stream_timeout is set, default to timeout
if isinstance(stream_timeout, str) and stream_timeout.startswith("os.environ/"):
stream_timeout_env_name = api_version.replace("os.environ/", "")
stream_timeout = litellm.get_secret(stream_timeout_env_name)
max_retries = litellm_params.pop("max_retries", 2)
if isinstance(max_retries, str) and max_retries.startswith("os.environ/"):
max_retries_env_name = api_version.replace("os.environ/", "")
max_retries = litellm.get_secret(max_retries_env_name)
if "azure" in model_name:
if api_base is None:
raise ValueError("api_base is required for Azure OpenAI. Set it on your config")
self.print_verbose(f"Initializing Azure OpenAI Client for {model_name}, Api Base: {str(api_base)}, Api Key:{api_key}")
if api_version is None:
api_version = "2023-07-01-preview"
if "gateway.ai.cloudflare.com" in api_base:
@ -869,34 +900,98 @@ class Router:
model["async_client"] = openai.AsyncAzureOpenAI(
api_key=api_key,
base_url=api_base,
api_version=api_version
api_version=api_version,
timeout=timeout,
max_retries=max_retries
)
model["client"] = openai.AzureOpenAI(
api_key=api_key,
base_url=api_base,
api_version=api_version
api_version=api_version,
timeout=timeout,
max_retries=max_retries
)
# streaming clients can have diff timeouts
model["stream_async_client"] = openai.AsyncAzureOpenAI(
api_key=api_key,
base_url=api_base,
api_version=api_version,
timeout=stream_timeout,
max_retries=max_retries
)
model["stream_client"] = openai.AzureOpenAI(
api_key=api_key,
base_url=api_base,
api_version=api_version,
timeout=stream_timeout,
max_retries=max_retries
)
else:
model["async_client"] = openai.AsyncAzureOpenAI(
api_key=api_key,
azure_endpoint=api_base,
api_version=api_version
api_version=api_version,
timeout=timeout,
max_retries=max_retries
)
model["client"] = openai.AzureOpenAI(
api_key=api_key,
azure_endpoint=api_base,
api_version=api_version
api_version=api_version,
timeout=timeout,
max_retries=max_retries
)
# streaming clients should have diff timeouts
model["stream_async_client"] = openai.AsyncAzureOpenAI(
api_key=api_key,
azure_endpoint=api_base,
api_version=api_version,
timeout=stream_timeout,
max_retries=max_retries
)
model["stream_client"] = openai.AzureOpenAI(
api_key=api_key,
azure_endpoint=api_base,
api_version=api_version,
timeout=stream_timeout,
max_retries=max_retries
)
else:
self.print_verbose(f"Initializing OpenAI Client for {model_name}, Api Base:{str(api_base)}, Api Key:{api_key}")
model["async_client"] = openai.AsyncOpenAI(
api_key=api_key,
base_url=api_base,
timeout=timeout,
max_retries=max_retries
)
model["client"] = openai.OpenAI(
api_key=api_key,
base_url=api_base,
timeout=timeout,
max_retries=max_retries
)
# streaming clients should have diff timeouts
model["stream_async_client"] = openai.AsyncOpenAI(
api_key=api_key,
base_url=api_base,
timeout=stream_timeout,
max_retries=max_retries
)
# streaming clients should have diff timeouts
model["stream_client"] = openai.OpenAI(
api_key=api_key,
base_url=api_base,
timeout=stream_timeout,
max_retries=max_retries
)
############ End of initializing Clients for OpenAI/Azure ###################
self.deployment_names.append(model["litellm_params"]["model"])
model_id = ""
for key in model["litellm_params"]:
if key != "api_key":
@ -916,6 +1011,29 @@ class Router:
def get_model_names(self):
return self.model_names
def _get_client(self, deployment, kwargs, client_type=None):
"""
Returns the appropriate client based on the given deployment, kwargs, and client_type.
Parameters:
deployment (dict): The deployment dictionary containing the clients.
kwargs (dict): The keyword arguments passed to the function.
client_type (str): The type of client to return.
Returns:
The appropriate client based on the given client_type and kwargs.
"""
if client_type == "async":
if kwargs.get("stream") == True:
return deployment.get("stream_async_client", None)
else:
return deployment.get("async_client", None)
else:
if kwargs.get("stream") == True:
return deployment.get("stream_client", None)
else:
return deployment.get("client", None)
def print_verbose(self, print_statement):
if self.set_verbose or litellm.set_verbose:
print(f"LiteLLM.Router: {print_statement}") # noqa
@ -948,6 +1066,13 @@ class Router:
healthy_deployments.remove(deployment)
self.print_verbose(f"healthy deployments: length {len(healthy_deployments)} {healthy_deployments}")
if len(healthy_deployments) == 0:
# users can also specify a specific deployment name. At this point we should check if they are just trying to call a specific deployment
for deployment in self.model_list:
cleaned_model = litellm.utils.remove_model_id(deployment.get("litellm_params").get("model"))
if cleaned_model == model:
# User Passed a specific deployment name on their config.yaml, example azure/chat-gpt-v-2
# return the first deployment where the `model` matches the specificed deployment name
return deployment
raise ValueError("No models available")
if litellm.model_alias_map and model in litellm.model_alias_map:
model = litellm.model_alias_map[

View file

@ -0,0 +1,30 @@
model_list:
- model_name: text-davinci-003
litellm_params:
model: ollama/zephyr
- model_name: gpt-4
litellm_params:
model: ollama/llama2
- model_name: gpt-3.5-turbo
litellm_params:
model: ollama/llama2
temperature: 0.1
max_tokens: 20
# request to gpt-4, response from ollama/llama2
# curl --location 'http://0.0.0.0:8000/chat/completions' \
# --header 'Content-Type: application/json' \
# --data ' {
# "model": "gpt-4",
# "messages": [
# {
# "role": "user",
# "content": "what llm are you"
# }
# ],
# }
# '
#
# {"id":"chatcmpl-27c85cf0-ab09-4bcf-8cb1-0ee950520743","choices":[{"finish_reason":"stop","index":0,"message":{"content":" Hello! I'm just an AI, I don't have personal experiences or emotions like humans do. However, I can help you with any questions or tasks you may have! Is there something specific you'd like to know or discuss?","role":"assistant","_logprobs":null}}],"created":1700094955.373751,"model":"ollama/llama2","object":"chat.completion","system_fingerprint":null,"usage":{"prompt_tokens":12,"completion_tokens":47,"total_tokens":59},"_response_ms":8028.017999999999}%

View file

@ -0,0 +1,15 @@
model_list:
- model_name: gpt-4-team1
litellm_params:
model: azure/chatgpt-v-2
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
api_version: "2023-05-15"
api_key: os.environ/AZURE_API_KEY
tpm: 20_000
- model_name: gpt-4-team2
litellm_params:
model: azure/gpt-4
api_key: os.environ/AZURE_API_KEY
api_base: https://openai-gpt-4-test-v-2.openai.azure.com/
tpm: 100_000

View file

@ -0,0 +1,7 @@
model_list:
- model_name: gpt-3.5-turbo
litellm_settings:
drop_params: True
success_callback: ["langfuse"] # https://docs.litellm.ai/docs/observability/langfuse_integration

View file

@ -0,0 +1,28 @@
litellm_settings:
drop_params: True
# Model-specific settings
model_list: # use the same model_name for using the litellm router. LiteLLM will use the router between gpt-3.5-turbo
- model_name: gpt-3.5-turbo # litellm will
litellm_params:
model: gpt-3.5-turbo
api_key: sk-uj6F
tpm: 20000 # [OPTIONAL] REPLACE with your openai tpm
rpm: 3 # [OPTIONAL] REPLACE with your openai rpm
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
api_key: sk-Imn
tpm: 20000 # [OPTIONAL] REPLACE with your openai tpm
rpm: 3 # [OPTIONAL] REPLACE with your openai rpm
- model_name: gpt-3.5-turbo
litellm_params:
model: openrouter/gpt-3.5-turbo
- model_name: mistral-7b-instruct
litellm_params:
model: mistralai/mistral-7b-instruct
environment_variables:
REDIS_HOST: localhost
REDIS_PASSWORD:
REDIS_PORT:

View file

@ -0,0 +1,7 @@
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
general_settings:
otel: True # OpenTelemetry Logger this logs OTEL data to your collector

View file

@ -0,0 +1,4 @@
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo

View file

@ -36,7 +36,7 @@ def test_caching_v2(): # test in memory cache
print(f"error occurred: {traceback.format_exc()}")
pytest.fail(f"Error occurred: {e}")
# test_caching_v2()
test_caching_v2()
@ -90,7 +90,7 @@ def test_embedding_caching():
print(f"embedding2: {embedding2}")
pytest.fail("Error occurred: Embedding caching failed")
test_embedding_caching()
# test_embedding_caching()
def test_embedding_caching_azure():
@ -190,7 +190,7 @@ def test_redis_cache_completion():
print(f"response4: {response4}")
pytest.fail(f"Error occurred:")
test_redis_cache_completion()
# test_redis_cache_completion()
# redis cache with custom keys
def custom_get_cache_key(*args, **kwargs):
@ -231,6 +231,29 @@ def test_custom_redis_cache_with_key():
# test_custom_redis_cache_with_key()
def test_custom_redis_cache_params():
# test if we can init redis with **kwargs
try:
litellm.cache = Cache(
type="redis",
host=os.environ['REDIS_HOST'],
port=os.environ['REDIS_PORT'],
password=os.environ['REDIS_PASSWORD'],
db = 0,
ssl=True,
ssl_certfile="./redis_user.crt",
ssl_keyfile="./redis_user_private.key",
ssl_ca_certs="./redis_ca.pem",
)
print(litellm.cache.cache.redis_client)
litellm.cache = None
except Exception as e:
pytest.fail(f"Error occurred:", e)
# test_custom_redis_cache_params()
# def test_redis_cache_with_ttl():
# cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
# sample_model_response_object_str = """{

View file

@ -442,9 +442,46 @@ def test_completion_text_openai():
pytest.fail(f"Error occurred: {e}")
# test_completion_text_openai()
def custom_callback(
kwargs, # kwargs to completion
completion_response, # response from completion
start_time, end_time # start/end time
):
# Your custom code here
try:
print("LITELLM: in custom callback function")
print("\nkwargs\n", kwargs)
model = kwargs["model"]
messages = kwargs["messages"]
user = kwargs.get("user")
#################################################
print(
f"""
Model: {model},
Messages: {messages},
User: {user},
Seed: {kwargs["seed"]},
temperature: {kwargs["temperature"]},
"""
)
assert kwargs["user"] == "ishaans app"
assert kwargs["model"] == "gpt-3.5-turbo-1106"
assert kwargs["seed"] == 12
assert kwargs["temperature"] == 0.5
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_openai_with_optional_params():
# [Proxy PROD TEST] WARNING: DO NOT DELETE THIS TEST
# assert that `user` gets passed to the completion call
# Note: This tests that we actually send the optional params to the completion call
# We use custom callbacks to test this
try:
litellm.set_verbose = True
litellm.success_callback = [custom_callback]
response = completion(
model="gpt-3.5-turbo-1106",
messages=[
@ -458,11 +495,13 @@ def test_completion_openai_with_optional_params():
seed=12,
response_format={ "type": "json_object" },
logit_bias=None,
user = "ishaans app"
)
# Add any assertions here to check the response
print(response)
except litellm.Timeout as e:
pass
litellm.success_callback = [] # unset callbacks
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@ -996,7 +1035,7 @@ def test_completion_sagemaker():
print("testing sagemaker")
litellm.set_verbose=True
response = completion(
model="sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b",
model="sagemaker/berri-benchmarking-Llama-2-70b-chat-hf-4",
messages=messages,
temperature=0.2,
max_tokens=80,
@ -1005,22 +1044,44 @@ def test_completion_sagemaker():
print(response)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_completion_sagemaker()
test_completion_sagemaker()
def test_completion_chat_sagemaker():
try:
print("testing sagemaker")
messages = [{"role": "user", "content": "Hey, how's it going?"}]
litellm.set_verbose=True
response = completion(
model="sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b-f",
model="sagemaker/berri-benchmarking-Llama-2-70b-chat-hf-4",
messages=messages,
max_tokens=100,
temperature=0.7,
stream=True,
)
# Add any assertions here to check the response
print(response)
complete_response = ""
for chunk in response:
complete_response += chunk.choices[0].delta.content or ""
print(f"complete_response: {complete_response}")
assert len(complete_response) > 0
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_completion_chat_sagemaker()
def test_completion_chat_sagemaker_mistral():
try:
messages = [{"role": "user", "content": "Hey, how's it going?"}]
response = completion(
model="sagemaker/jumpstart-dft-hf-llm-mistral-7b-instruct",
messages=messages,
max_tokens=100,
)
# Add any assertions here to check the response
print(response)
except Exception as e:
pytest.fail(f"An error occurred: {str(e)}")
# test_completion_chat_sagemaker_mistral()
def test_completion_bedrock_titan():
try:
response = completion(
@ -1337,7 +1398,7 @@ def test_azure_cloudflare_api():
traceback.print_exc()
pass
test_azure_cloudflare_api()
# test_azure_cloudflare_api()
def test_completion_anyscale_2():
try:

View file

@ -0,0 +1,14 @@
from litellm.proxy.types import UserAPIKeyAuth
from fastapi import Request
from dotenv import load_dotenv
import os
load_dotenv()
async def user_api_key_auth(request: Request, api_key: str) -> UserAPIKeyAuth:
try:
print(f"api_key: {api_key}")
if api_key == f"{os.getenv('PROXY_MASTER_KEY')}-1234":
return UserAPIKeyAuth(api_key=api_key)
raise Exception
except:
raise Exception

View file

@ -0,0 +1,27 @@
general_settings:
database_url: os.environ/PROXY_DATABASE_URL
master_key: os.environ/PROXY_MASTER_KEY
litellm_settings:
drop_params: true
set_verbose: true
model_list:
- litellm_params:
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
api_key: os.environ/AZURE_EUROPE_API_KEY
model: azure/gpt-35-turbo
model_name: azure-model
- litellm_params:
api_base: https://my-endpoint-canada-berri992.openai.azure.com
api_key: os.environ/AZURE_CANADA_API_KEY
model: azure/gpt-35-turbo
model_name: azure-model
- litellm_params:
api_base: https://openai-france-1234.openai.azure.com
api_key: os.environ/AZURE_FRANCE_API_KEY
model: azure/gpt-turbo
model_name: azure-model
- litellm_params:
model: gpt-3.5-turbo
model_info:
description: this is a test openai model
model_name: test_openai_models

View file

@ -0,0 +1,11 @@
model_list:
- model_name: "openai-model"
litellm_params:
model: "gpt-3.5-turbo"
litellm_settings:
drop_params: True
set_verbose: True
general_settings:
custom_auth: custom_auth.user_api_key_auth

View file

@ -1,5 +1,5 @@
### What this tests ####
import sys, os, time
import sys, os, time, inspect, asyncio
import pytest
sys.path.insert(0, os.path.abspath('../..'))
@ -7,6 +7,7 @@ from litellm import completion, embedding
import litellm
from litellm.integrations.custom_logger import CustomLogger
async_success = False
class MyCustomHandler(CustomLogger):
success: bool = False
failure: bool = False
@ -28,24 +29,29 @@ class MyCustomHandler(CustomLogger):
print(f"On Failure")
self.failure = True
# def test_chat_openai():
# try:
# customHandler = MyCustomHandler()
# litellm.callbacks = [customHandler]
# response = completion(model="gpt-3.5-turbo",
# messages=[{
# "role": "user",
# "content": "Hi 👋 - i'm openai"
# }],
# stream=True)
# time.sleep(1)
# assert customHandler.success == True
# except Exception as e:
# pytest.fail(f"An error occurred - {str(e)}")
# pass
async def async_test_logging_fn(kwargs, completion_obj, start_time, end_time):
global async_success
print(f"ON ASYNC LOGGING")
async_success = True
# test_chat_openai()
@pytest.mark.asyncio
async def test_chat_openai():
try:
# litellm.set_verbose = True
litellm.success_callback = [async_test_logging_fn]
response = await litellm.acompletion(model="gpt-3.5-turbo",
messages=[{
"role": "user",
"content": "Hi 👋 - i'm openai"
}],
stream=True)
async for chunk in response:
continue
assert async_success == True
except Exception as e:
print(e)
pytest.fail(f"An error occurred - {str(e)}")
def test_completion_azure_stream_moderation_failure():
try:
@ -71,76 +77,3 @@ def test_completion_azure_stream_moderation_failure():
assert customHandler.failure == True
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_completion_azure_stream_moderation_failure()
# def custom_callback(
# kwargs,
# completion_response,
# start_time,
# end_time,
# ):
# print(
# "in custom callback func"
# )
# print("kwargs", kwargs)
# print(completion_response)
# print(start_time)
# print(end_time)
# if "complete_streaming_response" in kwargs:
# print("\n\n complete response\n\n")
# complete_streaming_response = kwargs["complete_streaming_response"]
# print(kwargs["complete_streaming_response"])
# usage = complete_streaming_response["usage"]
# print("usage", usage)
# def send_slack_alert(
# kwargs,
# completion_response,
# start_time,
# end_time,
# ):
# print(
# "in custom slack callback func"
# )
# import requests
# import json
# # Define the Slack webhook URL
# slack_webhook_url = os.environ['SLACK_WEBHOOK_URL'] # "https://hooks.slack.com/services/<>/<>/<>"
# # Define the text payload, send data available in litellm custom_callbacks
# text_payload = f"""LiteLLM Logging: kwargs: {str(kwargs)}\n\n, response: {str(completion_response)}\n\n, start time{str(start_time)} end time: {str(end_time)}
# """
# payload = {
# "text": text_payload
# }
# # Set the headers
# headers = {
# "Content-type": "application/json"
# }
# # Make the POST request
# response = requests.post(slack_webhook_url, json=payload, headers=headers)
# # Check the response status
# if response.status_code == 200:
# print("Message sent successfully to Slack!")
# else:
# print(f"Failed to send message to Slack. Status code: {response.status_code}")
# print(response.json())
# def get_transformed_inputs(
# kwargs,
# ):
# params_to_model = kwargs["additional_args"]["complete_input_dict"]
# print("params to model", params_to_model)
# litellm.success_callback = [custom_callback, send_slack_alert]
# litellm.failure_callback = [send_slack_alert]
# litellm.set_verbose = False
# # litellm.input_callback = [get_transformed_inputs]

View file

@ -0,0 +1,63 @@
import sys, os
import traceback
from dotenv import load_dotenv
load_dotenv()
import os, io
# this file is to test litellm/proxy
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest
import litellm
from litellm import embedding, completion, completion_cost, Timeout
from litellm import RateLimitError
# test /chat/completion request to the proxy
from fastapi.testclient import TestClient
from fastapi import FastAPI
from litellm.proxy.proxy_server import router, save_worker_config, initialize # Replace with the actual module where your FastAPI router is defined
filepath = os.path.dirname(os.path.abspath(__file__))
config_fp = f"{filepath}/test_configs/test_config_custom_auth.yaml"
save_worker_config(config=config_fp, model=None, alias=None, api_base=None, api_version=None, debug=False, temperature=None, max_tokens=None, request_timeout=600, max_budget=None, telemetry=False, drop_params=True, add_function_to_prompt=False, headers=None, save=False, use_queue=False)
app = FastAPI()
app.include_router(router) # Include your router in the test app
@app.on_event("startup")
async def wrapper_startup_event():
initialize(config=config_fp, model=None, alias=None, api_base=None, api_version=None, debug=False, temperature=None, max_tokens=None, request_timeout=600, max_budget=None, telemetry=False, drop_params=True, add_function_to_prompt=False, headers=None, save=False, use_queue=False)
# Here you create a fixture that will be used by your tests
# Make sure the fixture returns TestClient(app)
@pytest.fixture(autouse=True)
def client():
with TestClient(app) as client:
yield client
def test_custom_auth(client):
try:
# Your test data
test_data = {
"model": "openai-model",
"messages": [
{
"role": "user",
"content": "hi"
},
],
"max_tokens": 10,
}
# Your bearer token
token = os.getenv("PROXY_MASTER_KEY")
headers = {
"Authorization": f"Bearer {token}"
}
response = client.post("/chat/completions", json=test_data, headers=headers)
print(f"response: {response.text}")
assert response.status_code == 401
result = response.json()
print(f"Received response: {result}")
except Exception as e:
pytest.fail("LiteLLM Proxy test failed. Exception", e)

View file

@ -18,11 +18,22 @@ from litellm import RateLimitError
# test /chat/completion request to the proxy
from fastapi.testclient import TestClient
from fastapi import FastAPI
from litellm.proxy.proxy_server import router # Replace with the actual module where your FastAPI router is defined
from litellm.proxy.proxy_server import router, save_worker_config, initialize # Replace with the actual module where your FastAPI router is defined
save_worker_config(config=None, model=None, alias=None, api_base=None, api_version=None, debug=False, temperature=None, max_tokens=None, request_timeout=600, max_budget=None, telemetry=False, drop_params=True, add_function_to_prompt=False, headers=None, save=False, use_queue=False)
app = FastAPI()
app.include_router(router) # Include your router in the test app
client = TestClient(app)
def test_chat_completion():
@app.on_event("startup")
async def wrapper_startup_event(): # required to reset config on app init - b/c pytest collects across multiple files - which sets the fastapi client + WORKER CONFIG to whatever was collected last
initialize(config=None, model=None, alias=None, api_base=None, api_version=None, debug=False, temperature=None, max_tokens=None, request_timeout=600, max_budget=None, telemetry=False, drop_params=True, add_function_to_prompt=False, headers=None, save=False, use_queue=False)
# Here you create a fixture that will be used by your tests
# Make sure the fixture returns TestClient(app)
@pytest.fixture(autouse=True)
def client():
with TestClient(app) as client:
yield client
def test_chat_completion(client):
try:
# Your test data
test_data = {
@ -37,18 +48,16 @@ def test_chat_completion():
}
print("testing proxy server")
response = client.post("/v1/chat/completions", json=test_data)
print(f"response - {response.text}")
assert response.status_code == 200
result = response.json()
print(f"Received response: {result}")
except Exception as e:
pytest.fail("LiteLLM Proxy test failed. Exception", e)
pytest.fail(f"LiteLLM Proxy test failed. Exception - {str(e)}")
# Run the test
test_chat_completion()
def test_chat_completion_azure():
def test_chat_completion_azure(client):
try:
# Your test data
test_data = {
@ -69,13 +78,13 @@ def test_chat_completion_azure():
print(f"Received response: {result}")
assert len(result["choices"][0]["message"]["content"]) > 0
except Exception as e:
pytest.fail("LiteLLM Proxy test failed. Exception", e)
pytest.fail(f"LiteLLM Proxy test failed. Exception - {str(e)}")
# Run the test
# test_chat_completion_azure()
def test_embedding():
def test_embedding(client):
try:
test_data = {
"model": "azure/azure-embedding-model",
@ -89,13 +98,13 @@ def test_embedding():
print(len(result["data"][0]["embedding"]))
assert len(result["data"][0]["embedding"]) > 10 # this usually has len==1536 so
except Exception as e:
pytest.fail("LiteLLM Proxy test failed. Exception", e)
pytest.fail(f"LiteLLM Proxy test failed. Exception - {str(e)}")
# Run the test
# test_embedding()
def test_add_new_model():
def test_add_new_model(client):
try:
test_data = {
"model_name": "test_openai_models",
@ -119,4 +128,75 @@ def test_add_new_model():
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
test_add_new_model()
# test_add_new_model()
from litellm.integrations.custom_logger import CustomLogger
class MyCustomHandler(CustomLogger):
def log_pre_api_call(self, model, messages, kwargs):
print(f"Pre-API Call")
def log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Success")
assert kwargs["user"] == "proxy-user"
assert kwargs["model"] == "gpt-3.5-turbo"
assert kwargs["max_tokens"] == 10
customHandler = MyCustomHandler()
def test_chat_completion_optional_params(client):
# [PROXY: PROD TEST] - DO NOT DELETE
# This tests if all the /chat/completion params are passed to litellm
try:
# Your test data
litellm.set_verbose=True
test_data = {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "hi"
},
],
"max_tokens": 10,
"user": "proxy-user"
}
litellm.callbacks = [customHandler]
print("testing proxy server: optional params")
response = client.post("/v1/chat/completions", json=test_data)
assert response.status_code == 200
result = response.json()
print(f"Received response: {result}")
except Exception as e:
pytest.fail("LiteLLM Proxy test failed. Exception", e)
# Run the test
# test_chat_completion_optional_params()
# Test Reading config.yaml file
from litellm.proxy.proxy_server import load_router_config
def test_load_router_config():
try:
print("testing reading config")
# this is a basic config.yaml with only a model
filepath = os.path.dirname(os.path.abspath(__file__))
result = load_router_config(router=None, config_file_path=f"{filepath}/example_config_yaml/simple_config.yaml")
print(result)
assert len(result[1]) == 1
# this is a load balancing config yaml
result = load_router_config(router=None, config_file_path=f"{filepath}/example_config_yaml/azure_config.yaml")
print(result)
assert len(result[1]) == 2
# config with general settings - custom callbacks
result = load_router_config(router=None, config_file_path=f"{filepath}/example_config_yaml/azure_config.yaml")
print(result)
assert len(result[1]) == 2
except Exception as e:
pytest.fail("Proxy: Got exception reading config", e)
# test_load_router_config()

View file

@ -0,0 +1,138 @@
# #### What this tests ####
# # This tests the cost tracking function works with consecutive calls (~10 consecutive calls)
# import sys, os, asyncio
# import traceback
# import pytest
# sys.path.insert(
# 0, os.path.abspath("../..")
# ) # Adds the parent directory to the system path
# import dotenv
# dotenv.load_dotenv()
# import litellm
# from fastapi.testclient import TestClient
# from fastapi import FastAPI
# from litellm.proxy.proxy_server import router, save_worker_config, startup_event # Replace with the actual module where your FastAPI router is defined
# filepath = os.path.dirname(os.path.abspath(__file__))
# config_fp = f"{filepath}/test_config.yaml"
# save_worker_config(config=config_fp, model=None, alias=None, api_base=None, api_version=None, debug=True, temperature=None, max_tokens=None, request_timeout=600, max_budget=None, telemetry=False, drop_params=True, add_function_to_prompt=False, headers=None, save=False, use_queue=False)
# app = FastAPI()
# app.include_router(router) # Include your router in the test app
# @app.on_event("startup")
# async def wrapper_startup_event():
# await startup_event()
# # Here you create a fixture that will be used by your tests
# # Make sure the fixture returns TestClient(app)
# @pytest.fixture(autouse=True)
# def client():
# with TestClient(app) as client:
# yield client
# @pytest.mark.asyncio
# async def test_proxy_cost_tracking(client):
# """
# Get min cost.
# Create new key.
# Run 10 parallel calls.
# Check cost for key at the end.
# assert it's > min cost.
# """
# model = "gpt-3.5-turbo"
# messages = [{"role": "user", "content": "Hey, how's it going?"}]
# number_of_calls = 1
# min_cost = litellm.completion_cost(model=model, messages=messages) * number_of_calls
# try:
# ### CREATE NEW KEY ###
# test_data = {
# "models": ["azure-model"],
# }
# # Your bearer token
# token = os.getenv("PROXY_MASTER_KEY")
# headers = {
# "Authorization": f"Bearer {token}"
# }
# create_new_key = client.post("/key/generate", json=test_data, headers=headers)
# key = create_new_key.json()["key"]
# print(f"received key: {key}")
# ### MAKE PARALLEL CALLS ###
# async def test_chat_completions():
# # Your test data
# test_data = {
# "model": "azure-model",
# "messages": messages
# }
# tmp_headers = {
# "Authorization": f"Bearer {key}"
# }
# response = client.post("/v1/chat/completions", json=test_data, headers=tmp_headers)
# assert response.status_code == 200
# result = response.json()
# print(f"Received response: {result}")
# tasks = [test_chat_completions() for _ in range(number_of_calls)]
# chat_completions = await asyncio.gather(*tasks)
# ### CHECK SPEND ###
# get_key_spend = client.get(f"/key/info?key={key}", headers=headers)
# assert get_key_spend.json()["info"]["spend"] > min_cost
# # print(f"chat_completions: {chat_completions}")
# # except Exception as e:
# # pytest.fail(f"LiteLLM Proxy test failed. Exception - {str(e)}")
# #### JUST TEST LOCAL PROXY SERVER
# import requests, os
# from concurrent.futures import ThreadPoolExecutor
# import dotenv
# dotenv.load_dotenv()
# api_url = "http://0.0.0.0:8000/chat/completions"
# def make_api_call(api_url):
# # Your test data
# test_data = {
# "model": "azure-model",
# "messages": [
# {
# "role": "user",
# "content": "hi"
# },
# ],
# "max_tokens": 10,
# }
# # Your bearer token
# token = os.getenv("PROXY_MASTER_KEY")
# headers = {
# "Authorization": f"Bearer {token}"
# }
# print("testing proxy server")
# response = requests.post(api_url, json=test_data, headers=headers)
# return response.json()
# # Number of parallel API calls
# num_parallel_calls = 3
# # List to store results
# results = []
# # Create a ThreadPoolExecutor
# with ThreadPoolExecutor() as executor:
# # Submit the API calls concurrently
# futures = [executor.submit(make_api_call, api_url) for _ in range(num_parallel_calls)]
# # Gather the results as they become available
# for future in futures:
# try:
# result = future.result()
# results.append(result)
# except Exception as e:
# print(f"Error: {e}")
# # Print the results
# for idx, result in enumerate(results, start=1):
# print(f"Result {idx}: {result}")

View file

@ -0,0 +1,67 @@
import sys, os
import traceback
from dotenv import load_dotenv
load_dotenv()
import os, io
# this file is to test litellm/proxy
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest, logging
import litellm
from litellm import embedding, completion, completion_cost, Timeout
from litellm import RateLimitError
# Configure logging
logging.basicConfig(
level=logging.DEBUG, # Set the desired logging level
format="%(asctime)s - %(levelname)s - %(message)s",
)
# test /chat/completion request to the proxy
from fastapi.testclient import TestClient
from fastapi import FastAPI
from litellm.proxy.proxy_server import router, save_worker_config, startup_event # Replace with the actual module where your FastAPI router is defined
filepath = os.path.dirname(os.path.abspath(__file__))
config_fp = f"{filepath}/test_configs/test_config.yaml"
save_worker_config(config=config_fp, model=None, alias=None, api_base=None, api_version=None, debug=False, temperature=None, max_tokens=None, request_timeout=600, max_budget=None, telemetry=False, drop_params=True, add_function_to_prompt=False, headers=None, save=False, use_queue=False)
app = FastAPI()
app.include_router(router) # Include your router in the test app
@app.on_event("startup")
async def wrapper_startup_event():
await startup_event()
# Here you create a fixture that will be used by your tests
# Make sure the fixture returns TestClient(app)
@pytest.fixture(autouse=True)
def client():
with TestClient(app) as client:
yield client
def test_add_new_key(client):
try:
# Your test data
test_data = {
"models": ["gpt-3.5-turbo", "gpt-4", "claude-2"],
"aliases": {"mistral-7b": "gpt-3.5-turbo"},
"duration": "20m"
}
print("testing proxy server")
# Your bearer token
token = os.getenv("PROXY_MASTER_KEY")
headers = {
"Authorization": f"Bearer {token}"
}
response = client.post("/key/generate", json=test_data, headers=headers)
print(f"response: {response.text}")
assert response.status_code == 200
result = response.json()
assert result["key"].startswith("sk-")
print(f"Received response: {result}")
except Exception as e:
pytest.fail("LiteLLM Proxy test failed. Exception", e)
# # Run the test - only runs via pytest

View file

@ -74,7 +74,8 @@ def test_exception_raising():
def test_reading_key_from_model_list():
# this tests if the router raises an exception when invalid params are set
# [PROD TEST CASE]
# this tests if the router can read key from model list and make completion call, and completion + stream call. This is 90% of the router use case
# DO NOT REMOVE THIS TEST. It's an IMP ONE. Speak to Ishaan, if you are tring to remove this
litellm.set_verbose=False
import openai
@ -112,6 +113,30 @@ def test_reading_key_from_model_list():
}
]
)
print("\n response", response)
str_response = response.choices[0].message.content
print("\n str_response", str_response)
assert len(str_response) > 0
print("\n Testing streaming response")
response = router.completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "hello this request will fail"
}
],
stream=True
)
completed_response = ""
for chunk in response:
if chunk is not None:
print(chunk)
completed_response += chunk.choices[0].delta.content or ""
print("\n completed_response", completed_response)
assert len(completed_response) > 0
print("\n Passed Streaming")
os.environ["AZURE_API_KEY"] = old_api_key
router.reset()
except Exception as e:
@ -120,6 +145,185 @@ def test_reading_key_from_model_list():
pytest.fail(f"Got unexpected exception on router! - {e}")
# test_reading_key_from_model_list()
def test_call_one_endpoint():
# [PROD TEST CASE]
# user passes one deployment they want to call on the router, we call the specified one
# this test makes a completion calls azure/chatgpt-v-2, it should work
try:
print("Testing calling a specific deployment")
old_api_key = os.environ["AZURE_API_KEY"]
model_list = [
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": old_api_key,
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
},
{
"model_name": "claude-v1",
"litellm_params": {
"model": "bedrock/anthropic.claude-instant-v1",
},
"tpm": 100000,
"rpm": 10000,
},
{
"model_name": "text-embedding-ada-002",
"litellm_params": {
"model": "azure/azure-embedding-model",
"api_key":os.environ['AZURE_API_KEY'],
"api_base": os.environ['AZURE_API_BASE']
},
"tpm": 100000,
"rpm": 10000,
},
]
router = Router(model_list=model_list,
routing_strategy="simple-shuffle",
set_verbose=True,
num_retries=1) # type: ignore
old_api_base = os.environ.pop("AZURE_API_BASE", None)
async def call_azure_completion():
response = await router.acompletion(
model="azure/chatgpt-v-2",
messages=[
{
"role": "user",
"content": "hello this request will pass"
}
],
)
print("\n response", response)
async def call_bedrock_claude():
response = await router.acompletion(
model="bedrock/anthropic.claude-instant-v1",
messages=[
{
"role": "user",
"content": "hello this request will pass"
}
],
)
print("\n response", response)
async def call_azure_embedding():
response = await router.aembedding(
model="azure/azure-embedding-model",
input = ["good morning from litellm"]
)
print("\n response", response)
asyncio.run(call_azure_completion())
asyncio.run(call_bedrock_claude())
asyncio.run(call_azure_embedding())
os.environ["AZURE_API_BASE"] = old_api_base
os.environ["AZURE_API_KEY"] = old_api_key
except Exception as e:
print(f"FAILED TEST")
pytest.fail(f"Got unexpected exception on router! - {e}")
# test_call_one_endpoint()
def test_router_azure_acompletion():
# [PROD TEST CASE]
# This is 90% of the router use case, makes an acompletion call, acompletion + stream call and verifies it got a response
# DO NOT REMOVE THIS TEST. It's an IMP ONE. Speak to Ishaan, if you are tring to remove this
litellm.set_verbose=False
import openai
try:
print("Router Test Azure - Acompletion, Acompletion with stream")
# remove api key from env to repro how proxy passes key to router
old_api_key = os.environ["AZURE_API_KEY"]
os.environ.pop("AZURE_API_KEY", None)
model_list = [
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": old_api_key,
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"rpm": 1800
},
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/gpt-turbo",
"api_key": os.getenv("AZURE_FRANCE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": "https://openai-france-1234.openai.azure.com"
},
"rpm": 1800
}
]
router = Router(model_list=model_list,
routing_strategy="simple-shuffle",
set_verbose=True
) # type: ignore
async def test1():
response = await router.acompletion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "hello this request will pass"
}
]
)
str_response = response.choices[0].message.content
print("\n str_response", str_response)
assert len(str_response) > 0
print("\n response", response)
asyncio.run(test1())
print("\n Testing streaming response")
async def test2():
response = await router.acompletion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "hello this request will fail"
}
],
stream=True
)
completed_response = ""
async for chunk in response:
if chunk is not None:
print(chunk)
completed_response += chunk.choices[0].delta.content or ""
print("\n completed_response", completed_response)
assert len(completed_response) > 0
asyncio.run(test2())
print("\n Passed Streaming")
os.environ["AZURE_API_KEY"] = old_api_key
router.reset()
except Exception as e:
os.environ["AZURE_API_KEY"] = old_api_key
print(f"FAILED TEST")
pytest.fail(f"Got unexpected exception on router! - {e}")
test_router_azure_acompletion()
### FUNCTION CALLING
@ -285,23 +489,32 @@ def test_aembedding_on_router():
"rpm": 10000,
},
]
async def embedding_call():
router = Router(model_list=model_list)
async def embedding_call():
response = await router.aembedding(
model="text-embedding-ada-002",
input=["good morning from litellm", "this is another item"],
)
print(response)
router.reset()
asyncio.run(embedding_call())
print("\n Making sync Embedding call\n")
response = router.embedding(
model="text-embedding-ada-002",
input=["good morning from litellm 2"],
)
print("sync embedding response: ", response)
router.reset()
except Exception as e:
traceback.print_exc()
pytest.fail(f"Error occurred: {e}")
# test_aembedding_on_router()
test_aembedding_on_router()
def test_azure_aembedding_on_router():
def test_azure_embedding_on_router():
"""
[PROD Use Case] - Makes an aembedding call + embedding call
"""
litellm.set_verbose = True
try:
model_list = [
@ -316,17 +529,147 @@ def test_azure_aembedding_on_router():
"rpm": 10000,
},
]
router = Router(model_list=model_list)
async def embedding_call():
router = Router(model_list=model_list)
response = await router.aembedding(
model="text-embedding-ada-002",
input=["good morning from litellm"]
)
print(response)
router.reset()
asyncio.run(embedding_call())
print("\n Making sync Azure Embedding call\n")
response = router.embedding(
model="text-embedding-ada-002",
input=["test 2 from litellm. async embedding"]
)
print(response)
router.reset()
except Exception as e:
traceback.print_exc()
pytest.fail(f"Error occurred: {e}")
# test_azure_aembedding_on_router()
test_azure_embedding_on_router()
def test_bedrock_on_router():
litellm.set_verbose = True
print("\n Testing bedrock on router\n")
try:
model_list = [
{
"model_name": "claude-v1",
"litellm_params": {
"model": "bedrock/anthropic.claude-instant-v1",
},
"tpm": 100000,
"rpm": 10000,
},
]
async def test():
router = Router(model_list=model_list)
response = await router.acompletion(
model="claude-v1",
messages=[
{
"role": "user",
"content": "hello from litellm test",
}
]
)
print(response)
router.reset()
asyncio.run(test())
except Exception as e:
traceback.print_exc()
pytest.fail(f"Error occurred: {e}")
# test_bedrock_on_router()
def test_openai_completion_on_router():
# [PROD Use Case] - Makes an acompletion call + async acompletion call, and sync acompletion call, sync completion + stream
# 4 LLM API calls made here. If it fails, add retries. Do not remove this test.
litellm.set_verbose = True
print("\n Testing OpenAI on router\n")
try:
model_list = [
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "gpt-3.5-turbo",
},
},
]
router = Router(model_list=model_list)
async def test():
response = await router.acompletion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "hello from litellm test",
}
]
)
print(response)
assert len(response.choices[0].message.content) > 0
print("\n streaming + acompletion test")
response = await router.acompletion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "hello from litellm test",
}
],
stream=True
)
complete_response = ""
print(response)
async for chunk in response:
print(chunk)
complete_response += chunk.choices[0].delta.content or ""
print("\n complete response: ", complete_response)
assert len(complete_response) > 0
asyncio.run(test())
print("\n Testing Sync completion calls \n")
response = router.completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "hello from litellm test2",
}
]
)
print(response)
assert len(response.choices[0].message.content) > 0
print("\n streaming + completion test")
response = router.completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "hello from litellm test3",
}
],
stream=True
)
complete_response = ""
print(response)
for chunk in response:
print(chunk)
complete_response += chunk.choices[0].delta.content or ""
print("\n complete response: ", complete_response)
assert len(complete_response) > 0
router.reset()
except Exception as e:
traceback.print_exc()
pytest.fail(f"Error occurred: {e}")
# test_openai_completion_on_router()

View file

@ -0,0 +1,190 @@
# this tests if the router is initialized correctly
import sys, os, time
import traceback, asyncio
import pytest
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import Router
from concurrent.futures import ThreadPoolExecutor
from collections import defaultdict
from dotenv import load_dotenv
load_dotenv()
# every time we load the router we should have 4 clients:
# Async
# Sync
# Async + Stream
# Sync + Stream
def test_init_clients():
litellm.set_verbose = True
try:
print("testing init 4 clients with diff timeouts")
model_list = [
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
"timeout": 0.01,
"stream_timeout": 0.000_001,
"max_retries": 7
},
},
]
router = Router(model_list=model_list)
for elem in router.model_list:
assert elem["client"] is not None
assert elem["async_client"] is not None
assert elem["stream_client"] is not None
assert elem["stream_async_client"] is not None
# check if timeout for stream/non stream clients is set correctly
async_client = elem["async_client"]
stream_async_client = elem["stream_async_client"]
assert async_client.timeout == 0.01
assert stream_async_client.timeout == 0.000_001
print("PASSED !")
except Exception as e:
traceback.print_exc()
pytest.fail(f"Error occurred: {e}")
# test_init_clients()
def test_init_clients_basic():
litellm.set_verbose = True
try:
print("Test basic client init")
model_list = [
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
},
]
router = Router(model_list=model_list)
for elem in router.model_list:
assert elem["client"] is not None
assert elem["async_client"] is not None
assert elem["stream_client"] is not None
assert elem["stream_async_client"] is not None
print("PASSED !")
# see if we can init clients without timeout or max retries set
except Exception as e:
traceback.print_exc()
pytest.fail(f"Error occurred: {e}")
# test_init_clients_basic()
def test_timeouts_router():
"""
Test the timeouts of the router with multiple clients. This HASas to raise a timeout error
"""
import openai
litellm.set_verbose = True
try:
print("testing init 4 clients with diff timeouts")
model_list = [
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
"timeout": 0.000001,
"stream_timeout": 0.000_001,
},
},
]
router = Router(model_list=model_list)
print("PASSED !")
async def test():
try:
await router.acompletion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "hello, write a 20 pg essay"
}
],
)
except Exception as e:
raise e
asyncio.run(test())
except openai.APITimeoutError as e:
print("Passed: Raised correct exception. Got openai.APITimeoutError\nGood Job", e)
print(type(e))
pass
except Exception as e:
pytest.fail(f"Did not raise error `openai.APITimeoutError`. Instead raised error type: {type(e)}, Error: {e}")
# test_timeouts_router()
def test_stream_timeouts_router():
"""
Test the stream timeouts router. See if it selected the correct client with stream timeout
"""
import openai
litellm.set_verbose = True
try:
print("testing init 4 clients with diff timeouts")
model_list = [
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
"timeout": 200, # regular calls will not timeout, stream calls will
"stream_timeout": 0.000_001,
},
},
]
router = Router(model_list=model_list)
print("PASSED !")
selected_client = router._get_client(
deployment=router.model_list[0],
kwargs={
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "hello, write a 20 pg essay"
}
],
"stream": True
},
client_type=None
)
print("Select client timeout", selected_client.timeout)
assert selected_client.timeout == 0.000_001
except openai.APITimeoutError as e:
print("Passed: Raised correct exception. Got openai.APITimeoutError\nGood Job", e)
print(type(e))
pass
except Exception as e:
pytest.fail(f"Did not raise error `openai.APITimeoutError`. Instead raised error type: {type(e)}, Error: {e}")
test_stream_timeouts_router()

View file

@ -110,4 +110,26 @@ def test_stream_chunk_builder_litellm_tool_call():
except Exception as e:
pytest.fail(f"An exception occurred - {str(e)}")
test_stream_chunk_builder_litellm_tool_call()
# test_stream_chunk_builder_litellm_tool_call()
def test_stream_chunk_builder_litellm_tool_call_regular_message():
try:
messages = [{"role": "user", "content": "Hey, how's it going?"}]
litellm.set_verbose = False
response = litellm.completion(
model="azure/gpt-4-nov-release",
messages=messages,
tools=tools_schema,
stream=True,
api_key="os.environ/AZURE_FRANCE_API_KEY",
api_base="https://openai-france-1234.openai.azure.com",
complete_response = True
)
print(f"complete response: {response}")
print(f"complete response usage: {response.usage}")
assert response.system_fingerprint is not None
except Exception as e:
pytest.fail(f"An exception occurred - {str(e)}")
test_stream_chunk_builder_litellm_tool_call_regular_message()

View file

@ -123,6 +123,15 @@ def map_finish_reason(finish_reason: str): # openai supports 5 stop sequences -
# anthropic mapping
if finish_reason == "stop_sequence":
return "stop"
# cohere mapping - https://docs.cohere.com/reference/generate
elif finish_reason == "COMPLETE":
return "stop"
elif finish_reason == "MAX_TOKENS":
return "length"
elif finish_reason == "ERROR_TOXIC":
return "content_filter"
elif finish_reason == "ERROR": # openai currently doesn't support an 'error' finish reason
return "stop"
return finish_reason
class FunctionCall(OpenAIObject):
@ -414,7 +423,7 @@ class TextChoices(OpenAIObject):
else:
self.finish_reason = "stop"
self.index = index
if text:
if text is not None:
self.text = text
else:
self.text = None
@ -544,7 +553,8 @@ class Logging:
"optional_params": self.optional_params,
"litellm_params": self.litellm_params,
"start_time": self.start_time,
"stream": self.stream
"stream": self.stream,
**self.optional_params
}
def pre_call(self, input, api_key, model=None, additional_args={}):
@ -741,11 +751,7 @@ class Logging:
)
pass
def success_handler(self, result=None, start_time=None, end_time=None, **kwargs):
print_verbose(
f"Logging Details LiteLLM-Success Call"
)
def _success_handler_helper_fn(self, result=None, start_time=None, end_time=None):
try:
if start_time is None:
start_time = self.start_time
@ -775,6 +781,18 @@ class Logging:
float_diff = float(time_diff)
litellm._current_cost += litellm.completion_cost(model=self.model, prompt="", completion=result["content"], total_time=float_diff)
return start_time, end_time, result, complete_streaming_response
except:
pass
def success_handler(self, result=None, start_time=None, end_time=None, **kwargs):
print_verbose(
f"Logging Details LiteLLM-Success Call"
)
try:
start_time, end_time, result, complete_streaming_response = self._success_handler_helper_fn(start_time=start_time, end_time=end_time, result=result)
print_verbose(f"success callbacks: {litellm.success_callback}")
for callback in litellm.success_callback:
try:
if callback == "lite_debugger":
@ -968,6 +986,29 @@ class Logging:
)
pass
async def async_success_handler(self, result=None, start_time=None, end_time=None, **kwargs):
"""
Implementing async callbacks, to handle asyncio event loop issues when custom integrations need to use async functions.
"""
start_time, end_time, result, complete_streaming_response = self._success_handler_helper_fn(start_time=start_time, end_time=end_time, result=result)
print_verbose(f"success callbacks: {litellm.success_callback}")
for callback in litellm._async_success_callback:
try:
if callable(callback): # custom logger functions
await customLogger.async_log_event(
kwargs=self.model_call_details,
response_obj=result,
start_time=start_time,
end_time=end_time,
print_verbose=print_verbose,
callback_func=callback
)
except:
print_verbose(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging {traceback.format_exc()}"
)
def failure_handler(self, exception, traceback_exception, start_time=None, end_time=None):
print_verbose(
f"Logging Details LiteLLM-Failure Call"
@ -1184,6 +1225,17 @@ def client(original_function):
callback_list=callback_list,
function_id=function_id
)
## ASYNC CALLBACKS
if len(litellm.success_callback) > 0:
removed_async_items = []
for index, callback in enumerate(litellm.success_callback):
if inspect.iscoroutinefunction(callback):
litellm._async_success_callback.append(callback)
removed_async_items.append(index)
# Pop the async items from success_callback in reverse order to avoid index issues
for index in reversed(removed_async_items):
litellm.success_callback.pop(index)
if add_breadcrumb:
add_breadcrumb(
category="litellm.llm_call",
@ -1372,7 +1424,6 @@ def client(original_function):
start_time = datetime.datetime.now()
result = None
logging_obj = kwargs.get("litellm_logging_obj", None)
# only set litellm_call_id if its not in kwargs
if "litellm_call_id" not in kwargs:
kwargs["litellm_call_id"] = str(uuid.uuid4())
@ -1425,8 +1476,8 @@ def client(original_function):
# [OPTIONAL] ADD TO CACHE
if litellm.caching or litellm.caching_with_models or litellm.cache != None: # user init a cache object
litellm.cache.add_cache(result, *args, **kwargs)
# LOG SUCCESS - handle streaming success logging in the _next_ object, remove `handle_success` once it's deprecated
# LOG SUCCESS - handle streaming success logging in the _next_ object
asyncio.create_task(logging_obj.async_success_handler(result, start_time, end_time))
threading.Thread(target=logging_obj.success_handler, args=(result, start_time, end_time)).start()
# RETURN RESULT
if isinstance(result, ModelResponse):
@ -1464,7 +1515,6 @@ def client(original_function):
logging_obj.failure_handler(e, traceback_exception, start_time, end_time) # DO NOT MAKE THREADED - router retry fallback relies on this!
raise e
# Use httpx to determine if the original function is a coroutine
is_coroutine = inspect.iscoroutinefunction(original_function)
# Return the appropriate wrapper based on the original function type
@ -1943,7 +1993,9 @@ def get_optional_params( # use the openai defaults
for k in non_default_params.keys():
if k not in supported_params:
if k == "n" and n == 1: # langchain sends n=1 as a default value
pass
continue # skip this param
if k == "max_retries": # TODO: This is a patch. We support max retries for OpenAI, Azure. For non OpenAI LLMs we need to add support for max retries
continue # skip this param
# Always keeps this in elif code blocks
else:
unsupported_params[k] = non_default_params[k]
@ -2154,30 +2206,31 @@ def get_optional_params( # use the openai defaults
if max_tokens is not None:
optional_params["max_output_tokens"] = max_tokens
elif custom_llm_provider == "sagemaker":
if "llama-2" in model:
# llama-2 models on sagemaker support the following args
"""
max_new_tokens: Model generates text until the output length (excluding the input context length) reaches max_new_tokens. If specified, it must be a positive integer.
temperature: Controls the randomness in the output. Higher temperature results in output sequence with low-probability words and lower temperature results in output sequence with high-probability words. If temperature -> 0, it results in greedy decoding. If specified, it must be a positive float.
top_p: In each step of text generation, sample from the smallest possible set of words with cumulative probability top_p. If specified, it must be a float between 0 and 1.
return_full_text: If True, input text will be part of the output generated text. If specified, it must be boolean. The default value for it is False.
"""
## check if unsupported param passed in
supported_params = ["temperature", "max_tokens", "stream"]
supported_params = ["stream", "temperature", "max_tokens", "top_p", "stop", "n"]
_check_valid_arg(supported_params=supported_params)
if max_tokens is not None:
optional_params["max_new_tokens"] = max_tokens
# temperature, top_p, n, stream, stop, max_tokens, n, presence_penalty default to None
if temperature is not None:
if temperature == 0.0 or temperature == 0:
# hugging face exception raised when temp==0
# Failed: Error occurred: HuggingfaceException - Input validation error: `temperature` must be strictly positive
temperature = 0.01
optional_params["temperature"] = temperature
if top_p is not None:
optional_params["top_p"] = top_p
if stream:
if n is not None:
optional_params["best_of"] = n
optional_params["do_sample"] = True # Need to sample if you want best of for hf inference endpoints
if stream is not None:
optional_params["stream"] = stream
else:
## check if unsupported param passed in
supported_params = []
_check_valid_arg(supported_params=supported_params)
if stop is not None:
optional_params["stop"] = stop
if max_tokens is not None:
# HF TGI raises the following exception when max_new_tokens==0
# Failed: Error occurred: HuggingfaceException - Input validation error: `max_new_tokens` must be strictly positive
if max_tokens == 0:
max_tokens = 1
optional_params["max_new_tokens"] = max_tokens
elif custom_llm_provider == "bedrock":
if "ai21" in model:
supported_params = ["max_tokens", "temperature", "top_p", "stream"]
@ -2420,8 +2473,7 @@ def get_llm_provider(model: str, custom_llm_provider: Optional[str] = None, api_
return model, custom_llm_provider, dynamic_api_key, api_base
if api_key and api_key.startswith("os.environ/"):
api_key_env_name = api_key.replace("os.environ/", "")
dynamic_api_key = get_secret(api_key_env_name)
dynamic_api_key = get_secret(api_key)
# check if llm provider part of model name
if model.split("/",1)[0] in litellm.provider_list and model.split("/",1)[0] not in litellm.model_list:
custom_llm_provider = model.split("/", 1)[0]
@ -4013,6 +4065,14 @@ def exception_type(
llm_provider="sagemaker",
response=original_exception.response
)
elif "Input validation error: `best_of` must be > 0 and <= 2" in error_str:
exception_mapping_worked = True
raise BadRequestError(
message=f"SagemakerException - the value of 'n' must be > 0 and <= 2 for sagemaker endpoints",
model=model,
llm_provider="sagemaker",
response=original_exception.response
)
elif custom_llm_provider == "vertex_ai":
if "Vertex AI API has not been used in project" in error_str or "Unable to find your project" in error_str:
exception_mapping_worked = True
@ -4721,10 +4781,11 @@ def litellm_telemetry(data):
######### Secret Manager ############################
# checks if user has passed in a secret manager client
# if passed in then checks the secret there
def get_secret(secret_name):
def get_secret(secret_name: str, default_value: Optional[str]=None):
if secret_name.startswith("os.environ/"):
secret_name = secret_name.replace("os.environ/", "")
try:
if litellm.secret_manager_client is not None:
# TODO: check which secret manager is being used
# currently only supports Infisical
try:
client = litellm.secret_manager_client
if type(client).__module__ + '.' + type(client).__name__ == 'azure.keyvault.secrets._client.SecretClient': # support Azure Secret Client - from azure.keyvault.secrets import SecretClient
@ -4736,6 +4797,11 @@ def get_secret(secret_name):
return secret
else:
return os.environ.get(secret_name)
except Exception as e:
if default_value is not None:
return default_value
else:
raise e
######## Streaming Class ############################
@ -5123,7 +5189,7 @@ class CustomStreamWrapper:
def chunk_creator(self, chunk):
model_response = ModelResponse(stream=True, model=self.model)
model_response.choices[0].finish_reason = None
response_obj = None
response_obj = {}
try:
# return this for all models
completion_obj = {"content": ""}
@ -5211,11 +5277,9 @@ class CustomStreamWrapper:
else:
model_response.choices[0].finish_reason = "stop"
self.sent_last_chunk = True
chunk_size = 30
new_chunk = self.completion_stream[:chunk_size]
new_chunk = self.completion_stream
completion_obj["content"] = new_chunk
self.completion_stream = self.completion_stream[chunk_size:]
time.sleep(0.05)
self.completion_stream = self.completion_stream[len(self.completion_stream):]
elif self.custom_llm_provider == "petals":
if len(self.completion_stream)==0:
if self.sent_last_chunk:
@ -5230,6 +5294,7 @@ class CustomStreamWrapper:
time.sleep(0.05)
elif self.custom_llm_provider == "palm":
# fake streaming
response_obj = {}
if len(self.completion_stream)==0:
if self.sent_last_chunk:
raise StopIteration
@ -5264,9 +5329,27 @@ class CustomStreamWrapper:
print_verbose(f"model_response: {model_response}; completion_obj: {completion_obj}")
print_verbose(f"model_response finish reason 3: {model_response.choices[0].finish_reason}")
if len(completion_obj["content"]) > 0: # cannot set content of an OpenAI Object to be an empty string
hold, model_response_str = self.check_special_tokens(chunk=completion_obj["content"], finish_reason=model_response.choices[0].finish_reason)
hold, model_response_str = self.check_special_tokens(chunk=completion_obj["content"], finish_reason=model_response.choices[0].finish_reason) # filter out bos/eos tokens from openai-compatible hf endpoints
print_verbose(f"hold - {hold}, model_response_str - {model_response_str}")
if hold is False:
## check if openai/azure chunk
original_chunk = response_obj.get("original_chunk", None)
if original_chunk:
model_response.id = original_chunk.id
if len(original_chunk.choices) > 0:
try:
delta = dict(original_chunk.choices[0].delta)
model_response.choices[0].delta = Delta(**delta)
except Exception as e:
model_response.choices[0].delta = Delta()
else:
return
model_response.system_fingerprint = original_chunk.system_fingerprint
if self.sent_first_chunk == False:
model_response.choices[0].delta["role"] = "assistant"
self.sent_first_chunk = True
else:
## else
completion_obj["content"] = model_response_str
if self.sent_first_chunk == False:
completion_obj["role"] = "assistant"
@ -5349,6 +5432,8 @@ class CustomStreamWrapper:
processed_chunk = self.chunk_creator(chunk=chunk)
if processed_chunk is None:
continue
## LOGGING
asyncio.create_task(self.logging_obj.async_success_handler(processed_chunk,))
return processed_chunk
raise StopAsyncIteration
else: # temporary patch for non-aiohttp async calls

View file

@ -1,6 +1,6 @@
[tool.poetry]
name = "litellm"
version = "1.10.2"
version = "1.10.10"
description = "Library to easily interface with LLM API providers"
authors = ["BerriAI"]
license = "MIT License"
@ -31,6 +31,7 @@ proxy = [
"backoff",
"rq",
"orjson",
"importlib",
]
extra_proxy = [
@ -54,7 +55,7 @@ requires = ["poetry-core", "wheel"]
build-backend = "poetry.core.masonry.api"
[tool.commitizen]
version = "1.10.2"
version = "1.10.10"
version_files = [
"pyproject.toml:^version"
]