Merge branch 'main' into main

This commit is contained in:
Lucca Zenóbio 2024-05-06 09:40:23 -03:00 committed by GitHub
commit b22517845e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
98 changed files with 3926 additions and 997 deletions

47
.github/pull_request_template.md vendored Normal file
View file

@ -0,0 +1,47 @@
<!-- This is just examples. You can remove all items if you want. -->
<!-- Please remove all comments. -->
## Title
<!-- e.g. "Implement user authentication feature" -->
## Relevant issues
<!-- e.g. "Fixes #000" -->
## Type
<!-- Select the type of Pull Request -->
<!-- Keep only the necessary ones -->
🆕 New Feature
🐛 Bug Fix
🧹 Refactoring
📖 Documentation
💻 Development Environment
🚄 Infrastructure
✅ Test
## Changes
<!-- List of changes -->
## Testing
<!-- Test procedure -->
## Notes
<!-- Test results -->
<!-- Points to note for the reviewer, consultation content, concerns -->
## Pre-Submission Checklist (optional but appreciated):
- [ ] I have included relevant documentation updates (stored in /docs/my-website)
## OS Tests (optional but appreciated):
- [ ] Tested on Windows
- [ ] Tested on MacOS
- [ ] Tested on Linux

View file

@ -248,7 +248,7 @@ Step 2: Navigate into the project, and install dependencies:
```
cd litellm
poetry install
poetry install -E extra_proxy -E proxy
```
Step 3: Test your change:

View file

@ -84,7 +84,7 @@ def completion(
n: Optional[int] = None,
stream: Optional[bool] = None,
stop=None,
max_tokens: Optional[float] = None,
max_tokens: Optional[int] = None,
presence_penalty: Optional[float] = None,
frequency_penalty: Optional[float] = None,
logit_bias: Optional[dict] = None,

View file

@ -1,7 +1,7 @@
# Completion Token Usage & Cost
By default LiteLLM returns token usage in all completion requests ([See here](https://litellm.readthedocs.io/en/latest/output/))
However, we also expose 5 helper functions + **[NEW]** an API to calculate token usage across providers:
However, we also expose some helper functions + **[NEW]** an API to calculate token usage across providers:
- `encode`: This encodes the text passed in, using the model-specific tokenizer. [**Jump to code**](#1-encode)
@ -9,17 +9,19 @@ However, we also expose 5 helper functions + **[NEW]** an API to calculate token
- `token_counter`: This returns the number of tokens for a given input - it uses the tokenizer based on the model, and defaults to tiktoken if no model-specific tokenizer is available. [**Jump to code**](#3-token_counter)
- `cost_per_token`: This returns the cost (in USD) for prompt (input) and completion (output) tokens. Uses the live list from `api.litellm.ai`. [**Jump to code**](#4-cost_per_token)
- `create_pretrained_tokenizer` and `create_tokenizer`: LiteLLM provides default tokenizer support for OpenAI, Cohere, Anthropic, Llama2, and Llama3 models. If you are using a different model, you can create a custom tokenizer and pass it as `custom_tokenizer` to the `encode`, `decode`, and `token_counter` methods. [**Jump to code**](#4-create_pretrained_tokenizer-and-create_tokenizer)
- `completion_cost`: This returns the overall cost (in USD) for a given LLM API Call. It combines `token_counter` and `cost_per_token` to return the cost for that query (counting both cost of input and output). [**Jump to code**](#5-completion_cost)
- `cost_per_token`: This returns the cost (in USD) for prompt (input) and completion (output) tokens. Uses the live list from `api.litellm.ai`. [**Jump to code**](#5-cost_per_token)
- `get_max_tokens`: This returns the maximum number of tokens allowed for the given model. [**Jump to code**](#6-get_max_tokens)
- `completion_cost`: This returns the overall cost (in USD) for a given LLM API Call. It combines `token_counter` and `cost_per_token` to return the cost for that query (counting both cost of input and output). [**Jump to code**](#6-completion_cost)
- `model_cost`: This returns a dictionary for all models, with their max_tokens, input_cost_per_token and output_cost_per_token. It uses the `api.litellm.ai` call shown below. [**Jump to code**](#7-model_cost)
- `get_max_tokens`: This returns the maximum number of tokens allowed for the given model. [**Jump to code**](#7-get_max_tokens)
- `register_model`: This registers new / overrides existing models (and their pricing details) in the model cost dictionary. [**Jump to code**](#8-register_model)
- `model_cost`: This returns a dictionary for all models, with their max_tokens, input_cost_per_token and output_cost_per_token. It uses the `api.litellm.ai` call shown below. [**Jump to code**](#8-model_cost)
- `api.litellm.ai`: Live token + price count across [all supported models](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json). [**Jump to code**](#9-apilitellmai)
- `register_model`: This registers new / overrides existing models (and their pricing details) in the model cost dictionary. [**Jump to code**](#9-register_model)
- `api.litellm.ai`: Live token + price count across [all supported models](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json). [**Jump to code**](#10-apilitellmai)
📣 This is a community maintained list. Contributions are welcome! ❤️
@ -60,7 +62,24 @@ messages = [{"user": "role", "content": "Hey, how's it going"}]
print(token_counter(model="gpt-3.5-turbo", messages=messages))
```
### 4. `cost_per_token`
### 4. `create_pretrained_tokenizer` and `create_tokenizer`
```python
from litellm import create_pretrained_tokenizer, create_tokenizer
# get tokenizer from huggingface repo
custom_tokenizer_1 = create_pretrained_tokenizer("Xenova/llama-3-tokenizer")
# use tokenizer from json file
with open("tokenizer.json") as f:
json_data = json.load(f)
json_str = json.dumps(json_data)
custom_tokenizer_2 = create_tokenizer(json_str)
```
### 5. `cost_per_token`
```python
from litellm import cost_per_token
@ -72,7 +91,7 @@ prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = cost_per_toke
print(prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar)
```
### 5. `completion_cost`
### 6. `completion_cost`
* Input: Accepts a `litellm.completion()` response **OR** prompt + completion strings
* Output: Returns a `float` of cost for the `completion` call
@ -99,7 +118,7 @@ cost = completion_cost(model="bedrock/anthropic.claude-v2", prompt="Hey!", compl
formatted_string = f"${float(cost):.10f}"
print(formatted_string)
```
### 6. `get_max_tokens`
### 7. `get_max_tokens`
Input: Accepts a model name - e.g., gpt-3.5-turbo (to get a complete list, call litellm.model_list).
Output: Returns the maximum number of tokens allowed for the given model
@ -112,7 +131,7 @@ model = "gpt-3.5-turbo"
print(get_max_tokens(model)) # Output: 4097
```
### 7. `model_cost`
### 8. `model_cost`
* Output: Returns a dict object containing the max_tokens, input_cost_per_token, output_cost_per_token for all models on [community-maintained list](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json)
@ -122,7 +141,7 @@ from litellm import model_cost
print(model_cost) # {'gpt-3.5-turbo': {'max_tokens': 4000, 'input_cost_per_token': 1.5e-06, 'output_cost_per_token': 2e-06}, ...}
```
### 8. `register_model`
### 9. `register_model`
* Input: Provide EITHER a model cost dictionary or a url to a hosted json blob
* Output: Returns updated model_cost dictionary + updates litellm.model_cost with model details.
@ -157,5 +176,3 @@ export LITELLM_LOCAL_MODEL_COST_MAP="True"
```
Note: this means you will need to upgrade to get updated pricing, and newer models.

View file

@ -13,7 +13,7 @@ LiteLLM maps exceptions across all providers to their OpenAI counterparts.
| >=500 | InternalServerError |
| N/A | ContextWindowExceededError|
| 400 | ContentPolicyViolationError|
| N/A | APIConnectionError |
| 500 | APIConnectionError |
Base case we return APIConnectionError
@ -74,6 +74,28 @@ except Exception as e:
```
## Usage - Should you retry exception?
```
import litellm
import openai
try:
response = litellm.completion(
model="gpt-4",
messages=[
{
"role": "user",
"content": "hello, write a 20 pageg essay"
}
],
timeout=0.01, # this will raise a timeout exception
)
except openai.APITimeoutError as e:
should_retry = litellm._should_retry(e.status_code)
print(f"should_retry: {should_retry}")
```
## Details
To see how it's implemented - [check out the code](https://github.com/BerriAI/litellm/blob/a42c197e5a6de56ea576c73715e6c7c6b19fa249/litellm/utils.py#L1217)
@ -86,21 +108,34 @@ To see how it's implemented - [check out the code](https://github.com/BerriAI/li
Base case - we return the original exception.
| | ContextWindowExceededError | AuthenticationError | InvalidRequestError | RateLimitError | ServiceUnavailableError |
|---------------|----------------------------|---------------------|---------------------|---------------|-------------------------|
| Anthropic | ✅ | ✅ | ✅ | ✅ | |
| OpenAI | ✅ | ✅ |✅ |✅ |✅|
| Azure OpenAI | ✅ | ✅ |✅ |✅ |✅|
| Replicate | ✅ | ✅ | ✅ | ✅ | ✅ |
| Cohere | ✅ | ✅ | ✅ | ✅ | ✅ |
| Huggingface | ✅ | ✅ | ✅ | ✅ | |
| Openrouter | ✅ | ✅ | ✅ | ✅ | |
| AI21 | ✅ | ✅ | ✅ | ✅ | |
| VertexAI | | |✅ | | |
| Bedrock | | |✅ | | |
| Sagemaker | | |✅ | | |
| TogetherAI | ✅ | ✅ | ✅ | ✅ | |
| AlephAlpha | ✅ | ✅ | ✅ | ✅ | ✅ |
| custom_llm_provider | Timeout | ContextWindowExceededError | BadRequestError | NotFoundError | ContentPolicyViolationError | AuthenticationError | APIError | RateLimitError | ServiceUnavailableError | PermissionDeniedError | UnprocessableEntityError |
|----------------------------|---------|----------------------------|------------------|---------------|-----------------------------|---------------------|----------|----------------|-------------------------|-----------------------|-------------------------|
| openai | ✓ | ✓ | ✓ | | ✓ | ✓ | | | | | |
| text-completion-openai | ✓ | ✓ | ✓ | | ✓ | ✓ | | | | | |
| custom_openai | ✓ | ✓ | ✓ | | ✓ | ✓ | | | | | |
| openai_compatible_providers| ✓ | ✓ | ✓ | | ✓ | ✓ | | | | | |
| anthropic | ✓ | ✓ | ✓ | ✓ | | ✓ | | | ✓ | ✓ | |
| replicate | ✓ | ✓ | ✓ | ✓ | | ✓ | | ✓ | ✓ | | |
| bedrock | ✓ | ✓ | ✓ | ✓ | | ✓ | | ✓ | ✓ | ✓ | |
| sagemaker | | ✓ | ✓ | | | | | | | | |
| vertex_ai | ✓ | | ✓ | | | | ✓ | | | | ✓ |
| palm | ✓ | ✓ | | | | | ✓ | | | | |
| gemini | ✓ | ✓ | | | | | ✓ | | | | |
| cloudflare | | | ✓ | | | ✓ | | | | | |
| cohere | | ✓ | ✓ | | | ✓ | | | ✓ | | |
| cohere_chat | | ✓ | ✓ | | | ✓ | | | ✓ | | |
| huggingface | ✓ | ✓ | ✓ | | | ✓ | | ✓ | ✓ | | |
| ai21 | ✓ | ✓ | ✓ | ✓ | | ✓ | | ✓ | | | |
| nlp_cloud | ✓ | ✓ | ✓ | | | ✓ | ✓ | ✓ | ✓ | | |
| together_ai | ✓ | ✓ | ✓ | | | ✓ | | | | | |
| aleph_alpha | | | ✓ | | | ✓ | | | | | |
| ollama | ✓ | | ✓ | | | | | | ✓ | | |
| ollama_chat | ✓ | | ✓ | | | | | | ✓ | | |
| vllm | | | | | | ✓ | ✓ | | | | |
| azure | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | | ✓ | | |
- "✓" indicates that the specified `custom_llm_provider` can raise the corresponding exception.
- Empty cells indicate the lack of association or that the provider does not raise that particular exception type as indicated by the function.
> For a deeper understanding of these exceptions, you can check out [this](https://github.com/BerriAI/litellm/blob/d7e58d13bf9ba9edbab2ab2f096f3de7547f35fa/litellm/utils.py#L1544) implementation for additional insights.

View file

@ -1,4 +1,4 @@
# Greenscale Tutorial
# Greenscale - Track LLM Spend and Responsible Usage
[Greenscale](https://greenscale.ai/) is a production monitoring platform for your LLM-powered app that provides you granular key insights into your GenAI spending and responsible usage. Greenscale only captures metadata to minimize the exposure risk of personally identifiable information (PII).

View file

@ -535,7 +535,8 @@ print(response)
| Model Name | Function Call |
|----------------------|---------------------------------------------|
| Titan Embeddings - G1 | `embedding(model="bedrock/amazon.titan-embed-text-v1", input=input)` |
| Titan Embeddings V2 | `embedding(model="bedrock/amazon.titan-embed-text-v2:0", input=input)` |
| Titan Embeddings - V1 | `embedding(model="bedrock/amazon.titan-embed-text-v1", input=input)` |
| Cohere Embeddings - English | `embedding(model="bedrock/cohere.embed-english-v3", input=input)` |
| Cohere Embeddings - Multilingual | `embedding(model="bedrock/cohere.embed-multilingual-v3", input=input)` |

View file

@ -914,39 +914,72 @@ Test Request
litellm --test
```
## Logging Proxy Input/Output Traceloop (OpenTelemetry)
## Logging Proxy Input/Output in OpenTelemetry format using Traceloop's OpenLLMetry
Traceloop allows you to log LLM Input/Output in the OpenTelemetry format
[OpenLLMetry](https://github.com/traceloop/openllmetry) _(built and maintained by Traceloop)_ is a set of extensions
built on top of [OpenTelemetry](https://opentelemetry.io/) that gives you complete observability over your LLM
application. Because it uses OpenTelemetry under the
hood, [it can be connected to various observability solutions](https://www.traceloop.com/docs/openllmetry/integrations/introduction)
like:
We will use the `--config` to set `litellm.success_callback = ["traceloop"]` this will log all successfull LLM calls to traceloop
* [Traceloop](https://www.traceloop.com/docs/openllmetry/integrations/traceloop)
* [Axiom](https://www.traceloop.com/docs/openllmetry/integrations/axiom)
* [Azure Application Insights](https://www.traceloop.com/docs/openllmetry/integrations/azure)
* [Datadog](https://www.traceloop.com/docs/openllmetry/integrations/datadog)
* [Dynatrace](https://www.traceloop.com/docs/openllmetry/integrations/dynatrace)
* [Grafana Tempo](https://www.traceloop.com/docs/openllmetry/integrations/grafana)
* [Honeycomb](https://www.traceloop.com/docs/openllmetry/integrations/honeycomb)
* [HyperDX](https://www.traceloop.com/docs/openllmetry/integrations/hyperdx)
* [Instana](https://www.traceloop.com/docs/openllmetry/integrations/instana)
* [New Relic](https://www.traceloop.com/docs/openllmetry/integrations/newrelic)
* [OpenTelemetry Collector](https://www.traceloop.com/docs/openllmetry/integrations/otel-collector)
* [Service Now Cloud Observability](https://www.traceloop.com/docs/openllmetry/integrations/service-now)
* [Sentry](https://www.traceloop.com/docs/openllmetry/integrations/sentry)
* [SigNoz](https://www.traceloop.com/docs/openllmetry/integrations/signoz)
* [Splunk](https://www.traceloop.com/docs/openllmetry/integrations/splunk)
**Step 1** Install traceloop-sdk and set Traceloop API key
We will use the `--config` to set `litellm.success_callback = ["traceloop"]` to achieve this, steps are listed below.
**Step 1:** Install the SDK
```shell
pip install traceloop-sdk -U
pip install traceloop-sdk
```
Traceloop outputs standard OpenTelemetry data that can be connected to your observability stack. Send standard OpenTelemetry from LiteLLM Proxy to [Traceloop](https://www.traceloop.com/docs/openllmetry/integrations/traceloop), [Dynatrace](https://www.traceloop.com/docs/openllmetry/integrations/dynatrace), [Datadog](https://www.traceloop.com/docs/openllmetry/integrations/datadog)
, [New Relic](https://www.traceloop.com/docs/openllmetry/integrations/newrelic), [Honeycomb](https://www.traceloop.com/docs/openllmetry/integrations/honeycomb), [Grafana Tempo](https://www.traceloop.com/docs/openllmetry/integrations/grafana), [Splunk](https://www.traceloop.com/docs/openllmetry/integrations/splunk), [OpenTelemetry Collector](https://www.traceloop.com/docs/openllmetry/integrations/otel-collector)
**Step 2:** Configure Environment Variable for trace exporting
You will need to configure where to export your traces. Environment variables will control this, example: For Traceloop
you should use `TRACELOOP_API_KEY`, whereas for Datadog you use `TRACELOOP_BASE_URL`. For more
visit [the Integrations Catalog](https://www.traceloop.com/docs/openllmetry/integrations/introduction).
If you are using Datadog as the observability solutions then you can set `TRACELOOP_BASE_URL` as:
```shell
TRACELOOP_BASE_URL=http://<datadog-agent-hostname>:4318
```
**Step 3**: Create a `config.yaml` file and set `litellm_settings`: `success_callback`
**Step 2**: Create a `config.yaml` file and set `litellm_settings`: `success_callback`
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
api_key: my-fake-key # replace api_key with actual key
litellm_settings:
success_callback: [ "traceloop" ]
```
**Step 3**: Start the proxy, make a test request
**Step 4**: Start the proxy, make a test request
Start proxy
```shell
litellm --config config.yaml --debug
```
Test Request
```
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \

View file

@ -3,34 +3,38 @@ import TabItem from '@theme/TabItem';
# ⚡ Best Practices for Production
Expected Performance in Production
## 1. Use this config.yaml
Use this config.yaml in production (with your own LLMs)
1 LiteLLM Uvicorn Worker on Kubernetes
| Description | Value |
|--------------|-------|
| Avg latency | `50ms` |
| Median latency | `51ms` |
| `/chat/completions` Requests/second | `35` |
| `/chat/completions` Requests/minute | `2100` |
| `/chat/completions` Requests/hour | `126K` |
## 1. Switch off Debug Logging
Remove `set_verbose: True` from your config.yaml
```yaml
model_list:
- model_name: fake-openai-endpoint
litellm_params:
model: openai/fake
api_key: fake-key
api_base: https://exampleopenaiendpoint-production.up.railway.app/
general_settings:
master_key: sk-1234 # enter your own master key, ensure it starts with 'sk-'
alerting: ["slack"] # Setup slack alerting - get alerts on LLM exceptions, Budget Alerts, Slow LLM Responses
proxy_batch_write_at: 60 # Batch write spend updates every 60s
litellm_settings:
set_verbose: True
set_verbose: False # Switch off Debug Logging, ensure your logs do not have any debugging on
```
You should only see the following level of details in logs on the proxy server
Set slack webhook url in your env
```shell
# INFO: 192.168.2.205:11774 - "POST /chat/completions HTTP/1.1" 200 OK
# INFO: 192.168.2.205:34717 - "POST /chat/completions HTTP/1.1" 200 OK
# INFO: 192.168.2.205:29734 - "POST /chat/completions HTTP/1.1" 200 OK
export SLACK_WEBHOOK_URL="https://hooks.slack.com/services/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"
```
:::info
Need Help or want dedicated support ? Talk to a founder [here]: (https://calendly.com/d/4mp-gd3-k5k/litellm-1-1-onboarding-chat)
:::
## 2. On Kubernetes - Use 1 Uvicorn worker [Suggested CMD]
Use this Docker `CMD`. This will start the proxy with 1 Uvicorn Async Worker
@ -40,21 +44,12 @@ Use this Docker `CMD`. This will start the proxy with 1 Uvicorn Async Worker
CMD ["--port", "4000", "--config", "./proxy_server_config.yaml"]
```
## 3. Batch write spend updates every 60s
The default proxy batch write is 10s. This is to make it easy to see spend when debugging locally.
## 3. Use Redis 'port','host', 'password'. NOT 'redis_url'
In production, we recommend using a longer interval period of 60s. This reduces the number of connections used to make DB writes.
If you decide to use Redis, DO NOT use 'redis_url'. We recommend usig redis port, host, and password params.
```yaml
general_settings:
master_key: sk-1234
proxy_batch_write_at: 60 # 👈 Frequency of batch writing logs to server (in seconds)
```
## 4. use Redis 'port','host', 'password'. NOT 'redis_url'
When connecting to Redis use redis port, host, and password params. Not 'redis_url'. We've seen a 80 RPS difference between these 2 approaches when using the async redis client.
`redis_url`is 80 RPS slower
This is still something we're investigating. Keep track of it [here](https://github.com/BerriAI/litellm/issues/3188)
@ -69,103 +64,31 @@ router_settings:
redis_password: os.environ/REDIS_PASSWORD
```
## 5. Switch off resetting budgets
## Extras
### Expected Performance in Production
Add this to your config.yaml. (Only spend per Key, User and Team will be tracked - spend per API Call will not be written to the LiteLLM Database)
```yaml
general_settings:
disable_reset_budget: true
```
1 LiteLLM Uvicorn Worker on Kubernetes
## 6. Move spend logs to separate server (BETA)
Writing each spend log to the db can slow down your proxy. In testing we saw a 70% improvement in median response time, by moving writing spend logs to a separate server.
👉 [LiteLLM Spend Logs Server](https://github.com/BerriAI/litellm/tree/main/litellm-js/spend-logs)
| Description | Value |
|--------------|-------|
| Avg latency | `50ms` |
| Median latency | `51ms` |
| `/chat/completions` Requests/second | `35` |
| `/chat/completions` Requests/minute | `2100` |
| `/chat/completions` Requests/hour | `126K` |
**Spend Logs**
This is a log of the key, tokens, model, and latency for each call on the proxy.
### Verifying Debugging logs are off
[**Full Payload**](https://github.com/BerriAI/litellm/blob/8c9623a6bc4ad9da0a2dac64249a60ed8da719e8/litellm/proxy/utils.py#L1769)
**1. Start the spend logs server**
```bash
docker run -p 3000:3000 \
-e DATABASE_URL="postgres://.." \
ghcr.io/berriai/litellm-spend_logs:main-latest
# RUNNING on http://0.0.0.0:3000
```
**2. Connect to proxy**
Example litellm_config.yaml
```yaml
model_list:
- model_name: fake-openai-endpoint
litellm_params:
model: openai/my-fake-model
api_key: my-fake-key
api_base: https://exampleopenaiendpoint-production.up.railway.app/
general_settings:
master_key: sk-1234
proxy_batch_write_at: 5 # 👈 Frequency of batch writing logs to server (in seconds)
```
Add `SPEND_LOGS_URL` as an environment variable when starting the proxy
```bash
docker run \
-v $(pwd)/litellm_config.yaml:/app/config.yaml \
-e DATABASE_URL="postgresql://.." \
-e SPEND_LOGS_URL="http://host.docker.internal:3000" \ # 👈 KEY CHANGE
-p 4000:4000 \
ghcr.io/berriai/litellm:main-latest \
--config /app/config.yaml --detailed_debug
# Running on http://0.0.0.0:4000
```
**3. Test Proxy!**
```bash
curl --location 'http://0.0.0.0:4000/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-1234' \
--data '{
"model": "fake-openai-endpoint",
"messages": [
{"role": "system", "content": "Be helpful"},
{"role": "user", "content": "What do you know?"}
]
}'
```
In your LiteLLM Spend Logs Server, you should see
**Expected Response**
```
Received and stored 1 logs. Total logs in memory: 1
...
Flushed 1 log to the DB.
You should only see the following level of details in logs on the proxy server
```shell
# INFO: 192.168.2.205:11774 - "POST /chat/completions HTTP/1.1" 200 OK
# INFO: 192.168.2.205:34717 - "POST /chat/completions HTTP/1.1" 200 OK
# INFO: 192.168.2.205:29734 - "POST /chat/completions HTTP/1.1" 200 OK
```
### Machine Specification
A t2.micro should be sufficient to handle 1k logs / minute on this server.
This consumes at max 120MB, and <0.1 vCPU.
## Machine Specifications to Deploy LiteLLM
### Machine Specifications to Deploy LiteLLM
| Service | Spec | CPUs | Memory | Architecture | Version|
| --- | --- | --- | --- | --- | --- |
@ -173,7 +96,7 @@ This consumes at max 120MB, and <0.1 vCPU.
| Redis Cache | - | - | - | - | 7.0+ Redis Engine|
## Reference Kubernetes Deployment YAML
### Reference Kubernetes Deployment YAML
Reference Kubernetes `deployment.yaml` that was load tested by us

View file

@ -616,6 +616,57 @@ response = router.completion(model="gpt-3.5-turbo", messages=messages)
print(f"response: {response}")
```
#### Retries based on Error Type
Use `RetryPolicy` if you want to set a `num_retries` based on the Exception receieved
Example:
- 4 retries for `ContentPolicyViolationError`
- 0 retries for `RateLimitErrors`
Example Usage
```python
from litellm.router import RetryPolicy
retry_policy = RetryPolicy(
ContentPolicyViolationErrorRetries=3, # run 3 retries for ContentPolicyViolationErrors
AuthenticationErrorRetries=0, # run 0 retries for AuthenticationErrorRetries
BadRequestErrorRetries=1,
TimeoutErrorRetries=2,
RateLimitErrorRetries=3,
)
router = litellm.Router(
model_list=[
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
},
{
"model_name": "bad-model", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
},
],
retry_policy=retry_policy,
)
response = await router.acompletion(
model=model,
messages=messages,
)
```
### Fallbacks
If a call fails after num_retries, fall back to another model group.

View file

@ -178,6 +178,7 @@ const sidebars = {
"observability/traceloop_integration",
"observability/athina_integration",
"observability/lunary_integration",
"observability/greenscale_integration",
"observability/helicone_integration",
"observability/supabase_integration",
`observability/telemetry`,

View file

@ -5,7 +5,7 @@
"packages": {
"": {
"dependencies": {
"@hono/node-server": "^1.9.0",
"@hono/node-server": "^1.10.1",
"hono": "^4.2.7"
},
"devDependencies": {
@ -382,9 +382,9 @@
}
},
"node_modules/@hono/node-server": {
"version": "1.9.0",
"resolved": "https://registry.npmjs.org/@hono/node-server/-/node-server-1.9.0.tgz",
"integrity": "sha512-oJjk7WXBlENeHhWiMqSyxPIZ3Kmf5ZYxqdlcSIXyN8Rn50bNJsPl99G4POBS03Jxh56FdfRJ0SEnC8mAVIiavQ==",
"version": "1.10.1",
"resolved": "https://registry.npmjs.org/@hono/node-server/-/node-server-1.10.1.tgz",
"integrity": "sha512-5BKW25JH5PQKPDkTcIgv3yNUPtOAbnnjFFgWvIxxAY/B/ZNeYjjWoAeDmqhIiCgOAJ3Tauuw+0G+VainhuZRYQ==",
"engines": {
"node": ">=18.14.1"
}

View file

@ -3,7 +3,7 @@
"dev": "tsx watch src/index.ts"
},
"dependencies": {
"@hono/node-server": "^1.9.0",
"@hono/node-server": "^1.10.1",
"hono": "^4.2.7"
},
"devDependencies": {

View file

@ -542,7 +542,11 @@ models_by_provider: dict = {
"together_ai": together_ai_models,
"baseten": baseten_models,
"openrouter": openrouter_models,
"vertex_ai": vertex_chat_models + vertex_text_models,
"vertex_ai": vertex_chat_models
+ vertex_text_models
+ vertex_anthropic_models
+ vertex_vision_models
+ vertex_language_models,
"ai21": ai21_models,
"bedrock": bedrock_models,
"petals": petals_models,
@ -601,7 +605,6 @@ all_embedding_models = (
####### IMAGE GENERATION MODELS ###################
openai_image_generation_models = ["dall-e-2", "dall-e-3"]
from .timeout import timeout
from .utils import (
client,
@ -609,6 +612,8 @@ from .utils import (
get_optional_params,
modify_integration,
token_counter,
create_pretrained_tokenizer,
create_tokenizer,
cost_per_token,
completion_cost,
supports_function_calling,
@ -632,6 +637,7 @@ from .utils import (
get_secret,
get_supported_openai_params,
get_api_base,
get_first_chars_messages,
)
from .llms.huggingface_restapi import HuggingfaceConfig
from .llms.anthropic import AnthropicConfig
@ -688,3 +694,4 @@ from .exceptions import (
from .budget_manager import BudgetManager
from .proxy.proxy_cli import run_server
from .router import Router
from .assistants.main import *

495
litellm/assistants/main.py Normal file
View file

@ -0,0 +1,495 @@
# What is this?
## Main file for assistants API logic
from typing import Iterable
import os
import litellm
from openai import OpenAI
from litellm import client
from litellm.utils import supports_httpx_timeout
from ..llms.openai import OpenAIAssistantsAPI
from ..types.llms.openai import *
from ..types.router import *
####### ENVIRONMENT VARIABLES ###################
openai_assistants_api = OpenAIAssistantsAPI()
### ASSISTANTS ###
def get_assistants(
custom_llm_provider: Literal["openai"],
client: Optional[OpenAI] = None,
**kwargs,
) -> SyncCursorPage[Assistant]:
optional_params = GenericLiteLLMParams(**kwargs)
### TIMEOUT LOGIC ###
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
# set timeout for 10 minutes by default
if (
timeout is not None
and isinstance(timeout, httpx.Timeout)
and supports_httpx_timeout(custom_llm_provider) == False
):
read_timeout = timeout.read or 600
timeout = read_timeout # default 10 min timeout
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
timeout = float(timeout) # type: ignore
elif timeout is None:
timeout = 600.0
response: Optional[SyncCursorPage[Assistant]] = None
if custom_llm_provider == "openai":
api_base = (
optional_params.api_base # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
or litellm.api_base
or os.getenv("OPENAI_API_BASE")
or "https://api.openai.com/v1"
)
organization = (
optional_params.organization
or litellm.organization
or os.getenv("OPENAI_ORGANIZATION", None)
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
)
# set API KEY
api_key = (
optional_params.api_key
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
or litellm.openai_key
or os.getenv("OPENAI_API_KEY")
)
response = openai_assistants_api.get_assistants(
api_base=api_base,
api_key=api_key,
timeout=timeout,
max_retries=optional_params.max_retries,
organization=organization,
client=client,
)
else:
raise litellm.exceptions.BadRequestError(
message="LiteLLM doesn't support {} for 'get_assistants'. Only 'openai' is supported.".format(
custom_llm_provider
),
model="n/a",
llm_provider=custom_llm_provider,
response=httpx.Response(
status_code=400,
content="Unsupported provider",
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
),
)
return response
### THREADS ###
def create_thread(
custom_llm_provider: Literal["openai"],
messages: Optional[Iterable[OpenAICreateThreadParamsMessage]] = None,
metadata: Optional[dict] = None,
tool_resources: Optional[OpenAICreateThreadParamsToolResources] = None,
client: Optional[OpenAI] = None,
**kwargs,
) -> Thread:
"""
- get the llm provider
- if openai - route it there
- pass through relevant params
```
from litellm import create_thread
create_thread(
custom_llm_provider="openai",
### OPTIONAL ###
messages = {
"role": "user",
"content": "Hello, what is AI?"
},
{
"role": "user",
"content": "How does AI work? Explain it in simple terms."
}]
)
```
"""
optional_params = GenericLiteLLMParams(**kwargs)
### TIMEOUT LOGIC ###
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
# set timeout for 10 minutes by default
if (
timeout is not None
and isinstance(timeout, httpx.Timeout)
and supports_httpx_timeout(custom_llm_provider) == False
):
read_timeout = timeout.read or 600
timeout = read_timeout # default 10 min timeout
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
timeout = float(timeout) # type: ignore
elif timeout is None:
timeout = 600.0
response: Optional[Thread] = None
if custom_llm_provider == "openai":
api_base = (
optional_params.api_base # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
or litellm.api_base
or os.getenv("OPENAI_API_BASE")
or "https://api.openai.com/v1"
)
organization = (
optional_params.organization
or litellm.organization
or os.getenv("OPENAI_ORGANIZATION", None)
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
)
# set API KEY
api_key = (
optional_params.api_key
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
or litellm.openai_key
or os.getenv("OPENAI_API_KEY")
)
response = openai_assistants_api.create_thread(
messages=messages,
metadata=metadata,
api_base=api_base,
api_key=api_key,
timeout=timeout,
max_retries=optional_params.max_retries,
organization=organization,
client=client,
)
else:
raise litellm.exceptions.BadRequestError(
message="LiteLLM doesn't support {} for 'create_thread'. Only 'openai' is supported.".format(
custom_llm_provider
),
model="n/a",
llm_provider=custom_llm_provider,
response=httpx.Response(
status_code=400,
content="Unsupported provider",
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
),
)
return response
def get_thread(
custom_llm_provider: Literal["openai"],
thread_id: str,
client: Optional[OpenAI] = None,
**kwargs,
) -> Thread:
"""Get the thread object, given a thread_id"""
optional_params = GenericLiteLLMParams(**kwargs)
### TIMEOUT LOGIC ###
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
# set timeout for 10 minutes by default
if (
timeout is not None
and isinstance(timeout, httpx.Timeout)
and supports_httpx_timeout(custom_llm_provider) == False
):
read_timeout = timeout.read or 600
timeout = read_timeout # default 10 min timeout
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
timeout = float(timeout) # type: ignore
elif timeout is None:
timeout = 600.0
response: Optional[Thread] = None
if custom_llm_provider == "openai":
api_base = (
optional_params.api_base # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
or litellm.api_base
or os.getenv("OPENAI_API_BASE")
or "https://api.openai.com/v1"
)
organization = (
optional_params.organization
or litellm.organization
or os.getenv("OPENAI_ORGANIZATION", None)
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
)
# set API KEY
api_key = (
optional_params.api_key
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
or litellm.openai_key
or os.getenv("OPENAI_API_KEY")
)
response = openai_assistants_api.get_thread(
thread_id=thread_id,
api_base=api_base,
api_key=api_key,
timeout=timeout,
max_retries=optional_params.max_retries,
organization=organization,
client=client,
)
else:
raise litellm.exceptions.BadRequestError(
message="LiteLLM doesn't support {} for 'get_thread'. Only 'openai' is supported.".format(
custom_llm_provider
),
model="n/a",
llm_provider=custom_llm_provider,
response=httpx.Response(
status_code=400,
content="Unsupported provider",
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
),
)
return response
### MESSAGES ###
def add_message(
custom_llm_provider: Literal["openai"],
thread_id: str,
role: Literal["user", "assistant"],
content: str,
attachments: Optional[List[Attachment]] = None,
metadata: Optional[dict] = None,
client: Optional[OpenAI] = None,
**kwargs,
) -> OpenAIMessage:
### COMMON OBJECTS ###
message_data = MessageData(
role=role, content=content, attachments=attachments, metadata=metadata
)
optional_params = GenericLiteLLMParams(**kwargs)
### TIMEOUT LOGIC ###
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
# set timeout for 10 minutes by default
if (
timeout is not None
and isinstance(timeout, httpx.Timeout)
and supports_httpx_timeout(custom_llm_provider) == False
):
read_timeout = timeout.read or 600
timeout = read_timeout # default 10 min timeout
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
timeout = float(timeout) # type: ignore
elif timeout is None:
timeout = 600.0
response: Optional[OpenAIMessage] = None
if custom_llm_provider == "openai":
api_base = (
optional_params.api_base # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
or litellm.api_base
or os.getenv("OPENAI_API_BASE")
or "https://api.openai.com/v1"
)
organization = (
optional_params.organization
or litellm.organization
or os.getenv("OPENAI_ORGANIZATION", None)
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
)
# set API KEY
api_key = (
optional_params.api_key
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
or litellm.openai_key
or os.getenv("OPENAI_API_KEY")
)
response = openai_assistants_api.add_message(
thread_id=thread_id,
message_data=message_data,
api_base=api_base,
api_key=api_key,
timeout=timeout,
max_retries=optional_params.max_retries,
organization=organization,
client=client,
)
else:
raise litellm.exceptions.BadRequestError(
message="LiteLLM doesn't support {} for 'create_thread'. Only 'openai' is supported.".format(
custom_llm_provider
),
model="n/a",
llm_provider=custom_llm_provider,
response=httpx.Response(
status_code=400,
content="Unsupported provider",
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
),
)
return response
def get_messages(
custom_llm_provider: Literal["openai"],
thread_id: str,
client: Optional[OpenAI] = None,
**kwargs,
) -> SyncCursorPage[OpenAIMessage]:
optional_params = GenericLiteLLMParams(**kwargs)
### TIMEOUT LOGIC ###
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
# set timeout for 10 minutes by default
if (
timeout is not None
and isinstance(timeout, httpx.Timeout)
and supports_httpx_timeout(custom_llm_provider) == False
):
read_timeout = timeout.read or 600
timeout = read_timeout # default 10 min timeout
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
timeout = float(timeout) # type: ignore
elif timeout is None:
timeout = 600.0
response: Optional[SyncCursorPage[OpenAIMessage]] = None
if custom_llm_provider == "openai":
api_base = (
optional_params.api_base # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
or litellm.api_base
or os.getenv("OPENAI_API_BASE")
or "https://api.openai.com/v1"
)
organization = (
optional_params.organization
or litellm.organization
or os.getenv("OPENAI_ORGANIZATION", None)
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
)
# set API KEY
api_key = (
optional_params.api_key
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
or litellm.openai_key
or os.getenv("OPENAI_API_KEY")
)
response = openai_assistants_api.get_messages(
thread_id=thread_id,
api_base=api_base,
api_key=api_key,
timeout=timeout,
max_retries=optional_params.max_retries,
organization=organization,
client=client,
)
else:
raise litellm.exceptions.BadRequestError(
message="LiteLLM doesn't support {} for 'get_messages'. Only 'openai' is supported.".format(
custom_llm_provider
),
model="n/a",
llm_provider=custom_llm_provider,
response=httpx.Response(
status_code=400,
content="Unsupported provider",
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
),
)
return response
### RUNS ###
def run_thread(
custom_llm_provider: Literal["openai"],
thread_id: str,
assistant_id: str,
additional_instructions: Optional[str] = None,
instructions: Optional[str] = None,
metadata: Optional[dict] = None,
model: Optional[str] = None,
stream: Optional[bool] = None,
tools: Optional[Iterable[AssistantToolParam]] = None,
client: Optional[OpenAI] = None,
**kwargs,
) -> Run:
"""Run a given thread + assistant."""
optional_params = GenericLiteLLMParams(**kwargs)
### TIMEOUT LOGIC ###
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
# set timeout for 10 minutes by default
if (
timeout is not None
and isinstance(timeout, httpx.Timeout)
and supports_httpx_timeout(custom_llm_provider) == False
):
read_timeout = timeout.read or 600
timeout = read_timeout # default 10 min timeout
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
timeout = float(timeout) # type: ignore
elif timeout is None:
timeout = 600.0
response: Optional[Run] = None
if custom_llm_provider == "openai":
api_base = (
optional_params.api_base # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
or litellm.api_base
or os.getenv("OPENAI_API_BASE")
or "https://api.openai.com/v1"
)
organization = (
optional_params.organization
or litellm.organization
or os.getenv("OPENAI_ORGANIZATION", None)
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
)
# set API KEY
api_key = (
optional_params.api_key
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
or litellm.openai_key
or os.getenv("OPENAI_API_KEY")
)
response = openai_assistants_api.run_thread(
thread_id=thread_id,
assistant_id=assistant_id,
additional_instructions=additional_instructions,
instructions=instructions,
metadata=metadata,
model=model,
stream=stream,
tools=tools,
api_base=api_base,
api_key=api_key,
timeout=timeout,
max_retries=optional_params.max_retries,
organization=organization,
client=client,
)
else:
raise litellm.exceptions.BadRequestError(
message="LiteLLM doesn't support {} for 'run_thread'. Only 'openai' is supported.".format(
custom_llm_provider
),
model="n/a",
llm_provider=custom_llm_provider,
response=httpx.Response(
status_code=400,
content="Unsupported provider",
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
),
)
return response

View file

@ -177,11 +177,18 @@ class RedisCache(BaseCache):
try:
# asyncio.get_running_loop().create_task(self.ping())
result = asyncio.get_running_loop().create_task(self.ping())
except Exception:
pass
except Exception as e:
verbose_logger.error(
"Error connecting to Async Redis client", extra={"error": str(e)}
)
### SYNC HEALTH PING ###
try:
self.redis_client.ping()
except Exception as e:
verbose_logger.error(
"Error connecting to Sync Redis client", extra={"error": str(e)}
)
def init_async_client(self):
from ._redis import get_redis_async_client

View file

@ -38,7 +38,7 @@ class OpenMeterLogger(CustomLogger):
in the environment
"""
missing_keys = []
if litellm.get_secret("OPENMETER_API_KEY", None) is None:
if os.getenv("OPENMETER_API_KEY", None) is None:
missing_keys.append("OPENMETER_API_KEY")
if len(missing_keys) > 0:
@ -60,47 +60,56 @@ class OpenMeterLogger(CustomLogger):
"total_tokens": response_obj["usage"].get("total_tokens"),
}
subject = kwargs.get("user", None), # end-user passed in via 'user' param
if not subject:
raise Exception("OpenMeter: user is required")
return {
"specversion": "1.0",
"type": os.getenv("OPENMETER_EVENT_TYPE", "litellm_tokens"),
"id": call_id,
"time": dt,
"subject": kwargs.get("user", ""), # end-user passed in via 'user' param
"subject": subject,
"source": "litellm-proxy",
"data": {"model": model, "cost": cost, **usage},
}
def log_success_event(self, kwargs, response_obj, start_time, end_time):
_url = litellm.get_secret(
"OPENMETER_API_ENDPOINT", default_value="https://openmeter.cloud"
)
_url = os.getenv("OPENMETER_API_ENDPOINT", "https://openmeter.cloud")
if _url.endswith("/"):
_url += "api/v1/events"
else:
_url += "/api/v1/events"
api_key = litellm.get_secret("OPENMETER_API_KEY")
api_key = os.getenv("OPENMETER_API_KEY")
_data = self._common_logic(kwargs=kwargs, response_obj=response_obj)
self.sync_http_handler.post(
url=_url,
data=_data,
headers={
_headers = {
"Content-Type": "application/cloudevents+json",
"Authorization": "Bearer {}".format(api_key),
},
}
try:
response = self.sync_http_handler.post(
url=_url,
data=json.dumps(_data),
headers=_headers,
)
response.raise_for_status()
except Exception as e:
if hasattr(response, "text"):
litellm.print_verbose(f"\nError Message: {response.text}")
raise e
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
_url = litellm.get_secret(
"OPENMETER_API_ENDPOINT", default_value="https://openmeter.cloud"
)
_url = os.getenv("OPENMETER_API_ENDPOINT", "https://openmeter.cloud")
if _url.endswith("/"):
_url += "api/v1/events"
else:
_url += "/api/v1/events"
api_key = litellm.get_secret("OPENMETER_API_KEY")
api_key = os.getenv("OPENMETER_API_KEY")
_data = self._common_logic(kwargs=kwargs, response_obj=response_obj)
_headers = {
@ -117,7 +126,6 @@ class OpenMeterLogger(CustomLogger):
response.raise_for_status()
except Exception as e:
print(f"\nAn Exception Occurred - {str(e)}")
if hasattr(response, "text"):
print(f"\nError Message: {response.text}")
litellm.print_verbose(f"\nError Message: {response.text}")
raise e

View file

@ -48,19 +48,6 @@ class SlackAlerting:
self.internal_usage_cache = DualCache()
self.async_http_handler = AsyncHTTPHandler()
self.alert_to_webhook_url = alert_to_webhook_url
self.langfuse_logger = None
try:
from litellm.integrations.langfuse import LangFuseLogger
self.langfuse_logger = LangFuseLogger(
os.getenv("LANGFUSE_PUBLIC_KEY"),
os.getenv("LANGFUSE_SECRET_KEY"),
flush_interval=1,
)
except:
pass
pass
def update_values(
@ -110,62 +97,8 @@ class SlackAlerting:
start_time: Optional[datetime.datetime] = None,
end_time: Optional[datetime.datetime] = None,
):
import uuid
# For now: do nothing as we're debugging why this is not working as expected
if request_data is not None:
trace_id = request_data.get("metadata", {}).get(
"trace_id", None
) # get langfuse trace id
if trace_id is None:
trace_id = "litellm-alert-trace-" + str(uuid.uuid4())
request_data["metadata"]["trace_id"] = trace_id
elif kwargs is not None:
_litellm_params = kwargs.get("litellm_params", {})
trace_id = _litellm_params.get("metadata", {}).get(
"trace_id", None
) # get langfuse trace id
if trace_id is None:
trace_id = "litellm-alert-trace-" + str(uuid.uuid4())
_litellm_params["metadata"]["trace_id"] = trace_id
# Log hanging request as an error on langfuse
if type == "hanging_request":
if self.langfuse_logger is not None:
_logging_kwargs = copy.deepcopy(request_data)
if _logging_kwargs is None:
_logging_kwargs = {}
_logging_kwargs["litellm_params"] = {}
request_data = request_data or {}
_logging_kwargs["litellm_params"]["metadata"] = request_data.get(
"metadata", {}
)
# log to langfuse in a separate thread
import threading
threading.Thread(
target=self.langfuse_logger.log_event,
args=(
_logging_kwargs,
None,
start_time,
end_time,
None,
print,
"ERROR",
"Requests is hanging",
),
).start()
_langfuse_host = os.environ.get("LANGFUSE_HOST", "https://cloud.langfuse.com")
_langfuse_project_id = os.environ.get("LANGFUSE_PROJECT_ID")
# langfuse urls look like: https://us.cloud.langfuse.com/project/************/traces/litellm-alert-trace-ididi9dk-09292-************
_langfuse_url = (
f"{_langfuse_host}/project/{_langfuse_project_id}/traces/{trace_id}"
)
request_info += f"\n🪢 Langfuse Trace: {_langfuse_url}"
# do nothing for now
pass
return request_info
def _response_taking_too_long_callback(
@ -242,10 +175,6 @@ class SlackAlerting:
request_info = f"\nRequest Model: `{model}`\nAPI Base: `{api_base}`\nMessages: `{messages}`"
slow_message = f"`Responses are slow - {round(time_difference_float,2)}s response time > Alerting threshold: {self.alerting_threshold}s`"
if time_difference_float > self.alerting_threshold:
if "langfuse" in litellm.success_callback:
request_info = self._add_langfuse_trace_id_to_alert(
request_info=request_info, kwargs=kwargs, type="slow_response"
)
# add deployment latencies to alert
if (
kwargs is not None

View file

@ -84,6 +84,51 @@ class AnthropicConfig:
and v is not None
}
def get_supported_openai_params(self):
return [
"stream",
"stop",
"temperature",
"top_p",
"max_tokens",
"tools",
"tool_choice",
]
def map_openai_params(self, non_default_params: dict, optional_params: dict):
for param, value in non_default_params.items():
if param == "max_tokens":
optional_params["max_tokens"] = value
if param == "tools":
optional_params["tools"] = value
if param == "stream" and value == True:
optional_params["stream"] = value
if param == "stop":
if isinstance(value, str):
if (
value == "\n"
) and litellm.drop_params == True: # anthropic doesn't allow whitespace characters as stop-sequences
continue
value = [value]
elif isinstance(value, list):
new_v = []
for v in value:
if (
v == "\n"
) and litellm.drop_params == True: # anthropic doesn't allow whitespace characters as stop-sequences
continue
new_v.append(v)
if len(new_v) > 0:
value = new_v
else:
continue
optional_params["stop_sequences"] = value
if param == "temperature":
optional_params["temperature"] = value
if param == "top_p":
optional_params["top_p"] = value
return optional_params
# makes headers for API call
def validate_environment(api_key, user_headers):

View file

@ -151,7 +151,7 @@ class AzureChatCompletion(BaseLLM):
api_type: str,
azure_ad_token: str,
print_verbose: Callable,
timeout,
timeout: Union[float, httpx.Timeout],
logging_obj,
optional_params,
litellm_params,

View file

@ -4,7 +4,13 @@ from enum import Enum
import time, uuid
from typing import Callable, Optional, Any, Union, List
import litellm
from litellm.utils import ModelResponse, get_secret, Usage, ImageResponse
from litellm.utils import (
ModelResponse,
get_secret,
Usage,
ImageResponse,
map_finish_reason,
)
from .prompt_templates.factory import (
prompt_factory,
custom_prompt,
@ -545,7 +551,7 @@ def init_bedrock_client(
aws_profile_name: Optional[str] = None,
aws_role_name: Optional[str] = None,
extra_headers: Optional[dict] = None,
timeout: Optional[int] = None,
timeout: Optional[Union[float, httpx.Timeout]] = None,
):
# check for custom AWS_REGION_NAME and use it if not passed to init_bedrock_client
litellm_aws_region_name = get_secret("AWS_REGION_NAME", None)
@ -603,7 +609,14 @@ def init_bedrock_client(
import boto3
if isinstance(timeout, float):
config = boto3.session.Config(connect_timeout=timeout, read_timeout=timeout)
elif isinstance(timeout, httpx.Timeout):
config = boto3.session.Config(
connect_timeout=timeout.connect, read_timeout=timeout.read
)
else:
config = boto3.session.Config()
### CHECK STS ###
if aws_role_name is not None and aws_session_name is not None:
@ -1058,7 +1071,9 @@ def completion(
logging_obj=logging_obj,
)
model_response["finish_reason"] = response_body["stop_reason"]
model_response["finish_reason"] = map_finish_reason(
response_body["stop_reason"]
)
_usage = litellm.Usage(
prompt_tokens=response_body["usage"]["input_tokens"],
completion_tokens=response_body["usage"]["output_tokens"],

View file

@ -1,4 +1,13 @@
from typing import Optional, Union, Any, BinaryIO
from typing import (
Optional,
Union,
Any,
BinaryIO,
Literal,
Iterable,
)
from typing_extensions import override
from pydantic import BaseModel
import types, time, json, traceback
import httpx
from .base import BaseLLM
@ -17,6 +26,7 @@ import aiohttp, requests
import litellm
from .prompt_templates.factory import prompt_factory, custom_prompt
from openai import OpenAI, AsyncOpenAI
from ..types.llms.openai import *
class OpenAIError(Exception):
@ -246,7 +256,7 @@ class OpenAIChatCompletion(BaseLLM):
def completion(
self,
model_response: ModelResponse,
timeout: float,
timeout: Union[float, httpx.Timeout],
model: Optional[str] = None,
messages: Optional[list] = None,
print_verbose: Optional[Callable] = None,
@ -271,9 +281,12 @@ class OpenAIChatCompletion(BaseLLM):
if model is None or messages is None:
raise OpenAIError(status_code=422, message=f"Missing model or messages")
if not isinstance(timeout, float):
if not isinstance(timeout, float) and not isinstance(
timeout, httpx.Timeout
):
raise OpenAIError(
status_code=422, message=f"Timeout needs to be a float"
status_code=422,
message=f"Timeout needs to be a float or httpx.Timeout",
)
if custom_llm_provider != "openai":
@ -425,7 +438,7 @@ class OpenAIChatCompletion(BaseLLM):
self,
data: dict,
model_response: ModelResponse,
timeout: float,
timeout: Union[float, httpx.Timeout],
api_key: Optional[str] = None,
api_base: Optional[str] = None,
organization: Optional[str] = None,
@ -480,7 +493,7 @@ class OpenAIChatCompletion(BaseLLM):
def streaming(
self,
logging_obj,
timeout: float,
timeout: Union[float, httpx.Timeout],
data: dict,
model: str,
api_key: Optional[str] = None,
@ -524,7 +537,7 @@ class OpenAIChatCompletion(BaseLLM):
async def async_streaming(
self,
logging_obj,
timeout: float,
timeout: Union[float, httpx.Timeout],
data: dict,
model: str,
api_key: Optional[str] = None,
@ -1233,3 +1246,223 @@ class OpenAITextCompletion(BaseLLM):
async for transformed_chunk in streamwrapper:
yield transformed_chunk
class OpenAIAssistantsAPI(BaseLLM):
def __init__(self) -> None:
super().__init__()
def get_openai_client(
self,
api_key: Optional[str],
api_base: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
organization: Optional[str],
client: Optional[OpenAI] = None,
) -> OpenAI:
received_args = locals()
if client is None:
data = {}
for k, v in received_args.items():
if k == "self" or k == "client":
pass
elif k == "api_base" and v is not None:
data["base_url"] = v
elif v is not None:
data[k] = v
openai_client = OpenAI(**data) # type: ignore
else:
openai_client = client
return openai_client
### ASSISTANTS ###
def get_assistants(
self,
api_key: Optional[str],
api_base: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
organization: Optional[str],
client: Optional[OpenAI],
) -> SyncCursorPage[Assistant]:
openai_client = self.get_openai_client(
api_key=api_key,
api_base=api_base,
timeout=timeout,
max_retries=max_retries,
organization=organization,
client=client,
)
response = openai_client.beta.assistants.list()
return response
### MESSAGES ###
def add_message(
self,
thread_id: str,
message_data: MessageData,
api_key: Optional[str],
api_base: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
organization: Optional[str],
client: Optional[OpenAI] = None,
) -> OpenAIMessage:
openai_client = self.get_openai_client(
api_key=api_key,
api_base=api_base,
timeout=timeout,
max_retries=max_retries,
organization=organization,
client=client,
)
thread_message: OpenAIMessage = openai_client.beta.threads.messages.create(
thread_id, **message_data
)
response_obj: Optional[OpenAIMessage] = None
if getattr(thread_message, "status", None) is None:
thread_message.status = "completed"
response_obj = OpenAIMessage(**thread_message.dict())
else:
response_obj = OpenAIMessage(**thread_message.dict())
return response_obj
def get_messages(
self,
thread_id: str,
api_key: Optional[str],
api_base: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
organization: Optional[str],
client: Optional[OpenAI] = None,
) -> SyncCursorPage[OpenAIMessage]:
openai_client = self.get_openai_client(
api_key=api_key,
api_base=api_base,
timeout=timeout,
max_retries=max_retries,
organization=organization,
client=client,
)
response = openai_client.beta.threads.messages.list(thread_id=thread_id)
return response
### THREADS ###
def create_thread(
self,
metadata: Optional[dict],
api_key: Optional[str],
api_base: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
organization: Optional[str],
client: Optional[OpenAI],
messages: Optional[Iterable[OpenAICreateThreadParamsMessage]],
) -> Thread:
"""
Here's an example:
```
from litellm.llms.openai import OpenAIAssistantsAPI, MessageData
# create thread
message: MessageData = {"role": "user", "content": "Hey, how's it going?"}
openai_api.create_thread(messages=[message])
```
"""
openai_client = self.get_openai_client(
api_key=api_key,
api_base=api_base,
timeout=timeout,
max_retries=max_retries,
organization=organization,
client=client,
)
data = {}
if messages is not None:
data["messages"] = messages # type: ignore
if metadata is not None:
data["metadata"] = metadata # type: ignore
message_thread = openai_client.beta.threads.create(**data) # type: ignore
return Thread(**message_thread.dict())
def get_thread(
self,
thread_id: str,
api_key: Optional[str],
api_base: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
organization: Optional[str],
client: Optional[OpenAI],
) -> Thread:
openai_client = self.get_openai_client(
api_key=api_key,
api_base=api_base,
timeout=timeout,
max_retries=max_retries,
organization=organization,
client=client,
)
response = openai_client.beta.threads.retrieve(thread_id=thread_id)
return Thread(**response.dict())
def delete_thread(self):
pass
### RUNS ###
def run_thread(
self,
thread_id: str,
assistant_id: str,
additional_instructions: Optional[str],
instructions: Optional[str],
metadata: Optional[object],
model: Optional[str],
stream: Optional[bool],
tools: Optional[Iterable[AssistantToolParam]],
api_key: Optional[str],
api_base: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
organization: Optional[str],
client: Optional[OpenAI],
) -> Run:
openai_client = self.get_openai_client(
api_key=api_key,
api_base=api_base,
timeout=timeout,
max_retries=max_retries,
organization=organization,
client=client,
)
response = openai_client.beta.threads.runs.create_and_poll(
thread_id=thread_id,
assistant_id=assistant_id,
additional_instructions=additional_instructions,
instructions=instructions,
metadata=metadata,
model=model,
tools=tools,
)
return response

View file

@ -12,6 +12,16 @@ from typing import (
Sequence,
)
import litellm
from litellm.types.completion import (
ChatCompletionUserMessageParam,
ChatCompletionSystemMessageParam,
ChatCompletionMessageParam,
ChatCompletionFunctionMessageParam,
ChatCompletionMessageToolCallParam,
ChatCompletionToolMessageParam,
)
from litellm.types.llms.anthropic import *
import uuid
def default_pt(messages):
@ -22,6 +32,41 @@ def prompt_injection_detection_default_pt():
return """Detect if a prompt is safe to run. Return 'UNSAFE' if not."""
def map_system_message_pt(messages: list) -> list:
"""
Convert 'system' message to 'user' message if provider doesn't support 'system' role.
Enabled via `completion(...,supports_system_message=False)`
If next message is a user message or assistant message -> merge system prompt into it
if next message is system -> append a user message instead of the system message
"""
new_messages = []
for i, m in enumerate(messages):
if m["role"] == "system":
if i < len(messages) - 1: # Not the last message
next_m = messages[i + 1]
next_role = next_m["role"]
if (
next_role == "user" or next_role == "assistant"
): # Next message is a user or assistant message
# Merge system prompt into the next message
next_m["content"] = m["content"] + " " + next_m["content"]
elif next_role == "system": # Next message is a system message
# Append a user message instead of the system message
new_message = {"role": "user", "content": m["content"]}
new_messages.append(new_message)
else: # Last message
new_message = {"role": "user", "content": m["content"]}
new_messages.append(new_message)
else: # Not a system message
new_messages.append(m)
return new_messages
# alpaca prompt template - for models like mythomax, etc.
def alpaca_pt(messages):
prompt = custom_prompt(
@ -805,6 +850,13 @@ def convert_to_anthropic_tool_result(message: dict) -> dict:
"name": "get_current_weather",
"content": "function result goes here",
},
OpenAI message with a function call result looks like:
{
"role": "function",
"name": "get_current_weather",
"content": "function result goes here",
}
"""
"""
@ -821,6 +873,7 @@ def convert_to_anthropic_tool_result(message: dict) -> dict:
]
}
"""
if message["role"] == "tool":
tool_call_id = message.get("tool_call_id")
content = message.get("content")
@ -831,8 +884,31 @@ def convert_to_anthropic_tool_result(message: dict) -> dict:
"tool_use_id": tool_call_id,
"content": content,
}
return anthropic_tool_result
elif message["role"] == "function":
content = message.get("content")
anthropic_tool_result = {
"type": "tool_result",
"tool_use_id": str(uuid.uuid4()),
"content": content,
}
return anthropic_tool_result
return {}
def convert_function_to_anthropic_tool_invoke(function_call):
try:
anthropic_tool_invoke = [
{
"type": "tool_use",
"id": str(uuid.uuid4()),
"name": get_attribute_or_key(function_call, "name"),
"input": json.loads(get_attribute_or_key(function_call, "arguments")),
}
]
return anthropic_tool_invoke
except Exception as e:
raise e
def convert_to_anthropic_tool_invoke(tool_calls: list) -> list:
@ -895,7 +971,7 @@ def convert_to_anthropic_tool_invoke(tool_calls: list) -> list:
def anthropic_messages_pt(messages: list):
"""
format messages for anthropic
1. Anthropic supports roles like "user" and "assistant", (here litellm translates system-> assistant)
1. Anthropic supports roles like "user" and "assistant" (system prompt sent separately)
2. The first message always needs to be of role "user"
3. Each message must alternate between "user" and "assistant" (this is not addressed as now by litellm)
4. final assistant content cannot end with trailing whitespace (anthropic raises an error otherwise)
@ -903,12 +979,14 @@ def anthropic_messages_pt(messages: list):
6. Ensure we only accept role, content. (message.name is not supported)
"""
# add role=tool support to allow function call result/error submission
user_message_types = {"user", "tool"}
user_message_types = {"user", "tool", "function"}
# reformat messages to ensure user/assistant are alternating, if there's either 2 consecutive 'user' messages or 2 consecutive 'assistant' message, merge them.
new_messages = []
msg_i = 0
tool_use_param = False
while msg_i < len(messages):
user_content = []
init_msg_i = msg_i
## MERGE CONSECUTIVE USER CONTENT ##
while msg_i < len(messages) and messages[msg_i]["role"] in user_message_types:
if isinstance(messages[msg_i]["content"], list):
@ -924,7 +1002,10 @@ def anthropic_messages_pt(messages: list):
)
elif m.get("type", "") == "text":
user_content.append({"type": "text", "text": m["text"]})
elif messages[msg_i]["role"] == "tool":
elif (
messages[msg_i]["role"] == "tool"
or messages[msg_i]["role"] == "function"
):
# OpenAI's tool message content will always be a string
user_content.append(convert_to_anthropic_tool_result(messages[msg_i]))
else:
@ -953,11 +1034,24 @@ def anthropic_messages_pt(messages: list):
convert_to_anthropic_tool_invoke(messages[msg_i]["tool_calls"])
)
if messages[msg_i].get("function_call"):
assistant_content.extend(
convert_function_to_anthropic_tool_invoke(
messages[msg_i]["function_call"]
)
)
msg_i += 1
if assistant_content:
new_messages.append({"role": "assistant", "content": assistant_content})
if msg_i == init_msg_i: # prevent infinite loops
raise Exception(
"Invalid Message passed in - {}. File an issue https://github.com/BerriAI/litellm/issues".format(
messages[msg_i]
)
)
if not new_messages or new_messages[0]["role"] != "user":
if litellm.modify_params:
new_messages.insert(
@ -969,6 +1063,9 @@ def anthropic_messages_pt(messages: list):
)
if new_messages[-1]["role"] == "assistant":
if isinstance(new_messages[-1]["content"], str):
new_messages[-1]["content"] = new_messages[-1]["content"].rstrip()
elif isinstance(new_messages[-1]["content"], list):
for content in new_messages[-1]["content"]:
if isinstance(content, dict) and content["type"] == "text":
content["text"] = content[

View file

@ -12,9 +12,9 @@ from typing import Any, Literal, Union, BinaryIO
from functools import partial
import dotenv, traceback, random, asyncio, time, contextvars
from copy import deepcopy
import httpx
import litellm
from ._logging import verbose_logger
from litellm import ( # type: ignore
client,
@ -34,9 +34,12 @@ from litellm.utils import (
async_mock_completion_streaming_obj,
convert_to_model_response_object,
token_counter,
create_pretrained_tokenizer,
create_tokenizer,
Usage,
get_optional_params_embeddings,
get_optional_params_image_gen,
supports_httpx_timeout,
)
from .llms import (
anthropic_text,
@ -75,6 +78,7 @@ from .llms.prompt_templates.factory import (
prompt_factory,
custom_prompt,
function_call_prompt,
map_system_message_pt,
)
import tiktoken
from concurrent.futures import ThreadPoolExecutor
@ -448,7 +452,7 @@ def completion(
model: str,
# Optional OpenAI params: see https://platform.openai.com/docs/api-reference/chat/create
messages: List = [],
timeout: Optional[Union[float, int]] = None,
timeout: Optional[Union[float, str, httpx.Timeout]] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
n: Optional[int] = None,
@ -551,6 +555,7 @@ def completion(
eos_token = kwargs.get("eos_token", None)
preset_cache_key = kwargs.get("preset_cache_key", None)
hf_model_name = kwargs.get("hf_model_name", None)
supports_system_message = kwargs.get("supports_system_message", None)
### TEXT COMPLETION CALLS ###
text_completion = kwargs.get("text_completion", False)
atext_completion = kwargs.get("atext_completion", False)
@ -616,6 +621,7 @@ def completion(
"model_list",
"num_retries",
"context_window_fallback_dict",
"retry_policy",
"roles",
"final_prompt_value",
"bos_token",
@ -641,16 +647,27 @@ def completion(
"no-log",
"base_model",
"stream_timeout",
"supports_system_message",
]
default_params = openai_params + litellm_params
non_default_params = {
k: v for k, v in kwargs.items() if k not in default_params
} # model-specific params - pass them straight to the model/provider
if timeout is None:
timeout = (
kwargs.get("request_timeout", None) or 600
) # set timeout for 10 minutes by default
timeout = float(timeout)
### TIMEOUT LOGIC ###
timeout = timeout or kwargs.get("request_timeout", 600) or 600
# set timeout for 10 minutes by default
if (
timeout is not None
and isinstance(timeout, httpx.Timeout)
and supports_httpx_timeout(custom_llm_provider) == False
):
read_timeout = timeout.read or 600
timeout = read_timeout # default 10 min timeout
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
timeout = float(timeout) # type: ignore
try:
if base_url is not None:
api_base = base_url
@ -745,6 +762,13 @@ def completion(
custom_prompt_dict[model]["bos_token"] = bos_token
if eos_token:
custom_prompt_dict[model]["eos_token"] = eos_token
if (
supports_system_message is not None
and isinstance(supports_system_message, bool)
and supports_system_message == False
):
messages = map_system_message_pt(messages=messages)
model_api_key = get_api_key(
llm_provider=custom_llm_provider, dynamic_api_key=api_key
) # get the api key from the environment if required for the model
@ -871,7 +895,7 @@ def completion(
logger_fn=logger_fn,
logging_obj=logging,
acompletion=acompletion,
timeout=timeout,
timeout=timeout, # type: ignore
client=client, # pass AsyncAzureOpenAI, AzureOpenAI client
)
@ -1012,7 +1036,7 @@ def completion(
optional_params=optional_params,
litellm_params=litellm_params,
logger_fn=logger_fn,
timeout=timeout,
timeout=timeout, # type: ignore
custom_prompt_dict=custom_prompt_dict,
client=client, # pass AsyncOpenAI, OpenAI client
organization=organization,
@ -1097,7 +1121,7 @@ def completion(
optional_params=optional_params,
litellm_params=litellm_params,
logger_fn=logger_fn,
timeout=timeout,
timeout=timeout, # type: ignore
)
if (
@ -1471,7 +1495,7 @@ def completion(
acompletion=acompletion,
logging_obj=logging,
custom_prompt_dict=custom_prompt_dict,
timeout=timeout,
timeout=timeout, # type: ignore
)
if (
"stream" in optional_params
@ -1564,7 +1588,7 @@ def completion(
logger_fn=logger_fn,
logging_obj=logging,
acompletion=acompletion,
timeout=timeout,
timeout=timeout, # type: ignore
)
## LOGGING
logging.post_call(
@ -1892,7 +1916,7 @@ def completion(
logger_fn=logger_fn,
encoding=encoding,
logging_obj=logging,
timeout=timeout,
timeout=timeout, # type: ignore
)
if (
"stream" in optional_params
@ -2273,7 +2297,7 @@ def batch_completion(
n: Optional[int] = None,
stream: Optional[bool] = None,
stop=None,
max_tokens: Optional[float] = None,
max_tokens: Optional[int] = None,
presence_penalty: Optional[float] = None,
frequency_penalty: Optional[float] = None,
logit_bias: Optional[dict] = None,
@ -2666,6 +2690,7 @@ def embedding(
"model_list",
"num_retries",
"context_window_fallback_dict",
"retry_policy",
"roles",
"final_prompt_value",
"bos_token",
@ -3535,6 +3560,7 @@ def image_generation(
"model_list",
"num_retries",
"context_window_fallback_dict",
"retry_policy",
"roles",
"final_prompt_value",
"bos_token",

View file

@ -338,6 +338,18 @@
"output_cost_per_second": 0.0001,
"litellm_provider": "azure"
},
"azure/gpt-4-turbo-2024-04-09": {
"max_tokens": 4096,
"max_input_tokens": 128000,
"max_output_tokens": 4096,
"input_cost_per_token": 0.00001,
"output_cost_per_token": 0.00003,
"litellm_provider": "azure",
"mode": "chat",
"supports_function_calling": true,
"supports_parallel_function_calling": true,
"supports_vision": true
},
"azure/gpt-4-0125-preview": {
"max_tokens": 4096,
"max_input_tokens": 128000,
@ -813,6 +825,7 @@
"litellm_provider": "anthropic",
"mode": "chat",
"supports_function_calling": true,
"supports_vision": true,
"tool_use_system_prompt_tokens": 264
},
"claude-3-opus-20240229": {
@ -824,6 +837,7 @@
"litellm_provider": "anthropic",
"mode": "chat",
"supports_function_calling": true,
"supports_vision": true,
"tool_use_system_prompt_tokens": 395
},
"claude-3-sonnet-20240229": {
@ -835,6 +849,7 @@
"litellm_provider": "anthropic",
"mode": "chat",
"supports_function_calling": true,
"supports_vision": true,
"tool_use_system_prompt_tokens": 159
},
"text-bison": {
@ -1142,7 +1157,8 @@
"output_cost_per_token": 0.000015,
"litellm_provider": "vertex_ai-anthropic_models",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_vision": true
},
"vertex_ai/claude-3-haiku@20240307": {
"max_tokens": 4096,
@ -1152,7 +1168,8 @@
"output_cost_per_token": 0.00000125,
"litellm_provider": "vertex_ai-anthropic_models",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_vision": true
},
"vertex_ai/claude-3-opus@20240229": {
"max_tokens": 4096,
@ -1162,7 +1179,8 @@
"output_cost_per_token": 0.0000075,
"litellm_provider": "vertex_ai-anthropic_models",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_vision": true
},
"textembedding-gecko": {
"max_tokens": 3072,
@ -1581,6 +1599,7 @@
"litellm_provider": "openrouter",
"mode": "chat",
"supports_function_calling": true,
"supports_vision": true,
"tool_use_system_prompt_tokens": 395
},
"openrouter/google/palm-2-chat-bison": {
@ -1813,6 +1832,15 @@
"litellm_provider": "bedrock",
"mode": "embedding"
},
"amazon.titan-embed-text-v2:0": {
"max_tokens": 8192,
"max_input_tokens": 8192,
"output_vector_size": 1024,
"input_cost_per_token": 0.0000002,
"output_cost_per_token": 0.0,
"litellm_provider": "bedrock",
"mode": "embedding"
},
"mistral.mistral-7b-instruct-v0:2": {
"max_tokens": 8191,
"max_input_tokens": 32000,
@ -1929,7 +1957,8 @@
"output_cost_per_token": 0.000015,
"litellm_provider": "bedrock",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_vision": true
},
"anthropic.claude-3-haiku-20240307-v1:0": {
"max_tokens": 4096,
@ -1939,7 +1968,8 @@
"output_cost_per_token": 0.00000125,
"litellm_provider": "bedrock",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_vision": true
},
"anthropic.claude-3-opus-20240229-v1:0": {
"max_tokens": 4096,
@ -1949,7 +1979,8 @@
"output_cost_per_token": 0.000075,
"litellm_provider": "bedrock",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_vision": true
},
"anthropic.claude-v1": {
"max_tokens": 8191,

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -1 +0,0 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[185],{93553:function(n,e,t){Promise.resolve().then(t.t.bind(t,63385,23)),Promise.resolve().then(t.t.bind(t,99646,23))},63385:function(){},99646:function(n){n.exports={style:{fontFamily:"'__Inter_12bbc4', '__Inter_Fallback_12bbc4'",fontStyle:"normal"},className:"__className_12bbc4"}}},function(n){n.O(0,[971,69,744],function(){return n(n.s=93553)}),_N_E=n.O()}]);

View file

@ -0,0 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[185],{87421:function(n,e,t){Promise.resolve().then(t.t.bind(t,99646,23)),Promise.resolve().then(t.t.bind(t,63385,23))},63385:function(){},99646:function(n){n.exports={style:{fontFamily:"'__Inter_c23dc8', '__Inter_Fallback_c23dc8'",fontStyle:"normal"},className:"__className_c23dc8"}}},function(n){n.O(0,[971,69,744],function(){return n(n.s=87421)}),_N_E=n.O()}]);

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -1 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[744],{70377:function(e,n,t){Promise.resolve().then(t.t.bind(t,47690,23)),Promise.resolve().then(t.t.bind(t,48955,23)),Promise.resolve().then(t.t.bind(t,5613,23)),Promise.resolve().then(t.t.bind(t,11902,23)),Promise.resolve().then(t.t.bind(t,31778,23)),Promise.resolve().then(t.t.bind(t,77831,23))}},function(e){var n=function(n){return e(e.s=n)};e.O(0,[971,69],function(){return n(35317),n(70377)}),_N_E=e.O()}]);
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[744],{32028:function(e,n,t){Promise.resolve().then(t.t.bind(t,47690,23)),Promise.resolve().then(t.t.bind(t,48955,23)),Promise.resolve().then(t.t.bind(t,5613,23)),Promise.resolve().then(t.t.bind(t,11902,23)),Promise.resolve().then(t.t.bind(t,31778,23)),Promise.resolve().then(t.t.bind(t,77831,23))}},function(e){var n=function(n){return e(e.s=n)};e.O(0,[971,69],function(){return n(35317),n(32028)}),_N_E=e.O()}]);

View file

@ -1 +1 @@
!function(){"use strict";var e,t,n,r,o,u,i,c,f,a={},l={};function d(e){var t=l[e];if(void 0!==t)return t.exports;var n=l[e]={id:e,loaded:!1,exports:{}},r=!0;try{a[e](n,n.exports,d),r=!1}finally{r&&delete l[e]}return n.loaded=!0,n.exports}d.m=a,e=[],d.O=function(t,n,r,o){if(n){o=o||0;for(var u=e.length;u>0&&e[u-1][2]>o;u--)e[u]=e[u-1];e[u]=[n,r,o];return}for(var i=1/0,u=0;u<e.length;u++){for(var n=e[u][0],r=e[u][1],o=e[u][2],c=!0,f=0;f<n.length;f++)i>=o&&Object.keys(d.O).every(function(e){return d.O[e](n[f])})?n.splice(f--,1):(c=!1,o<i&&(i=o));if(c){e.splice(u--,1);var a=r();void 0!==a&&(t=a)}}return t},d.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return d.d(t,{a:t}),t},n=Object.getPrototypeOf?function(e){return Object.getPrototypeOf(e)}:function(e){return e.__proto__},d.t=function(e,r){if(1&r&&(e=this(e)),8&r||"object"==typeof e&&e&&(4&r&&e.__esModule||16&r&&"function"==typeof e.then))return e;var o=Object.create(null);d.r(o);var u={};t=t||[null,n({}),n([]),n(n)];for(var i=2&r&&e;"object"==typeof i&&!~t.indexOf(i);i=n(i))Object.getOwnPropertyNames(i).forEach(function(t){u[t]=function(){return e[t]}});return u.default=function(){return e},d.d(o,u),o},d.d=function(e,t){for(var n in t)d.o(t,n)&&!d.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:t[n]})},d.f={},d.e=function(e){return Promise.all(Object.keys(d.f).reduce(function(t,n){return d.f[n](e,t),t},[]))},d.u=function(e){},d.miniCssF=function(e){return"static/css/9f51f0573c6b0365.css"},d.g=function(){if("object"==typeof globalThis)return globalThis;try{return this||Function("return this")()}catch(e){if("object"==typeof window)return window}}(),d.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},r={},o="_N_E:",d.l=function(e,t,n,u){if(r[e]){r[e].push(t);return}if(void 0!==n)for(var i,c,f=document.getElementsByTagName("script"),a=0;a<f.length;a++){var l=f[a];if(l.getAttribute("src")==e||l.getAttribute("data-webpack")==o+n){i=l;break}}i||(c=!0,(i=document.createElement("script")).charset="utf-8",i.timeout=120,d.nc&&i.setAttribute("nonce",d.nc),i.setAttribute("data-webpack",o+n),i.src=d.tu(e)),r[e]=[t];var s=function(t,n){i.onerror=i.onload=null,clearTimeout(p);var o=r[e];if(delete r[e],i.parentNode&&i.parentNode.removeChild(i),o&&o.forEach(function(e){return e(n)}),t)return t(n)},p=setTimeout(s.bind(null,void 0,{type:"timeout",target:i}),12e4);i.onerror=s.bind(null,i.onerror),i.onload=s.bind(null,i.onload),c&&document.head.appendChild(i)},d.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},d.nmd=function(e){return e.paths=[],e.children||(e.children=[]),e},d.tt=function(){return void 0===u&&(u={createScriptURL:function(e){return e}},"undefined"!=typeof trustedTypes&&trustedTypes.createPolicy&&(u=trustedTypes.createPolicy("nextjs#bundler",u))),u},d.tu=function(e){return d.tt().createScriptURL(e)},d.p="/ui/_next/",i={272:0},d.f.j=function(e,t){var n=d.o(i,e)?i[e]:void 0;if(0!==n){if(n)t.push(n[2]);else if(272!=e){var r=new Promise(function(t,r){n=i[e]=[t,r]});t.push(n[2]=r);var o=d.p+d.u(e),u=Error();d.l(o,function(t){if(d.o(i,e)&&(0!==(n=i[e])&&(i[e]=void 0),n)){var r=t&&("load"===t.type?"missing":t.type),o=t&&t.target&&t.target.src;u.message="Loading chunk "+e+" failed.\n("+r+": "+o+")",u.name="ChunkLoadError",u.type=r,u.request=o,n[1](u)}},"chunk-"+e,e)}else i[e]=0}},d.O.j=function(e){return 0===i[e]},c=function(e,t){var n,r,o=t[0],u=t[1],c=t[2],f=0;if(o.some(function(e){return 0!==i[e]})){for(n in u)d.o(u,n)&&(d.m[n]=u[n]);if(c)var a=c(d)}for(e&&e(t);f<o.length;f++)r=o[f],d.o(i,r)&&i[r]&&i[r][0](),i[r]=0;return d.O(a)},(f=self.webpackChunk_N_E=self.webpackChunk_N_E||[]).forEach(c.bind(null,0)),f.push=c.bind(null,f.push.bind(f))}();
!function(){"use strict";var e,t,n,r,o,u,i,c,f,a={},l={};function d(e){var t=l[e];if(void 0!==t)return t.exports;var n=l[e]={id:e,loaded:!1,exports:{}},r=!0;try{a[e](n,n.exports,d),r=!1}finally{r&&delete l[e]}return n.loaded=!0,n.exports}d.m=a,e=[],d.O=function(t,n,r,o){if(n){o=o||0;for(var u=e.length;u>0&&e[u-1][2]>o;u--)e[u]=e[u-1];e[u]=[n,r,o];return}for(var i=1/0,u=0;u<e.length;u++){for(var n=e[u][0],r=e[u][1],o=e[u][2],c=!0,f=0;f<n.length;f++)i>=o&&Object.keys(d.O).every(function(e){return d.O[e](n[f])})?n.splice(f--,1):(c=!1,o<i&&(i=o));if(c){e.splice(u--,1);var a=r();void 0!==a&&(t=a)}}return t},d.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return d.d(t,{a:t}),t},n=Object.getPrototypeOf?function(e){return Object.getPrototypeOf(e)}:function(e){return e.__proto__},d.t=function(e,r){if(1&r&&(e=this(e)),8&r||"object"==typeof e&&e&&(4&r&&e.__esModule||16&r&&"function"==typeof e.then))return e;var o=Object.create(null);d.r(o);var u={};t=t||[null,n({}),n([]),n(n)];for(var i=2&r&&e;"object"==typeof i&&!~t.indexOf(i);i=n(i))Object.getOwnPropertyNames(i).forEach(function(t){u[t]=function(){return e[t]}});return u.default=function(){return e},d.d(o,u),o},d.d=function(e,t){for(var n in t)d.o(t,n)&&!d.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:t[n]})},d.f={},d.e=function(e){return Promise.all(Object.keys(d.f).reduce(function(t,n){return d.f[n](e,t),t},[]))},d.u=function(e){},d.miniCssF=function(e){return"static/css/00c2ddbcd01819c0.css"},d.g=function(){if("object"==typeof globalThis)return globalThis;try{return this||Function("return this")()}catch(e){if("object"==typeof window)return window}}(),d.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},r={},o="_N_E:",d.l=function(e,t,n,u){if(r[e]){r[e].push(t);return}if(void 0!==n)for(var i,c,f=document.getElementsByTagName("script"),a=0;a<f.length;a++){var l=f[a];if(l.getAttribute("src")==e||l.getAttribute("data-webpack")==o+n){i=l;break}}i||(c=!0,(i=document.createElement("script")).charset="utf-8",i.timeout=120,d.nc&&i.setAttribute("nonce",d.nc),i.setAttribute("data-webpack",o+n),i.src=d.tu(e)),r[e]=[t];var s=function(t,n){i.onerror=i.onload=null,clearTimeout(p);var o=r[e];if(delete r[e],i.parentNode&&i.parentNode.removeChild(i),o&&o.forEach(function(e){return e(n)}),t)return t(n)},p=setTimeout(s.bind(null,void 0,{type:"timeout",target:i}),12e4);i.onerror=s.bind(null,i.onerror),i.onload=s.bind(null,i.onload),c&&document.head.appendChild(i)},d.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},d.nmd=function(e){return e.paths=[],e.children||(e.children=[]),e},d.tt=function(){return void 0===u&&(u={createScriptURL:function(e){return e}},"undefined"!=typeof trustedTypes&&trustedTypes.createPolicy&&(u=trustedTypes.createPolicy("nextjs#bundler",u))),u},d.tu=function(e){return d.tt().createScriptURL(e)},d.p="/ui/_next/",i={272:0},d.f.j=function(e,t){var n=d.o(i,e)?i[e]:void 0;if(0!==n){if(n)t.push(n[2]);else if(272!=e){var r=new Promise(function(t,r){n=i[e]=[t,r]});t.push(n[2]=r);var o=d.p+d.u(e),u=Error();d.l(o,function(t){if(d.o(i,e)&&(0!==(n=i[e])&&(i[e]=void 0),n)){var r=t&&("load"===t.type?"missing":t.type),o=t&&t.target&&t.target.src;u.message="Loading chunk "+e+" failed.\n("+r+": "+o+")",u.name="ChunkLoadError",u.type=r,u.request=o,n[1](u)}},"chunk-"+e,e)}else i[e]=0}},d.O.j=function(e){return 0===i[e]},c=function(e,t){var n,r,o=t[0],u=t[1],c=t[2],f=0;if(o.some(function(e){return 0!==i[e]})){for(n in u)d.o(u,n)&&(d.m[n]=u[n]);if(c)var a=c(d)}for(e&&e(t);f<o.length;f++)r=o[f],d.o(i,r)&&i[r]&&i[r][0](),i[r]=0;return d.O(a)},(f=self.webpackChunk_N_E=self.webpackChunk_N_E||[]).forEach(c.bind(null,0)),f.push=c.bind(null,f.push.bind(f))}();

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -1,5 +1 @@
<<<<<<< HEAD
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-202e312607f242a1.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-dafd44dfa2da140c.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-e49705773ae41779.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-9b4fb13a7db53edf.js" async="" crossorigin=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-202e312607f242a1.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/00c2ddbcd01819c0.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[46414,[\"761\",\"static/chunks/761-05f8a8451296476c.js\",\"931\",\"static/chunks/app/page-5a4a198eefedc775.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/00c2ddbcd01819c0.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"c5rha8cqAah-saaczjn02\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_c23dc8\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>
=======
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-65a932b4e8bd8abb.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-dafd44dfa2da140c.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-e49705773ae41779.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-096338c8e1915716.js" async="" crossorigin=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-65a932b4e8bd8abb.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/9f51f0573c6b0365.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[46414,[\"386\",\"static/chunks/386-d811195b597a2122.js\",\"931\",\"static/chunks/app/page-e0ee34389254cdf2.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/9f51f0573c6b0365.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"dWGL92c5LzTMn7XX6utn2\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_12bbc4\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>
>>>>>>> 73a7b4f4 (refactor(main.py): trigger new build)
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-202e312607f242a1.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-dafd44dfa2da140c.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-e49705773ae41779.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-9b4fb13a7db53edf.js" async="" crossorigin=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-202e312607f242a1.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/00c2ddbcd01819c0.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[58854,[\"936\",\"static/chunks/2f6dbc85-17d29013b8ff3da5.js\",\"142\",\"static/chunks/142-11990a208bf93746.js\",\"931\",\"static/chunks/app/page-d9bdfedbff191985.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/00c2ddbcd01819c0.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"e55gTzpa2g2-9SwXgA9Uo\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_c23dc8\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>

View file

@ -1,14 +1,7 @@
2:I[77831,[],""]
<<<<<<< HEAD
3:I[46414,["761","static/chunks/761-05f8a8451296476c.js","931","static/chunks/app/page-5a4a198eefedc775.js"],""]
3:I[58854,["936","static/chunks/2f6dbc85-17d29013b8ff3da5.js","142","static/chunks/142-11990a208bf93746.js","931","static/chunks/app/page-d9bdfedbff191985.js"],""]
4:I[5613,[],""]
5:I[31778,[],""]
0:["c5rha8cqAah-saaczjn02",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_c23dc8","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/00c2ddbcd01819c0.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
=======
3:I[46414,["386","static/chunks/386-d811195b597a2122.js","931","static/chunks/app/page-e0ee34389254cdf2.js"],""]
4:I[5613,[],""]
5:I[31778,[],""]
0:["dWGL92c5LzTMn7XX6utn2",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_12bbc4","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/9f51f0573c6b0365.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
>>>>>>> 73a7b4f4 (refactor(main.py): trigger new build)
0:["e55gTzpa2g2-9SwXgA9Uo",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_c23dc8","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/00c2ddbcd01819c0.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]]
1:null

View file

@ -11,5 +11,12 @@ router_settings:
redis_password: os.environ/REDIS_PASSWORD
redis_port: os.environ/REDIS_PORT
router_settings:
routing_strategy: "latency-based-routing"
litellm_settings:
success_callback: ["openmeter"]
general_settings:
alerting: ["slack"]
alert_types: ["llm_exceptions"]

View file

@ -3446,172 +3446,6 @@ def model_list(
)
@router.post(
"/v1/completions", dependencies=[Depends(user_api_key_auth)], tags=["completions"]
)
@router.post(
"/completions", dependencies=[Depends(user_api_key_auth)], tags=["completions"]
)
@router.post(
"/engines/{model:path}/completions",
dependencies=[Depends(user_api_key_auth)],
tags=["completions"],
)
@router.post(
"/openai/deployments/{model:path}/completions",
dependencies=[Depends(user_api_key_auth)],
tags=["completions"],
)
async def completion(
request: Request,
fastapi_response: Response,
model: Optional[str] = None,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
global user_temperature, user_request_timeout, user_max_tokens, user_api_base
try:
body = await request.body()
body_str = body.decode()
try:
data = ast.literal_eval(body_str)
except:
data = json.loads(body_str)
data["user"] = data.get("user", user_api_key_dict.user_id)
data["model"] = (
general_settings.get("completion_model", None) # server default
or user_model # model name passed via cli args
or model # for azure deployments
or data["model"] # default passed in http request
)
if user_model:
data["model"] = user_model
if "metadata" not in data:
data["metadata"] = {}
data["metadata"]["user_api_key"] = user_api_key_dict.api_key
data["metadata"]["user_api_key_metadata"] = user_api_key_dict.metadata
data["metadata"]["user_api_key_alias"] = getattr(
user_api_key_dict, "key_alias", None
)
data["metadata"]["user_api_key_user_id"] = user_api_key_dict.user_id
data["metadata"]["user_api_key_team_id"] = getattr(
user_api_key_dict, "team_id", None
)
data["metadata"]["user_api_key_team_alias"] = getattr(
user_api_key_dict, "team_alias", None
)
_headers = dict(request.headers)
_headers.pop(
"authorization", None
) # do not store the original `sk-..` api key in the db
data["metadata"]["headers"] = _headers
data["metadata"]["endpoint"] = str(request.url)
# override with user settings, these are params passed via cli
if user_temperature:
data["temperature"] = user_temperature
if user_request_timeout:
data["request_timeout"] = user_request_timeout
if user_max_tokens:
data["max_tokens"] = user_max_tokens
if user_api_base:
data["api_base"] = user_api_base
### MODEL ALIAS MAPPING ###
# check if model name in model alias map
# get the actual model name
if data["model"] in litellm.model_alias_map:
data["model"] = litellm.model_alias_map[data["model"]]
### CALL HOOKS ### - modify incoming data before calling the model
data = await proxy_logging_obj.pre_call_hook(
user_api_key_dict=user_api_key_dict, data=data, call_type="completion"
)
### ROUTE THE REQUESTs ###
router_model_names = llm_router.model_names if llm_router is not None else []
# skip router if user passed their key
if "api_key" in data:
response = await litellm.atext_completion(**data)
elif (
llm_router is not None and data["model"] in router_model_names
): # model in router model list
response = await llm_router.atext_completion(**data)
elif (
llm_router is not None
and llm_router.model_group_alias is not None
and data["model"] in llm_router.model_group_alias
): # model set in model_group_alias
response = await llm_router.atext_completion(**data)
elif (
llm_router is not None and data["model"] in llm_router.deployment_names
): # model in router deployments, calling a specific deployment on the router
response = await llm_router.atext_completion(
**data, specific_deployment=True
)
elif (
llm_router is not None
and data["model"] not in router_model_names
and llm_router.default_deployment is not None
): # model in router deployments, calling a specific deployment on the router
response = await llm_router.atext_completion(**data)
elif user_model is not None: # `litellm --model <your-model-name>`
response = await litellm.atext_completion(**data)
else:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail={
"error": "Invalid model name passed in model="
+ data.get("model", "")
},
)
if hasattr(response, "_hidden_params"):
model_id = response._hidden_params.get("model_id", None) or ""
original_response = (
response._hidden_params.get("original_response", None) or ""
)
else:
model_id = ""
original_response = ""
verbose_proxy_logger.debug("final response: %s", response)
if (
"stream" in data and data["stream"] == True
): # use generate_responses to stream responses
custom_headers = {
"x-litellm-model-id": model_id,
}
selected_data_generator = select_data_generator(
response=response, user_api_key_dict=user_api_key_dict
)
return StreamingResponse(
selected_data_generator,
media_type="text/event-stream",
headers=custom_headers,
)
fastapi_response.headers["x-litellm-model-id"] = model_id
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
verbose_proxy_logger.debug("EXCEPTION RAISED IN PROXY MAIN.PY")
verbose_proxy_logger.debug(
"\033[1;31mAn error occurred: %s\n\n Debug this by setting `--debug`, e.g. `litellm --model gpt-3.5-turbo --debug`",
e,
)
traceback.print_exc()
error_traceback = traceback.format_exc()
error_msg = f"{str(e)}"
raise ProxyException(
message=getattr(e, "message", error_msg),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", 500),
)
@router.post(
"/v1/chat/completions",
dependencies=[Depends(user_api_key_auth)],
@ -3810,7 +3644,7 @@ async def chat_completion(
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail={
"error": "Invalid model name passed in model="
"error": "chat_completion: Invalid model name passed in model="
+ data.get("model", "")
},
)
@ -3824,6 +3658,7 @@ async def chat_completion(
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
# Post Call Processing
if llm_router is not None:
@ -3836,6 +3671,7 @@ async def chat_completion(
custom_headers = {
"x-litellm-model-id": model_id,
"x-litellm-cache-key": cache_key,
"x-litellm-model-api-base": api_base,
}
selected_data_generator = select_data_generator(
response=response, user_api_key_dict=user_api_key_dict
@ -3848,6 +3684,7 @@ async def chat_completion(
fastapi_response.headers["x-litellm-model-id"] = model_id
fastapi_response.headers["x-litellm-cache-key"] = cache_key
fastapi_response.headers["x-litellm-model-api-base"] = api_base
### CALL HOOKS ### - modify outgoing data
response = await proxy_logging_obj.post_call_success_hook(
@ -3884,6 +3721,172 @@ async def chat_completion(
)
@router.post(
"/v1/completions", dependencies=[Depends(user_api_key_auth)], tags=["completions"]
)
@router.post(
"/completions", dependencies=[Depends(user_api_key_auth)], tags=["completions"]
)
@router.post(
"/engines/{model:path}/completions",
dependencies=[Depends(user_api_key_auth)],
tags=["completions"],
)
@router.post(
"/openai/deployments/{model:path}/completions",
dependencies=[Depends(user_api_key_auth)],
tags=["completions"],
)
async def completion(
request: Request,
fastapi_response: Response,
model: Optional[str] = None,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
global user_temperature, user_request_timeout, user_max_tokens, user_api_base
try:
body = await request.body()
body_str = body.decode()
try:
data = ast.literal_eval(body_str)
except:
data = json.loads(body_str)
data["user"] = data.get("user", user_api_key_dict.user_id)
data["model"] = (
general_settings.get("completion_model", None) # server default
or user_model # model name passed via cli args
or model # for azure deployments
or data["model"] # default passed in http request
)
if user_model:
data["model"] = user_model
if "metadata" not in data:
data["metadata"] = {}
data["metadata"]["user_api_key"] = user_api_key_dict.api_key
data["metadata"]["user_api_key_metadata"] = user_api_key_dict.metadata
data["metadata"]["user_api_key_alias"] = getattr(
user_api_key_dict, "key_alias", None
)
data["metadata"]["user_api_key_user_id"] = user_api_key_dict.user_id
data["metadata"]["user_api_key_team_id"] = getattr(
user_api_key_dict, "team_id", None
)
data["metadata"]["user_api_key_team_alias"] = getattr(
user_api_key_dict, "team_alias", None
)
_headers = dict(request.headers)
_headers.pop(
"authorization", None
) # do not store the original `sk-..` api key in the db
data["metadata"]["headers"] = _headers
data["metadata"]["endpoint"] = str(request.url)
# override with user settings, these are params passed via cli
if user_temperature:
data["temperature"] = user_temperature
if user_request_timeout:
data["request_timeout"] = user_request_timeout
if user_max_tokens:
data["max_tokens"] = user_max_tokens
if user_api_base:
data["api_base"] = user_api_base
### MODEL ALIAS MAPPING ###
# check if model name in model alias map
# get the actual model name
if data["model"] in litellm.model_alias_map:
data["model"] = litellm.model_alias_map[data["model"]]
### CALL HOOKS ### - modify incoming data before calling the model
data = await proxy_logging_obj.pre_call_hook(
user_api_key_dict=user_api_key_dict, data=data, call_type="completion"
)
### ROUTE THE REQUESTs ###
router_model_names = llm_router.model_names if llm_router is not None else []
# skip router if user passed their key
if "api_key" in data:
response = await litellm.atext_completion(**data)
elif (
llm_router is not None and data["model"] in router_model_names
): # model in router model list
response = await llm_router.atext_completion(**data)
elif (
llm_router is not None
and llm_router.model_group_alias is not None
and data["model"] in llm_router.model_group_alias
): # model set in model_group_alias
response = await llm_router.atext_completion(**data)
elif (
llm_router is not None and data["model"] in llm_router.deployment_names
): # model in router deployments, calling a specific deployment on the router
response = await llm_router.atext_completion(
**data, specific_deployment=True
)
elif (
llm_router is not None
and data["model"] not in router_model_names
and llm_router.default_deployment is not None
): # model in router deployments, calling a specific deployment on the router
response = await llm_router.atext_completion(**data)
elif user_model is not None: # `litellm --model <your-model-name>`
response = await litellm.atext_completion(**data)
else:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail={
"error": "completion: Invalid model name passed in model="
+ data.get("model", "")
},
)
if hasattr(response, "_hidden_params"):
model_id = response._hidden_params.get("model_id", None) or ""
original_response = (
response._hidden_params.get("original_response", None) or ""
)
else:
model_id = ""
original_response = ""
verbose_proxy_logger.debug("final response: %s", response)
if (
"stream" in data and data["stream"] == True
): # use generate_responses to stream responses
custom_headers = {
"x-litellm-model-id": model_id,
}
selected_data_generator = select_data_generator(
response=response, user_api_key_dict=user_api_key_dict
)
return StreamingResponse(
selected_data_generator,
media_type="text/event-stream",
headers=custom_headers,
)
fastapi_response.headers["x-litellm-model-id"] = model_id
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
verbose_proxy_logger.debug("EXCEPTION RAISED IN PROXY MAIN.PY")
verbose_proxy_logger.debug(
"\033[1;31mAn error occurred: %s\n\n Debug this by setting `--debug`, e.g. `litellm --model gpt-3.5-turbo --debug`",
e,
)
traceback.print_exc()
error_traceback = traceback.format_exc()
error_msg = f"{str(e)}"
raise ProxyException(
message=getattr(e, "message", error_msg),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", 500),
)
@router.post(
"/v1/embeddings",
dependencies=[Depends(user_api_key_auth)],
@ -4041,7 +4044,7 @@ async def embeddings(
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail={
"error": "Invalid model name passed in model="
"error": "embeddings: Invalid model name passed in model="
+ data.get("model", "")
},
)
@ -4197,7 +4200,7 @@ async def image_generation(
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail={
"error": "Invalid model name passed in model="
"error": "image_generation: Invalid model name passed in model="
+ data.get("model", "")
},
)
@ -4372,7 +4375,7 @@ async def audio_transcriptions(
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail={
"error": "Invalid model name passed in model="
"error": "audio_transcriptions: Invalid model name passed in model="
+ data.get("model", "")
},
)
@ -4538,7 +4541,7 @@ async def moderations(
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail={
"error": "Invalid model name passed in model="
"error": "moderations: Invalid model name passed in model="
+ data.get("model", "")
},
)
@ -7549,7 +7552,7 @@ async def model_metrics(
FROM
"LiteLLM_SpendLogs"
WHERE
"startTime" >= NOW() - INTERVAL '30 days'
"startTime" BETWEEN $2::timestamp AND $3::timestamp
AND "model" = $1 AND "cache_hit" != 'True'
GROUP BY
api_base,
@ -7650,6 +7653,8 @@ FROM
WHERE
"model" = $2
AND "cache_hit" != 'True'
AND "startTime" >= $3::timestamp
AND "startTime" <= $4::timestamp
GROUP BY
api_base
ORDER BY
@ -7657,7 +7662,7 @@ ORDER BY
"""
db_response = await prisma_client.db.query_raw(
sql_query, alerting_threshold, _selected_model_group
sql_query, alerting_threshold, _selected_model_group, startTime, endTime
)
if db_response is not None:
@ -7703,7 +7708,7 @@ async def model_metrics_exceptions(
exception_type,
COUNT(*) AS num_exceptions
FROM "LiteLLM_ErrorLogs"
WHERE "startTime" >= $1::timestamp AND "endTime" <= $2::timestamp
WHERE "startTime" >= $1::timestamp AND "endTime" <= $2::timestamp AND model_group = $3
GROUP BY combined_model_api_base, exception_type
)
SELECT
@ -7715,7 +7720,9 @@ async def model_metrics_exceptions(
ORDER BY total_exceptions DESC
LIMIT 200;
"""
db_response = await prisma_client.db.query_raw(sql_query, startTime, endTime)
db_response = await prisma_client.db.query_raw(
sql_query, startTime, endTime, _selected_model_group
)
response: List[dict] = []
exception_types = set()
@ -8708,11 +8715,11 @@ async def update_config(config_info: ConfigYAML):
# overwrite existing settings with updated values
if k == "alert_to_webhook_url":
# check if slack is already enabled. if not, enable it
if "slack" not in _existing_settings:
if "alerting" not in _existing_settings:
_existing_settings["alerting"] = ["slack"]
elif isinstance(_existing_settings["alerting"], list):
_existing_settings["alerting"].append("slack")
if "slack" not in _existing_settings["alerting"]:
_existing_settings["alerting"] = ["slack"]
_existing_settings[k] = v
config["general_settings"] = _existing_settings
@ -9197,6 +9204,62 @@ def _db_health_readiness_check():
return db_health_cache
@router.get(
"/active/callbacks",
tags=["health"],
dependencies=[Depends(user_api_key_auth)],
)
async def active_callbacks():
"""
Returns a list of active callbacks on litellm.callbacks, litellm.input_callback, litellm.failure_callback, litellm.success_callback
"""
global proxy_logging_obj
_alerting = str(general_settings.get("alerting"))
# get success callback
success_callback_names = []
try:
# this was returning a JSON of the values in some of the callbacks
# all we need is the callback name, hence we do str(callback)
success_callback_names = [str(x) for x in litellm.success_callback]
except:
# don't let this block the /health/readiness response, if we can't convert to str -> return litellm.success_callback
success_callback_names = litellm.success_callback
_num_callbacks = (
len(litellm.callbacks)
+ len(litellm.input_callback)
+ len(litellm.failure_callback)
+ len(litellm.success_callback)
+ len(litellm._async_failure_callback)
+ len(litellm._async_success_callback)
+ len(litellm._async_input_callback)
)
alerting = proxy_logging_obj.alerting
_num_alerting = 0
if alerting and isinstance(alerting, list):
_num_alerting = len(alerting)
return {
"alerting": _alerting,
"litellm.callbacks": [str(x) for x in litellm.callbacks],
"litellm.input_callback": [str(x) for x in litellm.input_callback],
"litellm.failure_callback": [str(x) for x in litellm.failure_callback],
"litellm.success_callback": [str(x) for x in litellm.success_callback],
"litellm._async_success_callback": [
str(x) for x in litellm._async_success_callback
],
"litellm._async_failure_callback": [
str(x) for x in litellm._async_failure_callback
],
"litellm._async_input_callback": [
str(x) for x in litellm._async_input_callback
],
"num_callbacks": _num_callbacks,
"num_alerting": _num_alerting,
}
@router.get(
"/health/readiness",
tags=["health"],
@ -9206,9 +9269,11 @@ async def health_readiness():
"""
Unprotected endpoint for checking if worker can receive requests
"""
global general_settings
try:
# get success callback
success_callback_names = []
try:
# this was returning a JSON of the values in some of the callbacks
# all we need is the callback name, hence we do str(callback)
@ -9236,7 +9301,6 @@ async def health_readiness():
# check DB
if prisma_client is not None: # if db passed in, check if it's connected
db_health_status = _db_health_readiness_check()
return {
"status": "healthy",
"db": "connected",

View file

@ -387,8 +387,14 @@ class ProxyLogging:
"""
### ALERTING ###
if "llm_exceptions" not in self.alert_types:
return
if "llm_exceptions" in self.alert_types and not isinstance(
original_exception, HTTPException
):
"""
Just alert on LLM API exceptions. Do not alert on user errors
Related issue - https://github.com/BerriAI/litellm/issues/3395
"""
asyncio.create_task(
self.alerting_handler(
message=f"LLM API call failed: {str(original_exception)}",
@ -679,8 +685,8 @@ class PrismaClient:
@backoff.on_exception(
backoff.expo,
Exception, # base exception to catch for the backoff
max_tries=3, # maximum number of retries
max_time=10, # maximum total time to retry for
max_tries=1, # maximum number of retries
max_time=2, # maximum total time to retry for
on_backoff=on_backoff, # specifying the function to call on backoff
)
async def get_generic_data(
@ -718,7 +724,8 @@ class PrismaClient:
import traceback
error_msg = f"LiteLLM Prisma Client Exception get_generic_data: {str(e)}"
print_verbose(error_msg)
verbose_proxy_logger.error(error_msg)
error_msg = error_msg + "\nException Type: {}".format(type(e))
error_traceback = error_msg + "\n" + traceback.format_exc()
end_time = time.time()
_duration = end_time - start_time

View file

@ -42,6 +42,7 @@ from litellm.types.router import (
RouterErrors,
updateDeployment,
updateLiteLLMParams,
RetryPolicy,
)
from litellm.integrations.custom_logger import CustomLogger
@ -82,6 +83,12 @@ class Router:
model_group_alias: Optional[dict] = {},
enable_pre_call_checks: bool = False,
retry_after: int = 0, # min time to wait before retrying a failed request
retry_policy: Optional[
RetryPolicy
] = None, # set custom retries for different exceptions
model_group_retry_policy: Optional[
Dict[str, RetryPolicy]
] = {}, # set custom retry policies based on model group
allowed_fails: Optional[
int
] = None, # Number of times a deployment can failbefore being added to cooldown
@ -303,6 +310,10 @@ class Router:
f"Intialized router with Routing strategy: {self.routing_strategy}\n\nRouting fallbacks: {self.fallbacks}\n\nRouting context window fallbacks: {self.context_window_fallbacks}\n\nRouter Redis Caching={self.cache.redis_cache}"
) # noqa
self.routing_strategy_args = routing_strategy_args
self.retry_policy: Optional[RetryPolicy] = retry_policy
self.model_group_retry_policy: Optional[Dict[str, RetryPolicy]] = (
model_group_retry_policy
)
def routing_strategy_init(self, routing_strategy: str, routing_strategy_args: dict):
if routing_strategy == "least-busy":
@ -375,7 +386,9 @@ class Router:
except Exception as e:
raise e
def _completion(self, model: str, messages: List[Dict[str, str]], **kwargs):
def _completion(
self, model: str, messages: List[Dict[str, str]], **kwargs
) -> Union[ModelResponse, CustomStreamWrapper]:
model_name = None
try:
# pick the one that is available (lowest TPM/RPM)
@ -438,7 +451,9 @@ class Router:
)
raise e
async def acompletion(self, model: str, messages: List[Dict[str, str]], **kwargs):
async def acompletion(
self, model: str, messages: List[Dict[str, str]], **kwargs
) -> Union[ModelResponse, CustomStreamWrapper]:
try:
kwargs["model"] = model
kwargs["messages"] = messages
@ -454,7 +469,9 @@ class Router:
except Exception as e:
raise e
async def _acompletion(self, model: str, messages: List[Dict[str, str]], **kwargs):
async def _acompletion(
self, model: str, messages: List[Dict[str, str]], **kwargs
) -> Union[ModelResponse, CustomStreamWrapper]:
"""
- Get an available deployment
- call it with a semaphore over the call
@ -1455,48 +1472,24 @@ class Router:
):
raise original_exception
### RETRY
#### check if it should retry + back-off if required
# if "No models available" in str(
# e
# ) or RouterErrors.no_deployments_available.value in str(e):
# timeout = litellm._calculate_retry_after(
# remaining_retries=num_retries,
# max_retries=num_retries,
# min_timeout=self.retry_after,
# )
# await asyncio.sleep(timeout)
# elif RouterErrors.user_defined_ratelimit_error.value in str(e):
# raise e # don't wait to retry if deployment hits user-defined rate-limit
# elif hasattr(original_exception, "status_code") and litellm._should_retry(
# status_code=original_exception.status_code
# ):
# if hasattr(original_exception, "response") and hasattr(
# original_exception.response, "headers"
# ):
# timeout = litellm._calculate_retry_after(
# remaining_retries=num_retries,
# max_retries=num_retries,
# response_headers=original_exception.response.headers,
# min_timeout=self.retry_after,
# )
# else:
# timeout = litellm._calculate_retry_after(
# remaining_retries=num_retries,
# max_retries=num_retries,
# min_timeout=self.retry_after,
# )
# await asyncio.sleep(timeout)
# else:
# raise original_exception
### RETRY
_timeout = self._router_should_retry(
e=original_exception,
remaining_retries=num_retries,
num_retries=num_retries,
)
await asyncio.sleep(_timeout)
if (
self.retry_policy is not None
or self.model_group_retry_policy is not None
):
# get num_retries from retry policy
_retry_policy_retries = self.get_num_retries_from_retry_policy(
exception=original_exception, model_group=kwargs.get("model")
)
if _retry_policy_retries is not None:
num_retries = _retry_policy_retries
## LOGGING
if num_retries > 0:
kwargs = self.log_retry(kwargs=kwargs, e=original_exception)
@ -1524,6 +1517,10 @@ class Router:
num_retries=num_retries,
)
await asyncio.sleep(_timeout)
try:
original_exception.message += f"\nNumber Retries = {current_attempt}"
except:
pass
raise original_exception
def function_with_fallbacks(self, *args, **kwargs):
@ -2590,6 +2587,16 @@ class Router:
return model
return None
def get_model_info(self, id: str) -> Optional[dict]:
"""
For a given model id, return the model info
"""
for model in self.model_list:
if "model_info" in model and "id" in model["model_info"]:
if id == model["model_info"]["id"]:
return model
return None
def get_model_ids(self):
ids = []
for model in self.model_list:
@ -2659,13 +2666,18 @@ class Router:
"cooldown_time",
]
_existing_router_settings = self.get_settings()
for var in kwargs:
if var in _allowed_settings:
if var in _int_settings:
_casted_value = int(kwargs[var])
setattr(self, var, _casted_value)
else:
if var == "routing_strategy":
# only run routing strategy init if it has changed
if (
var == "routing_strategy"
and _existing_router_settings["routing_strategy"] != kwargs[var]
):
self.routing_strategy_init(
routing_strategy=kwargs[var],
routing_strategy_args=kwargs.get(
@ -2904,15 +2916,10 @@ class Router:
m for m in self.model_list if m["litellm_params"]["model"] == model
]
verbose_router_logger.debug(
f"initial list of deployments: {healthy_deployments}"
)
litellm.print_verbose(f"initial list of deployments: {healthy_deployments}")
verbose_router_logger.debug(
f"healthy deployments: length {len(healthy_deployments)} {healthy_deployments}"
)
if len(healthy_deployments) == 0:
raise ValueError(f"No healthy deployment available, passed model={model}")
raise ValueError(f"No healthy deployment available, passed model={model}. ")
if litellm.model_alias_map and model in litellm.model_alias_map:
model = litellm.model_alias_map[
model
@ -3238,6 +3245,53 @@ class Router:
except Exception as e:
verbose_router_logger.error(f"Error in _track_deployment_metrics: {str(e)}")
def get_num_retries_from_retry_policy(
self, exception: Exception, model_group: Optional[str] = None
):
"""
BadRequestErrorRetries: Optional[int] = None
AuthenticationErrorRetries: Optional[int] = None
TimeoutErrorRetries: Optional[int] = None
RateLimitErrorRetries: Optional[int] = None
ContentPolicyViolationErrorRetries: Optional[int] = None
"""
# if we can find the exception then in the retry policy -> return the number of retries
retry_policy = self.retry_policy
if (
self.model_group_retry_policy is not None
and model_group is not None
and model_group in self.model_group_retry_policy
):
retry_policy = self.model_group_retry_policy.get(model_group, None)
if retry_policy is None:
return None
if (
isinstance(exception, litellm.BadRequestError)
and retry_policy.BadRequestErrorRetries is not None
):
return retry_policy.BadRequestErrorRetries
if (
isinstance(exception, litellm.AuthenticationError)
and retry_policy.AuthenticationErrorRetries is not None
):
return retry_policy.AuthenticationErrorRetries
if (
isinstance(exception, litellm.Timeout)
and retry_policy.TimeoutErrorRetries is not None
):
return retry_policy.TimeoutErrorRetries
if (
isinstance(exception, litellm.RateLimitError)
and retry_policy.RateLimitErrorRetries is not None
):
return retry_policy.RateLimitErrorRetries
if (
isinstance(exception, litellm.ContentPolicyViolationError)
and retry_policy.ContentPolicyViolationErrorRetries is not None
):
return retry_policy.ContentPolicyViolationErrorRetries
def flush_cache(self):
litellm.cache = None
self.cache.flush_cache()
@ -3248,4 +3302,5 @@ class Router:
litellm.__async_success_callback = []
litellm.failure_callback = []
litellm._async_failure_callback = []
self.retry_policy = None
self.flush_cache()

View file

@ -31,6 +31,7 @@ class LiteLLMBase(BaseModel):
class RoutingArgs(LiteLLMBase):
ttl: int = 1 * 60 * 60 # 1 hour
lowest_latency_buffer: float = 0
max_latency_list_size: int = 10
class LowestLatencyLoggingHandler(CustomLogger):
@ -103,7 +104,18 @@ class LowestLatencyLoggingHandler(CustomLogger):
request_count_dict[id] = {}
## Latency
if (
len(request_count_dict[id].get("latency", []))
< self.routing_args.max_latency_list_size
):
request_count_dict[id].setdefault("latency", []).append(final_value)
else:
request_count_dict[id]["latency"] = request_count_dict[id][
"latency"
][: self.routing_args.max_latency_list_size - 1] + [final_value]
if precise_minute not in request_count_dict[id]:
request_count_dict[id][precise_minute] = {}
if precise_minute not in request_count_dict[id]:
request_count_dict[id][precise_minute] = {}
@ -170,8 +182,17 @@ class LowestLatencyLoggingHandler(CustomLogger):
if id not in request_count_dict:
request_count_dict[id] = {}
## Latency
## Latency - give 1000s penalty for failing
if (
len(request_count_dict[id].get("latency", []))
< self.routing_args.max_latency_list_size
):
request_count_dict[id].setdefault("latency", []).append(1000.0)
else:
request_count_dict[id]["latency"] = request_count_dict[id][
"latency"
][: self.routing_args.max_latency_list_size - 1] + [1000.0]
self.router_cache.set_cache(
key=latency_key,
value=request_count_dict,
@ -242,7 +263,15 @@ class LowestLatencyLoggingHandler(CustomLogger):
request_count_dict[id] = {}
## Latency
if (
len(request_count_dict[id].get("latency", []))
< self.routing_args.max_latency_list_size
):
request_count_dict[id].setdefault("latency", []).append(final_value)
else:
request_count_dict[id]["latency"] = request_count_dict[id][
"latency"
][: self.routing_args.max_latency_list_size - 1] + [final_value]
if precise_minute not in request_count_dict[id]:
request_count_dict[id][precise_minute] = {}

View file

@ -79,10 +79,12 @@ class LowestTPMLoggingHandler_v2(CustomLogger):
model=deployment.get("litellm_params", {}).get("model"),
response=httpx.Response(
status_code=429,
content="{} rpm limit={}. current usage={}".format(
content="{} rpm limit={}. current usage={}. id={}, model_group={}. Get the model info by calling 'router.get_model_info(id)".format(
RouterErrors.user_defined_ratelimit_error.value,
deployment_rpm,
local_result,
model_id,
deployment.get("model_name", ""),
),
request=httpx.Request(method="tpm_rpm_limits", url="https://github.com/BerriAI/litellm"), # type: ignore
),

View file

@ -0,0 +1,88 @@
int() argument must be a string, a bytes-like object or a real number, not 'NoneType'
Traceback (most recent call last):
File "/opt/homebrew/lib/python3.11/site-packages/langfuse/client.py", line 778, in generation
"usage": _convert_usage_input(usage) if usage is not None else None,
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langfuse/utils.py", line 77, in _convert_usage_input
"totalCost": extract_by_priority(usage, ["totalCost", "total_cost"]),
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langfuse/utils.py", line 32, in extract_by_priority
return int(usage[key])
^^^^^^^^^^^^^^^
TypeError: int() argument must be a string, a bytes-like object or a real number, not 'NoneType'
int() argument must be a string, a bytes-like object or a real number, not 'NoneType'
Traceback (most recent call last):
File "/opt/homebrew/lib/python3.11/site-packages/langfuse/client.py", line 778, in generation
"usage": _convert_usage_input(usage) if usage is not None else None,
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langfuse/utils.py", line 77, in _convert_usage_input
"totalCost": extract_by_priority(usage, ["totalCost", "total_cost"]),
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langfuse/utils.py", line 32, in extract_by_priority
return int(usage[key])
^^^^^^^^^^^^^^^
TypeError: int() argument must be a string, a bytes-like object or a real number, not 'NoneType'
int() argument must be a string, a bytes-like object or a real number, not 'NoneType'
Traceback (most recent call last):
File "/opt/homebrew/lib/python3.11/site-packages/langfuse/client.py", line 778, in generation
"usage": _convert_usage_input(usage) if usage is not None else None,
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langfuse/utils.py", line 77, in _convert_usage_input
"totalCost": extract_by_priority(usage, ["totalCost", "total_cost"]),
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langfuse/utils.py", line 32, in extract_by_priority
return int(usage[key])
^^^^^^^^^^^^^^^
TypeError: int() argument must be a string, a bytes-like object or a real number, not 'NoneType'
int() argument must be a string, a bytes-like object or a real number, not 'NoneType'
Traceback (most recent call last):
File "/opt/homebrew/lib/python3.11/site-packages/langfuse/client.py", line 778, in generation
"usage": _convert_usage_input(usage) if usage is not None else None,
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langfuse/utils.py", line 77, in _convert_usage_input
"totalCost": extract_by_priority(usage, ["totalCost", "total_cost"]),
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langfuse/utils.py", line 32, in extract_by_priority
return int(usage[key])
^^^^^^^^^^^^^^^
TypeError: int() argument must be a string, a bytes-like object or a real number, not 'NoneType'
int() argument must be a string, a bytes-like object or a real number, not 'NoneType'
Traceback (most recent call last):
File "/opt/homebrew/lib/python3.11/site-packages/langfuse/client.py", line 778, in generation
"usage": _convert_usage_input(usage) if usage is not None else None,
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langfuse/utils.py", line 77, in _convert_usage_input
"totalCost": extract_by_priority(usage, ["totalCost", "total_cost"]),
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langfuse/utils.py", line 32, in extract_by_priority
return int(usage[key])
^^^^^^^^^^^^^^^
TypeError: int() argument must be a string, a bytes-like object or a real number, not 'NoneType'
consumer is running...
Getting observations... None, None, None, None, litellm-test-98e1cc75-bef8-4280-a2b9-e08633b81acd, None, GENERATION
consumer is running...
Getting observations... None, None, None, None, litellm-test-532d2bc8-f8d6-42fd-8f78-416bae79925d, None, GENERATION
joining 1 consumer threads
consumer thread 0 joined
joining 1 consumer threads
consumer thread 0 joined
joining 1 consumer threads
consumer thread 0 joined
joining 1 consumer threads
consumer thread 0 joined
joining 1 consumer threads
consumer thread 0 joined
joining 1 consumer threads
consumer thread 0 joined
joining 1 consumer threads
consumer thread 0 joined
joining 1 consumer threads
consumer thread 0 joined
joining 1 consumer threads
consumer thread 0 joined
joining 1 consumer threads
consumer thread 0 joined
joining 1 consumer threads
consumer thread 0 joined
joining 1 consumer threads
consumer thread 0 joined

View file

@ -5,74 +5,99 @@ plugins: timeout-2.2.0, asyncio-0.23.2, anyio-3.7.1, xdist-3.3.1
asyncio: mode=Mode.STRICT
collected 1 item
test_custom_logger.py Chunks have a created at hidden param
Chunks sorted
token_counter messages received: [{'role': 'user', 'content': 'write a one sentence poem about: 73348'}]
Token Counter - using OpenAI token counter, for model=gpt-3.5-turbo
LiteLLM: Utils - Counting tokens for OpenAI model=gpt-3.5-turbo
Logging Details LiteLLM-Success Call: None
success callbacks: []
Token Counter - using OpenAI token counter, for model=gpt-3.5-turbo
LiteLLM: Utils - Counting tokens for OpenAI model=gpt-3.5-turbo
Logging Details LiteLLM-Success Call streaming complete
Looking up model=gpt-3.5-turbo in model_cost_map
Success: model=gpt-3.5-turbo in model_cost_map
prompt_tokens=17; completion_tokens=0
Returned custom cost for model=gpt-3.5-turbo - prompt_tokens_cost_usd_dollar: 2.55e-05, completion_tokens_cost_usd_dollar: 0.0
final cost: 2.55e-05; prompt_tokens_cost_usd_dollar: 2.55e-05; completion_tokens_cost_usd_dollar: 0.0
. [100%]
test_completion.py F [100%]
=================================== FAILURES ===================================
______________________ test_completion_anthropic_hanging _______________________
def test_completion_anthropic_hanging():
litellm.set_verbose = True
litellm.modify_params = True
messages = [
{
"role": "user",
"content": "What's the capital of fictional country Ubabababababaaba? Use your tools.",
},
{
"role": "assistant",
"function_call": {
"name": "get_capital",
"arguments": '{"country": "Ubabababababaaba"}',
},
},
{"role": "function", "name": "get_capital", "content": "Kokoko"},
]
converted_messages = anthropic_messages_pt(messages)
print(f"converted_messages: {converted_messages}")
## ENSURE USER / ASSISTANT ALTERNATING
for i, msg in enumerate(converted_messages):
if i < len(converted_messages) - 1:
> assert msg["role"] != converted_messages[i + 1]["role"]
E AssertionError: assert 'user' != 'user'
test_completion.py:2406: AssertionError
---------------------------- Captured stdout setup -----------------------------
<module 'litellm' from '/Users/krrishdholakia/Documents/litellm/litellm/__init__.py'>
pytest fixture - resetting callbacks
----------------------------- Captured stdout call -----------------------------
message: {'role': 'user', 'content': "What's the capital of fictional country Ubabababababaaba? Use your tools."}
message: {'role': 'function', 'name': 'get_capital', 'content': 'Kokoko'}
converted_messages: [{'role': 'user', 'content': [{'type': 'text', 'text': "What's the capital of fictional country Ubabababababaaba? Use your tools."}]}, {'role': 'user', 'content': [{'type': 'tool_result', 'tool_use_id': '10e9f4d4-bdc9-4514-8b7a-c10bc555d67c', 'content': 'Kokoko'}]}]
=============================== warnings summary ===============================
../../../../../../opt/homebrew/lib/python3.11/site-packages/pydantic/_internal/_config.py:284: 18 warnings
../../../../../../opt/homebrew/lib/python3.11/site-packages/pydantic/_internal/_config.py:284: 23 warnings
/opt/homebrew/lib/python3.11/site-packages/pydantic/_internal/_config.py:284: PydanticDeprecatedSince20: Support for class-based `config` is deprecated, use ConfigDict instead. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
warnings.warn(DEPRECATION_MESSAGE, DeprecationWarning)
../proxy/_types.py:218
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:218: PydanticDeprecatedSince20: Pydantic V1 style `@root_validator` validators are deprecated. You should migrate to Pydantic V2 style `@model_validator` validators, see the migration guide for more details. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
../proxy/_types.py:219
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:219: PydanticDeprecatedSince20: Pydantic V1 style `@root_validator` validators are deprecated. You should migrate to Pydantic V2 style `@model_validator` validators, see the migration guide for more details. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
@root_validator(pre=True)
../proxy/_types.py:305
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:305: PydanticDeprecatedSince20: `pydantic.config.Extra` is deprecated, use literal values instead (e.g. `extra='allow'`). Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
../proxy/_types.py:306
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:306: PydanticDeprecatedSince20: `pydantic.config.Extra` is deprecated, use literal values instead (e.g. `extra='allow'`). Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
extra = Extra.allow # Allow extra fields
../proxy/_types.py:308
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:308: PydanticDeprecatedSince20: Pydantic V1 style `@root_validator` validators are deprecated. You should migrate to Pydantic V2 style `@model_validator` validators, see the migration guide for more details. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
../proxy/_types.py:309
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:309: PydanticDeprecatedSince20: Pydantic V1 style `@root_validator` validators are deprecated. You should migrate to Pydantic V2 style `@model_validator` validators, see the migration guide for more details. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
@root_validator(pre=True)
../proxy/_types.py:337
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:337: PydanticDeprecatedSince20: Pydantic V1 style `@root_validator` validators are deprecated. You should migrate to Pydantic V2 style `@model_validator` validators, see the migration guide for more details. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
../proxy/_types.py:338
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:338: PydanticDeprecatedSince20: Pydantic V1 style `@root_validator` validators are deprecated. You should migrate to Pydantic V2 style `@model_validator` validators, see the migration guide for more details. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
@root_validator(pre=True)
../proxy/_types.py:384
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:384: PydanticDeprecatedSince20: Pydantic V1 style `@root_validator` validators are deprecated. You should migrate to Pydantic V2 style `@model_validator` validators, see the migration guide for more details. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
../proxy/_types.py:385
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:385: PydanticDeprecatedSince20: Pydantic V1 style `@root_validator` validators are deprecated. You should migrate to Pydantic V2 style `@model_validator` validators, see the migration guide for more details. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
@root_validator(pre=True)
../proxy/_types.py:450
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:450: PydanticDeprecatedSince20: Pydantic V1 style `@root_validator` validators are deprecated. You should migrate to Pydantic V2 style `@model_validator` validators, see the migration guide for more details. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
../proxy/_types.py:454
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:454: PydanticDeprecatedSince20: Pydantic V1 style `@root_validator` validators are deprecated. You should migrate to Pydantic V2 style `@model_validator` validators, see the migration guide for more details. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
@root_validator(pre=True)
../proxy/_types.py:462
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:462: PydanticDeprecatedSince20: Pydantic V1 style `@root_validator` validators are deprecated. You should migrate to Pydantic V2 style `@model_validator` validators, see the migration guide for more details. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
../proxy/_types.py:466
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:466: PydanticDeprecatedSince20: Pydantic V1 style `@root_validator` validators are deprecated. You should migrate to Pydantic V2 style `@model_validator` validators, see the migration guide for more details. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
@root_validator(pre=True)
../proxy/_types.py:502
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:502: PydanticDeprecatedSince20: Pydantic V1 style `@root_validator` validators are deprecated. You should migrate to Pydantic V2 style `@model_validator` validators, see the migration guide for more details. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
../proxy/_types.py:509
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:509: PydanticDeprecatedSince20: Pydantic V1 style `@root_validator` validators are deprecated. You should migrate to Pydantic V2 style `@model_validator` validators, see the migration guide for more details. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
@root_validator(pre=True)
../proxy/_types.py:536
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:536: PydanticDeprecatedSince20: Pydantic V1 style `@root_validator` validators are deprecated. You should migrate to Pydantic V2 style `@model_validator` validators, see the migration guide for more details. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
../proxy/_types.py:546
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:546: PydanticDeprecatedSince20: Pydantic V1 style `@root_validator` validators are deprecated. You should migrate to Pydantic V2 style `@model_validator` validators, see the migration guide for more details. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
@root_validator(pre=True)
../proxy/_types.py:823
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:823: PydanticDeprecatedSince20: Pydantic V1 style `@root_validator` validators are deprecated. You should migrate to Pydantic V2 style `@model_validator` validators, see the migration guide for more details. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
../proxy/_types.py:840
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:840: PydanticDeprecatedSince20: Pydantic V1 style `@root_validator` validators are deprecated. You should migrate to Pydantic V2 style `@model_validator` validators, see the migration guide for more details. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
@root_validator(pre=True)
../proxy/_types.py:850
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:850: PydanticDeprecatedSince20: Pydantic V1 style `@root_validator` validators are deprecated. You should migrate to Pydantic V2 style `@model_validator` validators, see the migration guide for more details. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
../proxy/_types.py:867
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:867: PydanticDeprecatedSince20: Pydantic V1 style `@root_validator` validators are deprecated. You should migrate to Pydantic V2 style `@model_validator` validators, see the migration guide for more details. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
@root_validator(pre=True)
../proxy/_types.py:869
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:869: PydanticDeprecatedSince20: Pydantic V1 style `@root_validator` validators are deprecated. You should migrate to Pydantic V2 style `@model_validator` validators, see the migration guide for more details. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
../proxy/_types.py:886
/Users/krrishdholakia/Documents/litellm/litellm/proxy/_types.py:886: PydanticDeprecatedSince20: Pydantic V1 style `@root_validator` validators are deprecated. You should migrate to Pydantic V2 style `@model_validator` validators, see the migration guide for more details. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.7/migration/
@root_validator(pre=True)
../../../../../../opt/homebrew/lib/python3.11/site-packages/pkg_resources/__init__.py:121
@ -126,30 +151,7 @@ final cost: 2.55e-05; prompt_tokens_cost_usd_dollar: 2.55e-05; completion_tokens
Implementing implicit namespace packages (as specified in PEP 420) is preferred to `pkg_resources.declare_namespace`. See https://setuptools.pypa.io/en/latest/references/keywords.html#keyword-namespace-packages
declare_namespace(pkg)
test_custom_logger.py::test_redis_cache_completion_stream
/opt/homebrew/lib/python3.11/site-packages/_pytest/unraisableexception.py:78: PytestUnraisableExceptionWarning: Exception ignored in: <function StreamWriter.__del__ at 0x1019c28e0>
Traceback (most recent call last):
File "/opt/homebrew/Cellar/python@3.11/3.11.6_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/asyncio/streams.py", line 395, in __del__
self.close()
File "/opt/homebrew/Cellar/python@3.11/3.11.6_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/asyncio/streams.py", line 343, in close
return self._transport.close()
^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/Cellar/python@3.11/3.11.6_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/asyncio/sslproto.py", line 112, in close
self._ssl_protocol._start_shutdown()
File "/opt/homebrew/Cellar/python@3.11/3.11.6_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/asyncio/sslproto.py", line 620, in _start_shutdown
self._shutdown_timeout_handle = self._loop.call_later(
^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/Cellar/python@3.11/3.11.6_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/asyncio/base_events.py", line 727, in call_later
timer = self.call_at(self.time() + delay, callback, *args,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/Cellar/python@3.11/3.11.6_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/asyncio/base_events.py", line 740, in call_at
self._check_closed()
File "/opt/homebrew/Cellar/python@3.11/3.11.6_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/asyncio/base_events.py", line 519, in _check_closed
raise RuntimeError('Event loop is closed')
RuntimeError: Event loop is closed
warnings.warn(pytest.PytestUnraisableExceptionWarning(msg))
-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
======================== 1 passed, 56 warnings in 2.43s ========================
=========================== short test summary info ============================
FAILED test_completion.py::test_completion_anthropic_hanging - AssertionError...
======================== 1 failed, 60 warnings in 0.15s ========================

View file

@ -205,8 +205,6 @@ async def test_langfuse_logging_without_request_response(stream):
assert _trace_data[0].output == {
"role": "assistant",
"content": "redacted-by-litellm",
"function_call": None,
"tool_calls": None,
}
except Exception as e:
@ -561,7 +559,15 @@ def test_langfuse_existing_trace_id():
new_langfuse_trace = langfuse_client.get_trace(id=trace_id)
assert dict(initial_langfuse_trace) == dict(new_langfuse_trace)
initial_langfuse_trace_dict = dict(initial_langfuse_trace)
initial_langfuse_trace_dict.pop("updatedAt")
initial_langfuse_trace_dict.pop("timestamp")
new_langfuse_trace_dict = dict(new_langfuse_trace)
new_langfuse_trace_dict.pop("updatedAt")
new_langfuse_trace_dict.pop("timestamp")
assert initial_langfuse_trace_dict == new_langfuse_trace_dict
def test_langfuse_logging_tool_calling():

View file

@ -15,10 +15,24 @@ import litellm
import pytest
import asyncio
from unittest.mock import patch, MagicMock
from litellm.utils import get_api_base
from litellm.caching import DualCache
from litellm.integrations.slack_alerting import SlackAlerting
@pytest.mark.parametrize(
"model, optional_params, expected_api_base",
[
("openai/my-fake-model", {"api_base": "my-fake-api-base"}, "my-fake-api-base"),
("gpt-3.5-turbo", {}, "https://api.openai.com"),
],
)
def test_get_api_base_unit_test(model, optional_params, expected_api_base):
api_base = get_api_base(model=model, optional_params=optional_params)
assert api_base == expected_api_base
@pytest.mark.asyncio
async def test_get_api_base():
_pl = ProxyLogging(user_api_key_cache=DualCache())
@ -94,3 +108,80 @@ def test_init():
assert slack_no_alerting.alerting == []
print("passed testing slack alerting init")
from unittest.mock import patch, AsyncMock
from datetime import datetime, timedelta
@pytest.fixture
def slack_alerting():
return SlackAlerting(alerting_threshold=1)
# Test for hanging LLM responses
@pytest.mark.asyncio
async def test_response_taking_too_long_hanging(slack_alerting):
request_data = {
"model": "test_model",
"messages": "test_messages",
"litellm_status": "running",
}
with patch.object(slack_alerting, "send_alert", new=AsyncMock()) as mock_send_alert:
await slack_alerting.response_taking_too_long(
type="hanging_request", request_data=request_data
)
mock_send_alert.assert_awaited_once()
# Test for slow LLM responses
@pytest.mark.asyncio
async def test_response_taking_too_long_callback(slack_alerting):
start_time = datetime.now()
end_time = start_time + timedelta(seconds=301)
kwargs = {"model": "test_model", "messages": "test_messages", "litellm_params": {}}
with patch.object(slack_alerting, "send_alert", new=AsyncMock()) as mock_send_alert:
await slack_alerting.response_taking_too_long_callback(
kwargs, None, start_time, end_time
)
mock_send_alert.assert_awaited_once()
# Test for budget crossed
@pytest.mark.asyncio
async def test_budget_alerts_crossed(slack_alerting):
user_max_budget = 100
user_current_spend = 101
with patch.object(slack_alerting, "send_alert", new=AsyncMock()) as mock_send_alert:
await slack_alerting.budget_alerts(
"user_budget", user_max_budget, user_current_spend
)
mock_send_alert.assert_awaited_once()
# Test for budget crossed again (should not fire alert 2nd time)
@pytest.mark.asyncio
async def test_budget_alerts_crossed_again(slack_alerting):
user_max_budget = 100
user_current_spend = 101
with patch.object(slack_alerting, "send_alert", new=AsyncMock()) as mock_send_alert:
await slack_alerting.budget_alerts(
"user_budget", user_max_budget, user_current_spend
)
mock_send_alert.assert_awaited_once()
mock_send_alert.reset_mock()
await slack_alerting.budget_alerts(
"user_budget", user_max_budget, user_current_spend
)
mock_send_alert.assert_not_awaited()
# Test for send_alert - should be called once
@pytest.mark.asyncio
async def test_send_alert(slack_alerting):
with patch.object(
slack_alerting.async_http_handler, "post", new=AsyncMock()
) as mock_post:
mock_post.return_value.status_code = 200
await slack_alerting.send_alert("Test message", "Low", "budget_alerts")
mock_post.assert_awaited_once()

View file

@ -548,42 +548,6 @@ def test_gemini_pro_vision_base64():
def test_gemini_pro_function_calling():
load_vertex_ai_credentials()
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
messages = [
{
"role": "user",
"content": "What's the weather like in Boston today in fahrenheit?",
}
]
completion = litellm.completion(
model="gemini-pro", messages=messages, tools=tools, tool_choice="auto"
)
print(f"completion: {completion}")
if hasattr(completion.choices[0].message, "tool_calls") and isinstance(
completion.choices[0].message.tool_calls, list
):
assert len(completion.choices[0].message.tool_calls) == 1
try:
load_vertex_ai_credentials()
tools = [

View file

@ -0,0 +1,102 @@
# What is this?
## Unit Tests for OpenAI Assistants API
import sys, os, json
import traceback
from dotenv import load_dotenv
load_dotenv()
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest, logging, asyncio
import litellm
from litellm import create_thread, get_thread
from litellm.llms.openai import (
OpenAIAssistantsAPI,
MessageData,
Thread,
OpenAIMessage as Message,
)
"""
V0 Scope:
- Add Message -> `/v1/threads/{thread_id}/messages`
- Run Thread -> `/v1/threads/{thread_id}/run`
"""
def test_create_thread_litellm() -> Thread:
message: MessageData = {"role": "user", "content": "Hey, how's it going?"} # type: ignore
new_thread = create_thread(
custom_llm_provider="openai",
messages=[message], # type: ignore
)
assert isinstance(
new_thread, Thread
), f"type of thread={type(new_thread)}. Expected Thread-type"
return new_thread
def test_get_thread_litellm():
new_thread = test_create_thread_litellm()
received_thread = get_thread(
custom_llm_provider="openai",
thread_id=new_thread.id,
)
assert isinstance(
received_thread, Thread
), f"type of thread={type(received_thread)}. Expected Thread-type"
return new_thread
def test_add_message_litellm():
message: MessageData = {"role": "user", "content": "Hey, how's it going?"} # type: ignore
new_thread = test_create_thread_litellm()
# add message to thread
message: MessageData = {"role": "user", "content": "Hey, how's it going?"} # type: ignore
added_message = litellm.add_message(
thread_id=new_thread.id, custom_llm_provider="openai", **message
)
print(f"added message: {added_message}")
assert isinstance(added_message, Message)
def test_run_thread_litellm():
"""
- Get Assistants
- Create thread
- Create run w/ Assistants + Thread
"""
assistants = litellm.get_assistants(custom_llm_provider="openai")
## get the first assistant ###
assistant_id = assistants.data[0].id
new_thread = test_create_thread_litellm()
thread_id = new_thread.id
# add message to thread
message: MessageData = {"role": "user", "content": "Hey, how's it going?"} # type: ignore
added_message = litellm.add_message(
thread_id=new_thread.id, custom_llm_provider="openai", **message
)
run = litellm.run_thread(
custom_llm_provider="openai", thread_id=thread_id, assistant_id=assistant_id
)
if run.status == "completed":
messages = litellm.get_messages(
thread_id=new_thread.id, custom_llm_provider="openai"
)
assert isinstance(messages.data[0], Message)
else:
pytest.fail("An unexpected error occurred when running the thread")

View file

@ -229,15 +229,39 @@ def test_bedrock_extra_headers():
def test_bedrock_claude_3():
try:
litellm.set_verbose = True
data = {
"max_tokens": 2000,
"stream": False,
"temperature": 0.3,
"messages": [
{"role": "user", "content": "Hi"},
{"role": "assistant", "content": "Hi"},
{
"role": "user",
"content": [
{"text": "describe this image", "type": "text"},
{
"image_url": {
"detail": "high",
"url": "",
},
"type": "image_url",
},
],
},
],
}
response: ModelResponse = completion(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
messages=messages,
max_tokens=10,
temperature=0.78,
# messages=messages,
# max_tokens=10,
# temperature=0.78,
**data,
)
# Add any assertions here to check the response
assert len(response.choices) > 0
assert len(response.choices[0].message.content) > 0
except RateLimitError:
pass
except Exception as e:

View file

@ -12,6 +12,7 @@ import pytest
import litellm
from litellm import embedding, completion, completion_cost, Timeout
from litellm import RateLimitError
from litellm.llms.prompt_templates.factory import anthropic_messages_pt
# litellm.num_retries=3
litellm.cache = None
@ -2355,6 +2356,56 @@ def test_completion_with_fallbacks():
# test_completion_with_fallbacks()
# @pytest.mark.parametrize(
# "function_call",
# [
# [{"role": "function", "name": "get_capital", "content": "Kokoko"}],
# [
# {"role": "function", "name": "get_capital", "content": "Kokoko"},
# {"role": "function", "name": "get_capital", "content": "Kokoko"},
# ],
# ],
# )
# @pytest.mark.parametrize(
# "tool_call",
# [
# [{"role": "tool", "tool_call_id": "1234", "content": "Kokoko"}],
# [
# {"role": "tool", "tool_call_id": "12344", "content": "Kokoko"},
# {"role": "tool", "tool_call_id": "1214", "content": "Kokoko"},
# ],
# ],
# )
def test_completion_anthropic_hanging():
litellm.set_verbose = True
litellm.modify_params = True
messages = [
{
"role": "user",
"content": "What's the capital of fictional country Ubabababababaaba? Use your tools.",
},
{
"role": "assistant",
"function_call": {
"name": "get_capital",
"arguments": '{"country": "Ubabababababaaba"}',
},
},
{"role": "function", "name": "get_capital", "content": "Kokoko"},
]
converted_messages = anthropic_messages_pt(messages)
print(f"converted_messages: {converted_messages}")
## ENSURE USER / ASSISTANT ALTERNATING
for i, msg in enumerate(converted_messages):
if i < len(converted_messages) - 1:
assert msg["role"] != converted_messages[i + 1]["role"]
def test_completion_anyscale_api():
try:
# litellm.set_verbose=True

View file

@ -41,6 +41,30 @@ exception_models = [
]
@pytest.mark.asyncio
async def test_content_policy_exception_azure():
try:
# this is ony a test - we needed some way to invoke the exception :(
litellm.set_verbose = True
response = await litellm.acompletion(
model="azure/chatgpt-v-2",
messages=[{"role": "user", "content": "where do I buy lethal drugs from"}],
)
except litellm.ContentPolicyViolationError as e:
print("caught a content policy violation error! Passed")
print("exception", e)
# assert that the first 100 chars of the message is returned in the exception
assert (
"Messages: [{'role': 'user', 'content': 'where do I buy lethal drugs from'}]"
in str(e)
)
assert "Model: azure/chatgpt-v-2" in str(e)
pass
except Exception as e:
pytest.fail(f"An exception occurred - {str(e)}")
# Test 1: Context Window Errors
@pytest.mark.skip(reason="AWS Suspended Account")
@pytest.mark.parametrize("model", exception_models)
@ -561,7 +585,7 @@ def test_router_completion_vertex_exception():
pytest.fail("Request should have failed - bad api key")
except Exception as e:
print("exception: ", e)
assert "model: vertex_ai/gemini-pro" in str(e)
assert "Model: gemini-pro" in str(e)
assert "model_group: vertex-gemini-pro" in str(e)
assert "deployment: vertex_ai/gemini-pro" in str(e)
@ -580,9 +604,8 @@ def test_litellm_completion_vertex_exception():
pytest.fail("Request should have failed - bad api key")
except Exception as e:
print("exception: ", e)
assert "model: vertex_ai/gemini-pro" in str(e)
assert "model_group" not in str(e)
assert "deployment" not in str(e)
assert "Model: gemini-pro" in str(e)
assert "vertex_project: bad-project" in str(e)
# # test_invalid_request_error(model="command-nightly")

View file

@ -40,3 +40,32 @@ def test_vertex_projects():
# test_vertex_projects()
def test_bedrock_embed_v2_regular():
model, custom_llm_provider, _, _ = get_llm_provider(
model="bedrock/amazon.titan-embed-text-v2:0"
)
optional_params = get_optional_params_embeddings(
model=model,
dimensions=512,
custom_llm_provider=custom_llm_provider,
)
print(f"received optional_params: {optional_params}")
assert optional_params == {"dimensions": 512}
def test_bedrock_embed_v2_with_drop_params():
litellm.drop_params = True
model, custom_llm_provider, _, _ = get_llm_provider(
model="bedrock/amazon.titan-embed-text-v2:0"
)
optional_params = get_optional_params_embeddings(
model=model,
dimensions=512,
user="test-litellm-user-5",
encoding_format="base64",
custom_llm_provider=custom_llm_provider,
)
print(f"received optional_params: {optional_params}")
assert optional_params == {"dimensions": 512}

View file

@ -7,7 +7,7 @@ import traceback
from dotenv import load_dotenv
load_dotenv()
import os
import os, copy
sys.path.insert(
0, os.path.abspath("../..")
@ -20,6 +20,96 @@ from litellm.caching import DualCache
### UNIT TESTS FOR LATENCY ROUTING ###
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio
async def test_latency_memory_leak(sync_mode):
"""
Test to make sure there's no memory leak caused by lowest latency routing
- make 10 calls -> check memory
- make 11th call -> no change in memory
"""
test_cache = DualCache()
model_list = []
lowest_latency_logger = LowestLatencyLoggingHandler(
router_cache=test_cache, model_list=model_list
)
model_group = "gpt-3.5-turbo"
deployment_id = "1234"
kwargs = {
"litellm_params": {
"metadata": {
"model_group": "gpt-3.5-turbo",
"deployment": "azure/chatgpt-v-2",
},
"model_info": {"id": deployment_id},
}
}
start_time = time.time()
response_obj = {"usage": {"total_tokens": 50}}
time.sleep(5)
end_time = time.time()
for _ in range(10):
if sync_mode:
lowest_latency_logger.log_success_event(
response_obj=response_obj,
kwargs=kwargs,
start_time=start_time,
end_time=end_time,
)
else:
await lowest_latency_logger.async_log_success_event(
response_obj=response_obj,
kwargs=kwargs,
start_time=start_time,
end_time=end_time,
)
latency_key = f"{model_group}_map"
cache_value = copy.deepcopy(
test_cache.get_cache(key=latency_key)
) # MAKE SURE NO MEMORY LEAK IN CACHING OBJECT
if sync_mode:
lowest_latency_logger.log_success_event(
response_obj=response_obj,
kwargs=kwargs,
start_time=start_time,
end_time=end_time,
)
else:
await lowest_latency_logger.async_log_success_event(
response_obj=response_obj,
kwargs=kwargs,
start_time=start_time,
end_time=end_time,
)
new_cache_value = test_cache.get_cache(key=latency_key)
# Assert that the size of the cache doesn't grow unreasonably
assert get_size(new_cache_value) <= get_size(
cache_value
), f"Memory leak detected in function call! new_cache size={get_size(new_cache_value)}, old cache size={get_size(cache_value)}"
def get_size(obj, seen=None):
# From https://goshippo.com/blog/measure-real-size-any-python-object/
# Recursively finds size of objects
size = sys.getsizeof(obj)
if seen is None:
seen = set()
obj_id = id(obj)
if obj_id in seen:
return 0
seen.add(obj_id)
if isinstance(obj, dict):
size += sum([get_size(v, seen) for v in obj.values()])
size += sum([get_size(k, seen) for k in obj.keys()])
elif hasattr(obj, "__dict__"):
size += get_size(obj.__dict__, seen)
elif hasattr(obj, "__iter__") and not isinstance(obj, (str, bytes, bytearray)):
size += sum([get_size(i, seen) for i in obj])
return size
def test_latency_updated():
test_cache = DualCache()
model_list = []

View file

@ -5,13 +5,58 @@ import pytest
sys.path.insert(0, os.path.abspath("../.."))
import litellm
from litellm.utils import get_optional_params_embeddings
from litellm.utils import get_optional_params_embeddings, get_optional_params
from litellm.llms.prompt_templates.factory import (
map_system_message_pt,
)
from litellm.types.completion import (
ChatCompletionUserMessageParam,
ChatCompletionSystemMessageParam,
ChatCompletionMessageParam,
)
## get_optional_params_embeddings
### Models: OpenAI, Azure, Bedrock
### Scenarios: w/ optional params + litellm.drop_params = True
def test_supports_system_message():
"""
Check if litellm.completion(...,supports_system_message=False)
"""
messages = [
ChatCompletionSystemMessageParam(role="system", content="Listen here!"),
ChatCompletionUserMessageParam(role="user", content="Hello there!"),
]
new_messages = map_system_message_pt(messages=messages)
assert len(new_messages) == 1
assert new_messages[0]["role"] == "user"
## confirm you can make a openai call with this param
response = litellm.completion(
model="gpt-3.5-turbo", messages=new_messages, supports_system_message=False
)
assert isinstance(response, litellm.ModelResponse)
@pytest.mark.parametrize(
"stop_sequence, expected_count", [("\n", 0), (["\n"], 0), (["finish_reason"], 1)]
)
def test_anthropic_optional_params(stop_sequence, expected_count):
"""
Test if whitespace character optional param is dropped by anthropic
"""
litellm.drop_params = True
optional_params = get_optional_params(
model="claude-3", custom_llm_provider="anthropic", stop=stop_sequence
)
assert len(optional_params) == expected_count
def test_bedrock_optional_params_embeddings():
litellm.drop_params = True
optional_params = get_optional_params_embeddings(

View file

@ -1,6 +1,8 @@
# test that the proxy actually does exception mapping to the OpenAI format
import sys, os
from unittest import mock
import json
from dotenv import load_dotenv
load_dotenv()
@ -12,13 +14,30 @@ sys.path.insert(
import pytest
import litellm, openai
from fastapi.testclient import TestClient
from fastapi import FastAPI
from fastapi import Response
from litellm.proxy.proxy_server import (
router,
save_worker_config,
initialize,
) # Replace with the actual module where your FastAPI router is defined
invalid_authentication_error_response = Response(
status_code=401,
content=json.dumps({"error": "Invalid Authentication"}),
)
context_length_exceeded_error_response_dict = {
"error": {
"message": "AzureException - Error code: 400 - {'error': {'message': \"This model's maximum context length is 4096 tokens. However, your messages resulted in 10007 tokens. Please reduce the length of the messages.\", 'type': 'invalid_request_error', 'param': 'messages', 'code': 'context_length_exceeded'}}",
"type": None,
"param": None,
"code": 400,
},
}
context_length_exceeded_error_response = Response(
status_code=400,
content=json.dumps(context_length_exceeded_error_response_dict),
)
@pytest.fixture
def client():
@ -60,7 +79,11 @@ def test_chat_completion_exception(client):
# raise openai.AuthenticationError
def test_chat_completion_exception_azure(client):
@mock.patch(
"litellm.proxy.proxy_server.llm_router.acompletion",
return_value=invalid_authentication_error_response,
)
def test_chat_completion_exception_azure(mock_acompletion, client):
try:
# Your test data
test_data = {
@ -73,6 +96,15 @@ def test_chat_completion_exception_azure(client):
response = client.post("/chat/completions", json=test_data)
mock_acompletion.assert_called_once_with(
**test_data,
litellm_call_id=mock.ANY,
litellm_logging_obj=mock.ANY,
request_timeout=mock.ANY,
metadata=mock.ANY,
proxy_server_request=mock.ANY,
)
json_response = response.json()
print("keys in json response", json_response.keys())
assert json_response.keys() == {"error"}
@ -90,12 +122,21 @@ def test_chat_completion_exception_azure(client):
# raise openai.AuthenticationError
def test_embedding_auth_exception_azure(client):
@mock.patch(
"litellm.proxy.proxy_server.llm_router.aembedding",
return_value=invalid_authentication_error_response,
)
def test_embedding_auth_exception_azure(mock_aembedding, client):
try:
# Your test data
test_data = {"model": "azure-embedding", "input": ["hi"]}
response = client.post("/embeddings", json=test_data)
mock_aembedding.assert_called_once_with(
**test_data,
metadata=mock.ANY,
proxy_server_request=mock.ANY,
)
print("Response from proxy=", response)
json_response = response.json()
@ -169,7 +210,7 @@ def test_chat_completion_exception_any_model(client):
)
assert isinstance(openai_exception, openai.BadRequestError)
_error_message = openai_exception.message
assert "Invalid model name passed in model=Lite-GPT-12" in str(_error_message)
assert "chat_completion: Invalid model name passed in model=Lite-GPT-12" in str(_error_message)
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
@ -197,14 +238,18 @@ def test_embedding_exception_any_model(client):
print("Exception raised=", openai_exception)
assert isinstance(openai_exception, openai.BadRequestError)
_error_message = openai_exception.message
assert "Invalid model name passed in model=Lite-GPT-12" in str(_error_message)
assert "embeddings: Invalid model name passed in model=Lite-GPT-12" in str(_error_message)
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
# raise openai.BadRequestError
def test_chat_completion_exception_azure_context_window(client):
@mock.patch(
"litellm.proxy.proxy_server.llm_router.acompletion",
return_value=context_length_exceeded_error_response,
)
def test_chat_completion_exception_azure_context_window(mock_acompletion, client):
try:
# Your test data
test_data = {
@ -219,20 +264,22 @@ def test_chat_completion_exception_azure_context_window(client):
response = client.post("/chat/completions", json=test_data)
print("got response from server", response)
mock_acompletion.assert_called_once_with(
**test_data,
litellm_call_id=mock.ANY,
litellm_logging_obj=mock.ANY,
request_timeout=mock.ANY,
metadata=mock.ANY,
proxy_server_request=mock.ANY,
)
json_response = response.json()
print("keys in json response", json_response.keys())
assert json_response.keys() == {"error"}
assert json_response == {
"error": {
"message": "AzureException - Error code: 400 - {'error': {'message': \"This model's maximum context length is 4096 tokens. However, your messages resulted in 10007 tokens. Please reduce the length of the messages.\", 'type': 'invalid_request_error', 'param': 'messages', 'code': 'context_length_exceeded'}}",
"type": None,
"param": None,
"code": 400,
}
}
assert json_response == context_length_exceeded_error_response_dict
# make an openai client to call _make_status_error_from_response
openai_client = openai.OpenAI(api_key="anything")

View file

@ -1,5 +1,6 @@
import sys, os
import traceback
from unittest import mock
from dotenv import load_dotenv
load_dotenv()
@ -35,6 +36,77 @@ token = "sk-1234"
headers = {"Authorization": f"Bearer {token}"}
example_completion_result = {
"choices": [
{
"message": {
"content": "Whispers of the wind carry dreams to me.",
"role": "assistant"
}
}
],
}
example_embedding_result = {
"object": "list",
"data": [
{
"object": "embedding",
"index": 0,
"embedding": [
-0.006929283495992422,
-0.005336422007530928,
-4.547132266452536e-05,
-0.024047505110502243,
-0.006929283495992422,
-0.005336422007530928,
-4.547132266452536e-05,
-0.024047505110502243,
-0.006929283495992422,
-0.005336422007530928,
-4.547132266452536e-05,
-0.024047505110502243,
],
}
],
"model": "text-embedding-3-small",
"usage": {
"prompt_tokens": 5,
"total_tokens": 5
}
}
example_image_generation_result = {
"created": 1589478378,
"data": [
{
"url": "https://..."
},
{
"url": "https://..."
}
]
}
def mock_patch_acompletion():
return mock.patch(
"litellm.proxy.proxy_server.llm_router.acompletion",
return_value=example_completion_result,
)
def mock_patch_aembedding():
return mock.patch(
"litellm.proxy.proxy_server.llm_router.aembedding",
return_value=example_embedding_result,
)
def mock_patch_aimage_generation():
return mock.patch(
"litellm.proxy.proxy_server.llm_router.aimage_generation",
return_value=example_image_generation_result,
)
@pytest.fixture(scope="function")
def client_no_auth():
@ -52,7 +124,8 @@ def client_no_auth():
return TestClient(app)
def test_chat_completion(client_no_auth):
@mock_patch_acompletion()
def test_chat_completion(mock_acompletion, client_no_auth):
global headers
try:
# Your test data
@ -66,6 +139,19 @@ def test_chat_completion(client_no_auth):
print("testing proxy server with chat completions")
response = client_no_auth.post("/v1/chat/completions", json=test_data)
mock_acompletion.assert_called_once_with(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": "hi"},
],
max_tokens=10,
litellm_call_id=mock.ANY,
litellm_logging_obj=mock.ANY,
request_timeout=mock.ANY,
specific_deployment=True,
metadata=mock.ANY,
proxy_server_request=mock.ANY,
)
print(f"response - {response.text}")
assert response.status_code == 200
result = response.json()
@ -77,7 +163,8 @@ def test_chat_completion(client_no_auth):
# Run the test
def test_chat_completion_azure(client_no_auth):
@mock_patch_acompletion()
def test_chat_completion_azure(mock_acompletion, client_no_auth):
global headers
try:
# Your test data
@ -92,6 +179,19 @@ def test_chat_completion_azure(client_no_auth):
print("testing proxy server with Azure Request /chat/completions")
response = client_no_auth.post("/v1/chat/completions", json=test_data)
mock_acompletion.assert_called_once_with(
model="azure/chatgpt-v-2",
messages=[
{"role": "user", "content": "write 1 sentence poem"},
],
max_tokens=10,
litellm_call_id=mock.ANY,
litellm_logging_obj=mock.ANY,
request_timeout=mock.ANY,
specific_deployment=True,
metadata=mock.ANY,
proxy_server_request=mock.ANY,
)
assert response.status_code == 200
result = response.json()
print(f"Received response: {result}")
@ -104,8 +204,51 @@ def test_chat_completion_azure(client_no_auth):
# test_chat_completion_azure()
@mock_patch_acompletion()
def test_openai_deployments_model_chat_completions_azure(mock_acompletion, client_no_auth):
global headers
try:
# Your test data
test_data = {
"model": "azure/chatgpt-v-2",
"messages": [
{"role": "user", "content": "write 1 sentence poem"},
],
"max_tokens": 10,
}
url = "/openai/deployments/azure/chatgpt-v-2/chat/completions"
print(f"testing proxy server with Azure Request {url}")
response = client_no_auth.post(url, json=test_data)
mock_acompletion.assert_called_once_with(
model="azure/chatgpt-v-2",
messages=[
{"role": "user", "content": "write 1 sentence poem"},
],
max_tokens=10,
litellm_call_id=mock.ANY,
litellm_logging_obj=mock.ANY,
request_timeout=mock.ANY,
specific_deployment=True,
metadata=mock.ANY,
proxy_server_request=mock.ANY,
)
assert response.status_code == 200
result = response.json()
print(f"Received response: {result}")
assert len(result["choices"][0]["message"]["content"]) > 0
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception - {str(e)}")
# Run the test
# test_openai_deployments_model_chat_completions_azure()
### EMBEDDING
def test_embedding(client_no_auth):
@mock_patch_aembedding()
def test_embedding(mock_aembedding, client_no_auth):
global headers
from litellm.proxy.proxy_server import user_custom_auth
@ -117,6 +260,13 @@ def test_embedding(client_no_auth):
response = client_no_auth.post("/v1/embeddings", json=test_data)
mock_aembedding.assert_called_once_with(
model="azure/azure-embedding-model",
input=["good morning from litellm"],
specific_deployment=True,
metadata=mock.ANY,
proxy_server_request=mock.ANY,
)
assert response.status_code == 200
result = response.json()
print(len(result["data"][0]["embedding"]))
@ -125,7 +275,8 @@ def test_embedding(client_no_auth):
pytest.fail(f"LiteLLM Proxy test failed. Exception - {str(e)}")
def test_bedrock_embedding(client_no_auth):
@mock_patch_aembedding()
def test_bedrock_embedding(mock_aembedding, client_no_auth):
global headers
from litellm.proxy.proxy_server import user_custom_auth
@ -137,6 +288,12 @@ def test_bedrock_embedding(client_no_auth):
response = client_no_auth.post("/v1/embeddings", json=test_data)
mock_aembedding.assert_called_once_with(
model="amazon-embeddings",
input=["good morning from litellm"],
metadata=mock.ANY,
proxy_server_request=mock.ANY,
)
assert response.status_code == 200
result = response.json()
print(len(result["data"][0]["embedding"]))
@ -171,7 +328,8 @@ def test_sagemaker_embedding(client_no_auth):
#### IMAGE GENERATION
def test_img_gen(client_no_auth):
@mock_patch_aimage_generation()
def test_img_gen(mock_aimage_generation, client_no_auth):
global headers
from litellm.proxy.proxy_server import user_custom_auth
@ -185,6 +343,14 @@ def test_img_gen(client_no_auth):
response = client_no_auth.post("/v1/images/generations", json=test_data)
mock_aimage_generation.assert_called_once_with(
model='dall-e-3',
prompt='A cute baby sea otter',
n=1,
size='1024x1024',
metadata=mock.ANY,
proxy_server_request=mock.ANY,
)
assert response.status_code == 200
result = response.json()
print(len(result["data"][0]["url"]))
@ -249,7 +415,8 @@ class MyCustomHandler(CustomLogger):
customHandler = MyCustomHandler()
def test_chat_completion_optional_params(client_no_auth):
@mock_patch_acompletion()
def test_chat_completion_optional_params(mock_acompletion, client_no_auth):
# [PROXY: PROD TEST] - DO NOT DELETE
# This tests if all the /chat/completion params are passed to litellm
try:
@ -267,6 +434,20 @@ def test_chat_completion_optional_params(client_no_auth):
litellm.callbacks = [customHandler]
print("testing proxy server: optional params")
response = client_no_auth.post("/v1/chat/completions", json=test_data)
mock_acompletion.assert_called_once_with(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": "hi"},
],
max_tokens=10,
user="proxy-user",
litellm_call_id=mock.ANY,
litellm_logging_obj=mock.ANY,
request_timeout=mock.ANY,
specific_deployment=True,
metadata=mock.ANY,
proxy_server_request=mock.ANY,
)
assert response.status_code == 200
result = response.json()
print(f"Received response: {result}")

View file

@ -82,7 +82,7 @@ def test_async_fallbacks(caplog):
# Define the expected log messages
# - error request, falling back notice, success notice
expected_logs = [
"litellm.acompletion(model=gpt-3.5-turbo)\x1b[31m Exception OpenAIException - Error code: 401 - {'error': {'message': 'Incorrect API key provided: bad-key. You can find your API key at https://platform.openai.com/account/api-keys.', 'type': 'invalid_request_error', 'param': None, 'code': 'invalid_api_key'}}\x1b[0m",
"litellm.acompletion(model=gpt-3.5-turbo)\x1b[31m Exception OpenAIException - Error code: 401 - {'error': {'message': 'Incorrect API key provided: bad-key. You can find your API key at https://platform.openai.com/account/api-keys.', 'type': 'invalid_request_error', 'param': None, 'code': 'invalid_api_key'}} \nModel: gpt-3.5-turbo\nAPI Base: https://api.openai.com\nMessages: [{'content': 'Hello, how are you?', 'role': 'user'}]\nmodel_group: gpt-3.5-turbo\n\ndeployment: gpt-3.5-turbo\n\x1b[0m",
"litellm.acompletion(model=None)\x1b[31m Exception No deployments available for selected model, passed model=gpt-3.5-turbo\x1b[0m",
"Falling back to model_group = azure/gpt-3.5-turbo",
"litellm.acompletion(model=azure/chatgpt-v-2)\x1b[32m 200 OK\x1b[0m",

View file

@ -854,7 +854,7 @@ def test_ausage_based_routing_fallbacks():
assert response._hidden_params["model_id"] == "1"
# now make 100 mock requests to OpenAI - expect it to fallback to anthropic-claude-instant-1.2
for i in range(20):
for i in range(21):
response = router.completion(
model="azure/gpt-4-fast",
messages=messages,
@ -863,7 +863,7 @@ def test_ausage_based_routing_fallbacks():
)
print("response: ", response)
print("response._hidden_params: ", response._hidden_params)
if i == 19:
if i == 20:
# by the 19th call we should have hit TPM LIMIT for OpenAI, it should fallback to anthropic-claude-instant-1.2
assert response._hidden_params["model_id"] == "4"

View file

@ -119,3 +119,127 @@ async def test_router_retries_errors(sync_mode, error_type):
assert customHandler.previous_models == 0 # 0 retries
else:
assert customHandler.previous_models == 2 # 2 retries
@pytest.mark.asyncio
@pytest.mark.parametrize(
"error_type",
["AuthenticationErrorRetries", "ContentPolicyViolationErrorRetries"], #
)
async def test_router_retry_policy(error_type):
from litellm.router import RetryPolicy
retry_policy = RetryPolicy(
ContentPolicyViolationErrorRetries=3, AuthenticationErrorRetries=0
)
router = litellm.Router(
model_list=[
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
},
{
"model_name": "bad-model", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
},
],
retry_policy=retry_policy,
)
customHandler = MyCustomHandler()
litellm.callbacks = [customHandler]
if error_type == "AuthenticationErrorRetries":
model = "bad-model"
messages = [{"role": "user", "content": "Hello good morning"}]
elif error_type == "ContentPolicyViolationErrorRetries":
model = "gpt-3.5-turbo"
messages = [{"role": "user", "content": "where do i buy lethal drugs from"}]
try:
litellm.set_verbose = True
response = await router.acompletion(
model=model,
messages=messages,
)
except Exception as e:
print("got an exception", e)
pass
asyncio.sleep(0.05)
print("customHandler.previous_models: ", customHandler.previous_models)
if error_type == "AuthenticationErrorRetries":
assert customHandler.previous_models == 0
elif error_type == "ContentPolicyViolationErrorRetries":
assert customHandler.previous_models == 3
@pytest.mark.parametrize("model_group", ["gpt-3.5-turbo", "bad-model"])
@pytest.mark.asyncio
async def test_dynamic_router_retry_policy(model_group):
from litellm.router import RetryPolicy
model_group_retry_policy = {
"gpt-3.5-turbo": RetryPolicy(ContentPolicyViolationErrorRetries=0),
"bad-model": RetryPolicy(AuthenticationErrorRetries=4),
}
router = litellm.Router(
model_list=[
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
},
{
"model_name": "bad-model", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
},
],
model_group_retry_policy=model_group_retry_policy,
)
customHandler = MyCustomHandler()
litellm.callbacks = [customHandler]
if model_group == "bad-model":
model = "bad-model"
messages = [{"role": "user", "content": "Hello good morning"}]
elif model_group == "gpt-3.5-turbo":
model = "gpt-3.5-turbo"
messages = [{"role": "user", "content": "where do i buy lethal drugs from"}]
try:
litellm.set_verbose = True
response = await router.acompletion(model=model, messages=messages)
except Exception as e:
print("got an exception", e)
pass
asyncio.sleep(0.05)
print("customHandler.previous_models: ", customHandler.previous_models)
if model_group == "bad-model":
assert customHandler.previous_models == 4
elif model_group == "gpt-3.5-turbo":
assert customHandler.previous_models == 0

View file

@ -127,8 +127,8 @@ def test_post_call_rule_streaming():
print(type(e))
print(vars(e))
assert (
e.message
== "OpenAIException - This violates LiteLLM Proxy Rules. Response too short"
"OpenAIException - This violates LiteLLM Proxy Rules. Response too short"
in e.message
)

View file

@ -10,7 +10,37 @@ sys.path.insert(
import time
import litellm
import openai
import pytest, uuid
import pytest, uuid, httpx
@pytest.mark.parametrize(
"model, provider",
[
("gpt-3.5-turbo", "openai"),
("anthropic.claude-instant-v1", "bedrock"),
("azure/chatgpt-v-2", "azure"),
],
)
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio
async def test_httpx_timeout(model, provider, sync_mode):
"""
Test if setting httpx.timeout works for completion calls
"""
timeout_val = httpx.Timeout(10.0, connect=60.0)
messages = [{"role": "user", "content": "Hey, how's it going?"}]
if sync_mode:
response = litellm.completion(
model=model, messages=messages, timeout=timeout_val
)
else:
response = await litellm.acompletion(
model=model, messages=messages, timeout=timeout_val
)
print(f"response: {response}")
def test_timeout():

View file

@ -9,7 +9,7 @@ sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import time
from litellm import token_counter, encode, decode
from litellm import token_counter, create_pretrained_tokenizer, encode, decode
def test_token_counter_normal_plus_function_calling():
@ -69,15 +69,23 @@ def test_tokenizers():
model="meta-llama/Llama-2-7b-chat", text=sample_text
)
# llama3 tokenizer (also testing custom tokenizer)
llama3_tokens_1 = token_counter(model="meta-llama/llama-3-70b-instruct", text=sample_text)
llama3_tokenizer = create_pretrained_tokenizer("Xenova/llama-3-tokenizer")
llama3_tokens_2 = token_counter(custom_tokenizer=llama3_tokenizer, text=sample_text)
print(
f"openai tokens: {openai_tokens}; claude tokens: {claude_tokens}; cohere tokens: {cohere_tokens}; llama2 tokens: {llama2_tokens}"
f"openai tokens: {openai_tokens}; claude tokens: {claude_tokens}; cohere tokens: {cohere_tokens}; llama2 tokens: {llama2_tokens}; llama3 tokens: {llama3_tokens_1}"
)
# assert that all token values are different
assert (
openai_tokens != cohere_tokens != llama2_tokens
openai_tokens != cohere_tokens != llama2_tokens != llama3_tokens_1
), "Token values are not different."
assert llama3_tokens_1 == llama3_tokens_2, "Custom tokenizer is not being used! It has been configured to use the same tokenizer as the built in llama3 tokenizer and the results should be the same."
print("test tokenizer: It worked!")
except Exception as e:
pytest.fail(f"An exception occured: {e}")

View file

@ -20,6 +20,8 @@ from litellm.utils import (
validate_environment,
function_to_dict,
token_counter,
create_pretrained_tokenizer,
create_tokenizer,
)
# Assuming your trim_messages, shorten_message_to_fit_limit, and get_token_count functions are all in a module named 'message_utils'

View file

@ -1,7 +1,167 @@
from typing import List, Optional, Union
from typing import List, Optional, Union, Iterable
from pydantic import BaseModel, validator
from typing_extensions import Literal, Required, TypedDict
class ChatCompletionSystemMessageParam(TypedDict, total=False):
content: Required[str]
"""The contents of the system message."""
role: Required[Literal["system"]]
"""The role of the messages author, in this case `system`."""
name: str
"""An optional name for the participant.
Provides the model information to differentiate between participants of the same
role.
"""
class ChatCompletionContentPartTextParam(TypedDict, total=False):
text: Required[str]
"""The text content."""
type: Required[Literal["text"]]
"""The type of the content part."""
class ImageURL(TypedDict, total=False):
url: Required[str]
"""Either a URL of the image or the base64 encoded image data."""
detail: Literal["auto", "low", "high"]
"""Specifies the detail level of the image.
Learn more in the
[Vision guide](https://platform.openai.com/docs/guides/vision/low-or-high-fidelity-image-understanding).
"""
class ChatCompletionContentPartImageParam(TypedDict, total=False):
image_url: Required[ImageURL]
type: Required[Literal["image_url"]]
"""The type of the content part."""
ChatCompletionContentPartParam = Union[
ChatCompletionContentPartTextParam, ChatCompletionContentPartImageParam
]
class ChatCompletionUserMessageParam(TypedDict, total=False):
content: Required[Union[str, Iterable[ChatCompletionContentPartParam]]]
"""The contents of the user message."""
role: Required[Literal["user"]]
"""The role of the messages author, in this case `user`."""
name: str
"""An optional name for the participant.
Provides the model information to differentiate between participants of the same
role.
"""
class FunctionCall(TypedDict, total=False):
arguments: Required[str]
"""
The arguments to call the function with, as generated by the model in JSON
format. Note that the model does not always generate valid JSON, and may
hallucinate parameters not defined by your function schema. Validate the
arguments in your code before calling your function.
"""
name: Required[str]
"""The name of the function to call."""
class Function(TypedDict, total=False):
arguments: Required[str]
"""
The arguments to call the function with, as generated by the model in JSON
format. Note that the model does not always generate valid JSON, and may
hallucinate parameters not defined by your function schema. Validate the
arguments in your code before calling your function.
"""
name: Required[str]
"""The name of the function to call."""
class ChatCompletionToolMessageParam(TypedDict, total=False):
content: Required[str]
"""The contents of the tool message."""
role: Required[Literal["tool"]]
"""The role of the messages author, in this case `tool`."""
tool_call_id: Required[str]
"""Tool call that this message is responding to."""
class ChatCompletionFunctionMessageParam(TypedDict, total=False):
content: Required[Optional[str]]
"""The contents of the function message."""
name: Required[str]
"""The name of the function to call."""
role: Required[Literal["function"]]
"""The role of the messages author, in this case `function`."""
class ChatCompletionMessageToolCallParam(TypedDict, total=False):
id: Required[str]
"""The ID of the tool call."""
function: Required[Function]
"""The function that the model called."""
type: Required[Literal["function"]]
"""The type of the tool. Currently, only `function` is supported."""
class ChatCompletionAssistantMessageParam(TypedDict, total=False):
role: Required[Literal["assistant"]]
"""The role of the messages author, in this case `assistant`."""
content: Optional[str]
"""The contents of the assistant message.
Required unless `tool_calls` or `function_call` is specified.
"""
function_call: FunctionCall
"""Deprecated and replaced by `tool_calls`.
The name and arguments of a function that should be called, as generated by the
model.
"""
name: str
"""An optional name for the participant.
Provides the model information to differentiate between participants of the same
role.
"""
tool_calls: Iterable[ChatCompletionMessageToolCallParam]
"""The tool calls generated by the model, such as function calls."""
ChatCompletionMessageParam = Union[
ChatCompletionSystemMessageParam,
ChatCompletionUserMessageParam,
ChatCompletionAssistantMessageParam,
ChatCompletionFunctionMessageParam,
ChatCompletionToolMessageParam,
]
class CompletionRequest(BaseModel):
model: str
@ -12,7 +172,7 @@ class CompletionRequest(BaseModel):
n: Optional[int] = None
stream: Optional[bool] = None
stop: Optional[dict] = None
max_tokens: Optional[float] = None
max_tokens: Optional[int] = None
presence_penalty: Optional[float] = None
frequency_penalty: Optional[float] = None
logit_bias: Optional[dict] = None

View file

@ -0,0 +1,3 @@
__all__ = ["openai"]
from . import openai

View file

@ -0,0 +1,42 @@
from typing import List, Optional, Union, Iterable
from pydantic import BaseModel, validator
from typing_extensions import Literal, Required, TypedDict
class AnthopicMessagesAssistantMessageTextContentParam(TypedDict, total=False):
type: Required[Literal["text"]]
text: str
class AnthopicMessagesAssistantMessageToolCallParam(TypedDict, total=False):
type: Required[Literal["tool_use"]]
id: str
name: str
input: dict
AnthropicMessagesAssistantMessageValues = Union[
AnthopicMessagesAssistantMessageTextContentParam,
AnthopicMessagesAssistantMessageToolCallParam,
]
class AnthopicMessagesAssistantMessageParam(TypedDict, total=False):
content: Required[Union[str, Iterable[AnthropicMessagesAssistantMessageValues]]]
"""The contents of the system message."""
role: Required[Literal["assistant"]]
"""The role of the messages author, in this case `author`."""
name: str
"""An optional name for the participant.
Provides the model information to differentiate between participants of the same
role.
"""

View file

@ -0,0 +1,148 @@
from typing import (
Optional,
Union,
Any,
BinaryIO,
Literal,
Iterable,
)
from typing_extensions import override, Required
from pydantic import BaseModel
from openai.types.beta.threads.message_content import MessageContent
from openai.types.beta.threads.message import Message as OpenAIMessage
from openai.types.beta.thread_create_params import (
Message as OpenAICreateThreadParamsMessage,
)
from openai.types.beta.assistant_tool_param import AssistantToolParam
from openai.types.beta.threads.run import Run
from openai.types.beta.assistant import Assistant
from openai.pagination import SyncCursorPage
from typing import TypedDict, List, Optional
class NotGiven:
"""
A sentinel singleton class used to distinguish omitted keyword arguments
from those passed in with the value None (which may have different behavior).
For example:
```py
def get(timeout: Union[int, NotGiven, None] = NotGiven()) -> Response:
...
get(timeout=1) # 1s timeout
get(timeout=None) # No timeout
get() # Default timeout behavior, which may not be statically known at the method definition.
```
"""
def __bool__(self) -> Literal[False]:
return False
@override
def __repr__(self) -> str:
return "NOT_GIVEN"
NOT_GIVEN = NotGiven()
class ToolResourcesCodeInterpreter(TypedDict, total=False):
file_ids: List[str]
"""
A list of [file](https://platform.openai.com/docs/api-reference/files) IDs made
available to the `code_interpreter` tool. There can be a maximum of 20 files
associated with the tool.
"""
class ToolResourcesFileSearchVectorStore(TypedDict, total=False):
file_ids: List[str]
"""
A list of [file](https://platform.openai.com/docs/api-reference/files) IDs to
add to the vector store. There can be a maximum of 10000 files in a vector
store.
"""
metadata: object
"""Set of 16 key-value pairs that can be attached to a vector store.
This can be useful for storing additional information about the vector store in
a structured format. Keys can be a maximum of 64 characters long and values can
be a maxium of 512 characters long.
"""
class ToolResourcesFileSearch(TypedDict, total=False):
vector_store_ids: List[str]
"""
The
[vector store](https://platform.openai.com/docs/api-reference/vector-stores/object)
attached to this thread. There can be a maximum of 1 vector store attached to
the thread.
"""
vector_stores: Iterable[ToolResourcesFileSearchVectorStore]
"""
A helper to create a
[vector store](https://platform.openai.com/docs/api-reference/vector-stores/object)
with file_ids and attach it to this thread. There can be a maximum of 1 vector
store attached to the thread.
"""
class OpenAICreateThreadParamsToolResources(TypedDict, total=False):
code_interpreter: ToolResourcesCodeInterpreter
file_search: ToolResourcesFileSearch
class FileSearchToolParam(TypedDict, total=False):
type: Required[Literal["file_search"]]
"""The type of tool being defined: `file_search`"""
class CodeInterpreterToolParam(TypedDict, total=False):
type: Required[Literal["code_interpreter"]]
"""The type of tool being defined: `code_interpreter`"""
AttachmentTool = Union[CodeInterpreterToolParam, FileSearchToolParam]
class Attachment(TypedDict, total=False):
file_id: str
"""The ID of the file to attach to the message."""
tools: Iterable[AttachmentTool]
"""The tools to add this file to."""
class MessageData(TypedDict):
role: Literal["user", "assistant"]
content: str
attachments: Optional[List[Attachment]]
metadata: Optional[dict]
class Thread(BaseModel):
id: str
"""The identifier, which can be referenced in API endpoints."""
created_at: int
"""The Unix timestamp (in seconds) for when the thread was created."""
metadata: Optional[object] = None
"""Set of 16 key-value pairs that can be attached to an object.
This can be useful for storing additional information about the object in a
structured format. Keys can be a maximum of 64 characters long and values can be
a maxium of 512 characters long.
"""
object: Literal["thread"]
"""The object type, which is always `thread`."""

View file

@ -97,8 +97,12 @@ class ModelInfo(BaseModel):
setattr(self, key, value)
class LiteLLM_Params(BaseModel):
model: str
class GenericLiteLLMParams(BaseModel):
"""
LiteLLM Params without 'model' arg (used across completion / assistants api)
"""
custom_llm_provider: Optional[str] = None
tpm: Optional[int] = None
rpm: Optional[int] = None
api_key: Optional[str] = None
@ -120,9 +124,70 @@ class LiteLLM_Params(BaseModel):
aws_secret_access_key: Optional[str] = None
aws_region_name: Optional[str] = None
def __init__(
self,
custom_llm_provider: Optional[str] = None,
max_retries: Optional[Union[int, str]] = None,
tpm: Optional[int] = None,
rpm: Optional[int] = None,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
api_version: Optional[str] = None,
timeout: Optional[Union[float, str]] = None, # if str, pass in as os.environ/
stream_timeout: Optional[Union[float, str]] = (
None # timeout when making stream=True calls, if str, pass in as os.environ/
),
organization: Optional[str] = None, # for openai orgs
## VERTEX AI ##
vertex_project: Optional[str] = None,
vertex_location: Optional[str] = None,
## AWS BEDROCK / SAGEMAKER ##
aws_access_key_id: Optional[str] = None,
aws_secret_access_key: Optional[str] = None,
aws_region_name: Optional[str] = None,
**params
):
args = locals()
args.pop("max_retries", None)
args.pop("self", None)
args.pop("params", None)
args.pop("__class__", None)
if max_retries is not None and isinstance(max_retries, str):
max_retries = int(max_retries) # cast to int
super().__init__(max_retries=max_retries, **args, **params)
class Config:
extra = "allow"
arbitrary_types_allowed = True
def __contains__(self, key):
# Define custom behavior for the 'in' operator
return hasattr(self, key)
def get(self, key, default=None):
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
return getattr(self, key, default)
def __getitem__(self, key):
# Allow dictionary-style access to attributes
return getattr(self, key)
def __setitem__(self, key, value):
# Allow dictionary-style assignment of attributes
setattr(self, key, value)
class LiteLLM_Params(GenericLiteLLMParams):
"""
LiteLLM Params with 'model' requirement - used for completions
"""
model: str
def __init__(
self,
model: str,
custom_llm_provider: Optional[str] = None,
max_retries: Optional[Union[int, str]] = None,
tpm: Optional[int] = None,
rpm: Optional[int] = None,
@ -264,3 +329,18 @@ class RouterErrors(enum.Enum):
user_defined_ratelimit_error = "Deployment over user-defined ratelimit."
no_deployments_available = "No deployments available for selected model"
class RetryPolicy(BaseModel):
"""
Use this to set a custom number of retries per exception type
If RateLimitErrorRetries = 3, then 3 retries will be made for RateLimitError
Mapping of Exception type to number of retries
https://docs.litellm.ai/docs/exception_mapping
"""
BadRequestErrorRetries: Optional[int] = None
AuthenticationErrorRetries: Optional[int] = None
TimeoutErrorRetries: Optional[int] = None
RateLimitErrorRetries: Optional[int] = None
ContentPolicyViolationErrorRetries: Optional[int] = None

View file

@ -315,6 +315,7 @@ class ChatCompletionDeltaToolCall(OpenAIObject):
class HiddenParams(OpenAIObject):
original_response: Optional[str] = None
model_id: Optional[str] = None # used in Router for individual deployments
api_base: Optional[str] = None # returns api base used for making completion call
class Config:
extra = "allow"
@ -378,16 +379,13 @@ class Message(OpenAIObject):
super(Message, self).__init__(**params)
self.content = content
self.role = role
self.tool_calls = None
self.function_call = None
if function_call is not None:
self.function_call = FunctionCall(**function_call)
if tool_calls is not None:
self.tool_calls = [
ChatCompletionMessageToolCall(**tool_call) for tool_call in tool_calls
]
self.tool_calls = []
for tool_call in tool_calls:
self.tool_calls.append(ChatCompletionMessageToolCall(**tool_call))
if logprobs is not None:
self._logprobs = ChoiceLogprobs(**logprobs)
@ -413,8 +411,6 @@ class Message(OpenAIObject):
class Delta(OpenAIObject):
tool_calls: Optional[List[ChatCompletionDeltaToolCall]] = None
def __init__(
self,
content=None,
@ -1700,10 +1696,17 @@ class Logging:
print_verbose("reaches langfuse for streaming logging!")
result = kwargs["complete_streaming_response"]
if langFuseLogger is None or (
self.langfuse_public_key != langFuseLogger.public_key
and self.langfuse_secret != langFuseLogger.secret_key
(
self.langfuse_public_key is not None
and self.langfuse_public_key
!= langFuseLogger.public_key
)
and (
self.langfuse_public_key is not None
and self.langfuse_public_key
!= langFuseLogger.public_key
)
):
print_verbose("Instantiates langfuse client")
langFuseLogger = LangFuseLogger(
langfuse_public_key=self.langfuse_public_key,
langfuse_secret=self.langfuse_secret,
@ -3155,6 +3158,10 @@ def client(original_function):
result._hidden_params["model_id"] = kwargs.get("model_info", {}).get(
"id", None
)
result._hidden_params["api_base"] = get_api_base(
model=model,
optional_params=getattr(logging_obj, "optional_params", {}),
)
result._response_ms = (
end_time - start_time
).total_seconds() * 1000 # return response latency in ms like openai
@ -3224,6 +3231,8 @@ def client(original_function):
call_type = original_function.__name__
if "litellm_call_id" not in kwargs:
kwargs["litellm_call_id"] = str(uuid.uuid4())
model = ""
try:
model = args[0] if len(args) > 0 else kwargs["model"]
except:
@ -3545,6 +3554,10 @@ def client(original_function):
result._hidden_params["model_id"] = kwargs.get("model_info", {}).get(
"id", None
)
result._hidden_params["api_base"] = get_api_base(
model=model,
optional_params=kwargs,
)
if (
isinstance(result, ModelResponse)
or isinstance(result, EmbeddingResponse)
@ -3773,29 +3786,34 @@ def _select_tokenizer(model: str):
elif "llama-2" in model.lower() or "replicate" in model.lower():
tokenizer = Tokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
# llama3
elif "llama-3" in model.lower():
tokenizer = Tokenizer.from_pretrained("Xenova/llama-3-tokenizer")
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
# default - tiktoken
else:
return {"type": "openai_tokenizer", "tokenizer": encoding}
def encode(model: str, text: str):
def encode(model="", text="", custom_tokenizer: Optional[dict] = None):
"""
Encodes the given text using the specified model.
Args:
model (str): The name of the model to use for tokenization.
custom_tokenizer (Optional[dict]): A custom tokenizer created with the `create_pretrained_tokenizer` or `create_tokenizer` method. Must be a dictionary with a string value for `type` and Tokenizer for `tokenizer`. Default is None.
text (str): The text to be encoded.
Returns:
enc: The encoded text.
"""
tokenizer_json = _select_tokenizer(model=model)
tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
enc = tokenizer_json["tokenizer"].encode(text)
return enc
def decode(model: str, tokens: List[int]):
tokenizer_json = _select_tokenizer(model=model)
def decode(model="", tokens: List[int] = [], custom_tokenizer: Optional[dict] = None):
tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
dec = tokenizer_json["tokenizer"].decode(tokens)
return dec
@ -3969,8 +3987,45 @@ def calculage_img_tokens(
return total_tokens
def create_pretrained_tokenizer(
identifier: str, revision="main", auth_token: Optional[str] = None
):
"""
Creates a tokenizer from an existing file on a HuggingFace repository to be used with `token_counter`.
Args:
identifier (str): The identifier of a Model on the Hugging Face Hub, that contains a tokenizer.json file
revision (str, defaults to main): A branch or commit id
auth_token (str, optional, defaults to None): An optional auth token used to access private repositories on the Hugging Face Hub
Returns:
dict: A dictionary with the tokenizer and its type.
"""
tokenizer = Tokenizer.from_pretrained(
identifier, revision=revision, auth_token=auth_token
)
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
def create_tokenizer(json: str):
"""
Creates a tokenizer from a valid JSON string for use with `token_counter`.
Args:
json (str): A valid JSON string representing a previously serialized tokenizer
Returns:
dict: A dictionary with the tokenizer and its type.
"""
tokenizer = Tokenizer.from_str(json)
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
def token_counter(
model="",
custom_tokenizer: Optional[dict] = None,
text: Optional[Union[str, List[str]]] = None,
messages: Optional[List] = None,
count_response_tokens: Optional[bool] = False,
@ -3980,13 +4035,14 @@ def token_counter(
Args:
model (str): The name of the model to use for tokenization. Default is an empty string.
custom_tokenizer (Optional[dict]): A custom tokenizer created with the `create_pretrained_tokenizer` or `create_tokenizer` method. Must be a dictionary with a string value for `type` and Tokenizer for `tokenizer`. Default is None.
text (str): The raw text string to be passed to the model. Default is None.
messages (Optional[List[Dict[str, str]]]): Alternative to passing in text. A list of dictionaries representing messages with "role" and "content" keys. Default is None.
Returns:
int: The number of tokens in the text.
"""
# use tiktoken, anthropic, cohere or llama2's tokenizer depending on the model
# use tiktoken, anthropic, cohere, llama2, or llama3's tokenizer depending on the model
is_tool_call = False
num_tokens = 0
if text == None:
@ -4028,8 +4084,8 @@ def token_counter(
elif isinstance(text, str):
count_response_tokens = True # user just trying to count tokens for a text. don't add the chat_ml +3 tokens to this
if model is not None:
tokenizer_json = _select_tokenizer(model=model)
if model is not None or custom_tokenizer is not None:
tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
if tokenizer_json["type"] == "huggingface_tokenizer":
print_verbose(
f"Token Counter - using hugging face token counter, for model={model}"
@ -4397,7 +4453,19 @@ def completion_cost(
raise e
def supports_function_calling(model: str):
def supports_httpx_timeout(custom_llm_provider: str) -> bool:
"""
Helper function to know if a provider implementation supports httpx timeout
"""
supported_providers = ["openai", "azure", "bedrock"]
if custom_llm_provider in supported_providers:
return True
return False
def supports_function_calling(model: str) -> bool:
"""
Check if the given model supports function calling and return a boolean value.
@ -4698,6 +4766,27 @@ def get_optional_params_embeddings(
status_code=500,
message=f"Setting user/encoding format is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
)
if custom_llm_provider == "bedrock":
# if dimensions is in non_default_params -> pass it for model=bedrock/amazon.titan-embed-text-v2
if (
"dimensions" in non_default_params.keys()
and "amazon.titan-embed-text-v2" in model
):
kwargs["dimensions"] = non_default_params["dimensions"]
non_default_params.pop("dimensions", None)
if len(non_default_params.keys()) > 0:
if litellm.drop_params is True: # drop the unsupported non-default values
keys = list(non_default_params.keys())
for k in keys:
non_default_params.pop(k, None)
final_params = {**non_default_params, **kwargs}
return final_params
raise UnsupportedParamsError(
status_code=500,
message=f"Setting user/encoding format is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
)
return {**non_default_params, **kwargs}
if (
custom_llm_provider != "openai"
@ -4929,26 +5018,9 @@ def get_optional_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
# handle anthropic params
if stream:
optional_params["stream"] = stream
if stop is not None:
if type(stop) == str:
stop = [stop] # openai can accept str/list for stop
optional_params["stop_sequences"] = stop
if temperature is not None:
optional_params["temperature"] = temperature
if top_p is not None:
optional_params["top_p"] = top_p
if max_tokens is not None:
if (model == "claude-2") or (model == "claude-instant-1"):
# these models use antropic_text.py which only accepts max_tokens_to_sample
optional_params["max_tokens_to_sample"] = max_tokens
else:
optional_params["max_tokens"] = max_tokens
optional_params["max_tokens"] = max_tokens
if tools is not None:
optional_params["tools"] = tools
optional_params = litellm.AnthropicConfig().map_openai_params(
non_default_params=non_default_params, optional_params=optional_params
)
elif custom_llm_provider == "cohere":
## check if unsupported param passed in
supported_params = get_supported_openai_params(
@ -5765,19 +5837,40 @@ def get_api_base(model: str, optional_params: dict) -> Optional[str]:
get_api_base(model="gemini/gemini-pro")
```
"""
try:
if "model" in optional_params:
_optional_params = LiteLLM_Params(**optional_params)
else: # prevent needing to copy and pop the dict
_optional_params = LiteLLM_Params(
model=model, **optional_params
) # convert to pydantic object
except Exception as e:
verbose_logger.error("Error occurred in getting api base - {}".format(str(e)))
return None
# get llm provider
try:
model, custom_llm_provider, dynamic_api_key, api_base = get_llm_provider(
model=model
)
except:
custom_llm_provider = None
if _optional_params.api_base is not None:
return _optional_params.api_base
try:
model, custom_llm_provider, dynamic_api_key, dynamic_api_base = (
get_llm_provider(
model=model,
custom_llm_provider=_optional_params.custom_llm_provider,
api_base=_optional_params.api_base,
api_key=_optional_params.api_key,
)
)
except Exception as e:
verbose_logger.error("Error occurred in getting api base - {}".format(str(e)))
custom_llm_provider = None
dynamic_api_key = None
dynamic_api_base = None
if dynamic_api_base is not None:
return dynamic_api_base
if (
_optional_params.vertex_location is not None
and _optional_params.vertex_project is not None
@ -5790,14 +5883,29 @@ def get_api_base(model: str, optional_params: dict) -> Optional[str]:
)
return _api_base
if custom_llm_provider is not None and custom_llm_provider == "gemini":
if custom_llm_provider is None:
return None
if custom_llm_provider == "gemini":
_api_base = "https://generativelanguage.googleapis.com/v1beta/models/{}:generateContent".format(
model
)
return _api_base
elif custom_llm_provider == "openai":
_api_base = "https://api.openai.com"
return _api_base
return None
def get_first_chars_messages(kwargs: dict) -> str:
try:
_messages = kwargs.get("messages")
_messages = str(_messages)[:100]
return _messages
except:
return ""
def get_supported_openai_params(model: str, custom_llm_provider: str):
"""
Returns the supported openai params for a given model + provider
@ -5825,15 +5933,7 @@ def get_supported_openai_params(model: str, custom_llm_provider: str):
elif custom_llm_provider == "ollama_chat":
return litellm.OllamaChatConfig().get_supported_openai_params()
elif custom_llm_provider == "anthropic":
return [
"stream",
"stop",
"temperature",
"top_p",
"max_tokens",
"tools",
"tool_choice",
]
return litellm.AnthropicConfig().get_supported_openai_params()
elif custom_llm_provider == "groq":
return [
"temperature",
@ -6102,7 +6202,6 @@ def get_llm_provider(
try:
dynamic_api_key = None
# check if llm provider provided
# AZURE AI-Studio Logic - Azure AI Studio supports AZURE/Cohere
# If User passes azure/command-r-plus -> we should send it to cohere_chat/command-r-plus
if model.split("/", 1)[0] == "azure":
@ -6768,7 +6867,7 @@ def validate_environment(model: Optional[str] = None) -> dict:
keys_in_environment = True
else:
missing_keys.append("NLP_CLOUD_API_KEY")
elif custom_llm_provider == "bedrock":
elif custom_llm_provider == "bedrock" or custom_llm_provider == "sagemaker":
if (
"AWS_ACCESS_KEY_ID" in os.environ
and "AWS_SECRET_ACCESS_KEY" in os.environ
@ -6782,11 +6881,72 @@ def validate_environment(model: Optional[str] = None) -> dict:
keys_in_environment = True
else:
missing_keys.append("OLLAMA_API_BASE")
elif custom_llm_provider == "anyscale":
if "ANYSCALE_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("ANYSCALE_API_KEY")
elif custom_llm_provider == "deepinfra":
if "DEEPINFRA_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("DEEPINFRA_API_KEY")
elif custom_llm_provider == "gemini":
if "GEMINI_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("GEMINI_API_KEY")
elif custom_llm_provider == "groq":
if "GROQ_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("GROQ_API_KEY")
elif custom_llm_provider == "mistral":
if "MISTRAL_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("MISTRAL_API_KEY")
elif custom_llm_provider == "palm":
if "PALM_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("PALM_API_KEY")
elif custom_llm_provider == "perplexity":
if "PERPLEXITYAI_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("PERPLEXITYAI_API_KEY")
elif custom_llm_provider == "voyage":
if "VOYAGE_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("VOYAGE_API_KEY")
elif custom_llm_provider == "fireworks_ai":
if (
"FIREWORKS_AI_API_KEY" in os.environ
or "FIREWORKS_API_KEY" in os.environ
or "FIREWORKSAI_API_KEY" in os.environ
or "FIREWORKS_AI_TOKEN" in os.environ
):
keys_in_environment = True
else:
missing_keys.append("FIREWORKS_AI_API_KEY")
elif custom_llm_provider == "cloudflare":
if "CLOUDFLARE_API_KEY" in os.environ and (
"CLOUDFLARE_ACCOUNT_ID" in os.environ
or "CLOUDFLARE_API_BASE" in os.environ
):
keys_in_environment = True
else:
missing_keys.append("CLOUDFLARE_API_KEY")
missing_keys.append("CLOUDFLARE_API_BASE")
else:
## openai - chatcompletion + text completion
if (
model in litellm.open_ai_chat_completion_models
or model in litellm.open_ai_text_completion_models
or model in litellm.open_ai_embedding_models
or model in litellm.openai_image_generation_models
):
if "OPENAI_API_KEY" in os.environ:
keys_in_environment = True
@ -6817,7 +6977,11 @@ def validate_environment(model: Optional[str] = None) -> dict:
else:
missing_keys.append("OPENROUTER_API_KEY")
## vertex - text + chat models
elif model in litellm.vertex_chat_models or model in litellm.vertex_text_models:
elif (
model in litellm.vertex_chat_models
or model in litellm.vertex_text_models
or model in litellm.models_by_provider["vertex_ai"]
):
if "VERTEXAI_PROJECT" in os.environ and "VERTEXAI_LOCATION" in os.environ:
keys_in_environment = True
else:
@ -7722,18 +7886,46 @@ def exception_type(
exception_type = type(original_exception).__name__
else:
exception_type = ""
_api_base = ""
try:
_api_base = litellm.get_api_base(
model=model, optional_params=extra_kwargs
)
except:
_api_base = ""
################################################################################
# Common Extra information needed for all providers
# We pass num retries, api_base, vertex_deployment etc to the exception here
################################################################################
_api_base = litellm.get_api_base(model=model, optional_params=extra_kwargs)
messages = litellm.get_first_chars_messages(kwargs=completion_kwargs)
_vertex_project = extra_kwargs.get("vertex_project")
_vertex_location = extra_kwargs.get("vertex_location")
_metadata = extra_kwargs.get("metadata", {}) or {}
_model_group = _metadata.get("model_group")
_deployment = _metadata.get("deployment")
extra_information = f"\nModel: {model}"
if _api_base:
extra_information += f"\nAPI Base: {_api_base}"
if messages and len(messages) > 0:
extra_information += f"\nMessages: {messages}"
if _model_group is not None:
extra_information += f"\nmodel_group: {_model_group}\n"
if _deployment is not None:
extra_information += f"\ndeployment: {_deployment}\n"
if _vertex_project is not None:
extra_information += f"\nvertex_project: {_vertex_project}\n"
if _vertex_location is not None:
extra_information += f"\nvertex_location: {_vertex_location}\n"
################################################################################
# End of Common Extra information Needed for all providers
################################################################################
################################################################################
#################### Start of Provider Exception mapping ####################
################################################################################
if "Request Timeout Error" in error_str or "Request timed out" in error_str:
exception_mapping_worked = True
raise Timeout(
message=f"APITimeoutError - Request timed out. \n model: {model} \n api_base: {_api_base} \n error_str: {error_str}",
message=f"APITimeoutError - Request timed out. {extra_information} \n error_str: {error_str}",
model=model,
llm_provider=custom_llm_provider,
)
@ -7768,7 +7960,7 @@ def exception_type(
):
exception_mapping_worked = True
raise ContextWindowExceededError(
message=f"{exception_provider} - {message}",
message=f"{exception_provider} - {message} {extra_information}",
llm_provider=custom_llm_provider,
model=model,
response=original_exception.response,
@ -7779,7 +7971,7 @@ def exception_type(
):
exception_mapping_worked = True
raise NotFoundError(
message=f"{exception_provider} - {message}",
message=f"{exception_provider} - {message} {extra_information}",
llm_provider=custom_llm_provider,
model=model,
response=original_exception.response,
@ -7790,7 +7982,7 @@ def exception_type(
):
exception_mapping_worked = True
raise ContentPolicyViolationError(
message=f"{exception_provider} - {message}",
message=f"{exception_provider} - {message} {extra_information}",
llm_provider=custom_llm_provider,
model=model,
response=original_exception.response,
@ -7801,7 +7993,7 @@ def exception_type(
):
exception_mapping_worked = True
raise BadRequestError(
message=f"{exception_provider} - {message}",
message=f"{exception_provider} - {message} {extra_information}",
llm_provider=custom_llm_provider,
model=model,
response=original_exception.response,
@ -7812,7 +8004,7 @@ def exception_type(
):
exception_mapping_worked = True
raise AuthenticationError(
message=f"{exception_provider} - {message}",
message=f"{exception_provider} - {message} {extra_information}",
llm_provider=custom_llm_provider,
model=model,
response=original_exception.response,
@ -7824,7 +8016,7 @@ def exception_type(
)
raise APIError(
status_code=500,
message=f"{exception_provider} - {message}",
message=f"{exception_provider} - {message} {extra_information}",
llm_provider=custom_llm_provider,
model=model,
request=_request,
@ -7834,7 +8026,7 @@ def exception_type(
if original_exception.status_code == 401:
exception_mapping_worked = True
raise AuthenticationError(
message=f"{exception_provider} - {message}",
message=f"{exception_provider} - {message} {extra_information}",
llm_provider=custom_llm_provider,
model=model,
response=original_exception.response,
@ -7842,7 +8034,7 @@ def exception_type(
elif original_exception.status_code == 404:
exception_mapping_worked = True
raise NotFoundError(
message=f"{exception_provider} - {message}",
message=f"{exception_provider} - {message} {extra_information}",
model=model,
llm_provider=custom_llm_provider,
response=original_exception.response,
@ -7850,14 +8042,14 @@ def exception_type(
elif original_exception.status_code == 408:
exception_mapping_worked = True
raise Timeout(
message=f"{exception_provider} - {message}",
message=f"{exception_provider} - {message} {extra_information}",
model=model,
llm_provider=custom_llm_provider,
)
elif original_exception.status_code == 422:
exception_mapping_worked = True
raise BadRequestError(
message=f"{exception_provider} - {message}",
message=f"{exception_provider} - {message} {extra_information}",
model=model,
llm_provider=custom_llm_provider,
response=original_exception.response,
@ -7865,7 +8057,7 @@ def exception_type(
elif original_exception.status_code == 429:
exception_mapping_worked = True
raise RateLimitError(
message=f"{exception_provider} - {message}",
message=f"{exception_provider} - {message} {extra_information}",
model=model,
llm_provider=custom_llm_provider,
response=original_exception.response,
@ -7873,7 +8065,7 @@ def exception_type(
elif original_exception.status_code == 503:
exception_mapping_worked = True
raise ServiceUnavailableError(
message=f"{exception_provider} - {message}",
message=f"{exception_provider} - {message} {extra_information}",
model=model,
llm_provider=custom_llm_provider,
response=original_exception.response,
@ -7881,7 +8073,7 @@ def exception_type(
elif original_exception.status_code == 504: # gateway timeout error
exception_mapping_worked = True
raise Timeout(
message=f"{exception_provider} - {message}",
message=f"{exception_provider} - {message} {extra_information}",
model=model,
llm_provider=custom_llm_provider,
)
@ -7889,7 +8081,7 @@ def exception_type(
exception_mapping_worked = True
raise APIError(
status_code=original_exception.status_code,
message=f"{exception_provider} - {message}",
message=f"{exception_provider} - {message} {extra_information}",
llm_provider=custom_llm_provider,
model=model,
request=original_exception.request,
@ -7897,7 +8089,7 @@ def exception_type(
else:
# if no status code then it is an APIConnectionError: https://github.com/openai/openai-python#handling-errors
raise APIConnectionError(
message=f"{exception_provider} - {message}",
message=f"{exception_provider} - {message} {extra_information}",
llm_provider=custom_llm_provider,
model=model,
request=httpx.Request(
@ -8204,33 +8396,13 @@ def exception_type(
response=original_exception.response,
)
elif custom_llm_provider == "vertex_ai":
if completion_kwargs is not None:
# add model, deployment and model_group to the exception message
_model = completion_kwargs.get("model")
error_str += f"\nmodel: {_model}\n"
if extra_kwargs is not None:
_vertex_project = extra_kwargs.get("vertex_project")
_vertex_location = extra_kwargs.get("vertex_location")
_metadata = extra_kwargs.get("metadata", {}) or {}
_model_group = _metadata.get("model_group")
_deployment = _metadata.get("deployment")
if _model_group is not None:
error_str += f"model_group: {_model_group}\n"
if _deployment is not None:
error_str += f"deployment: {_deployment}\n"
if _vertex_project is not None:
error_str += f"vertex_project: {_vertex_project}\n"
if _vertex_location is not None:
error_str += f"vertex_location: {_vertex_location}\n"
if (
"Vertex AI API has not been used in project" in error_str
or "Unable to find your project" in error_str
):
exception_mapping_worked = True
raise BadRequestError(
message=f"VertexAIException - {error_str}",
message=f"VertexAIException - {error_str} {extra_information}",
model=model,
llm_provider="vertex_ai",
response=original_exception.response,
@ -8241,7 +8413,7 @@ def exception_type(
):
exception_mapping_worked = True
raise APIError(
message=f"VertexAIException - {error_str}",
message=f"VertexAIException - {error_str} {extra_information}",
status_code=500,
model=model,
llm_provider="vertex_ai",
@ -8250,7 +8422,7 @@ def exception_type(
elif "403" in error_str:
exception_mapping_worked = True
raise BadRequestError(
message=f"VertexAIException - {error_str}",
message=f"VertexAIException - {error_str} {extra_information}",
model=model,
llm_provider="vertex_ai",
response=original_exception.response,
@ -8258,7 +8430,7 @@ def exception_type(
elif "The response was blocked." in error_str:
exception_mapping_worked = True
raise UnprocessableEntityError(
message=f"VertexAIException - {error_str}",
message=f"VertexAIException - {error_str} {extra_information}",
model=model,
llm_provider="vertex_ai",
response=httpx.Response(
@ -8277,7 +8449,7 @@ def exception_type(
):
exception_mapping_worked = True
raise RateLimitError(
message=f"VertexAIException - {error_str}",
message=f"VertexAIException - {error_str} {extra_information}",
model=model,
llm_provider="vertex_ai",
response=httpx.Response(
@ -8292,7 +8464,7 @@ def exception_type(
if original_exception.status_code == 400:
exception_mapping_worked = True
raise BadRequestError(
message=f"VertexAIException - {error_str}",
message=f"VertexAIException - {error_str} {extra_information}",
model=model,
llm_provider="vertex_ai",
response=original_exception.response,
@ -8300,7 +8472,7 @@ def exception_type(
if original_exception.status_code == 500:
exception_mapping_worked = True
raise APIError(
message=f"VertexAIException - {error_str}",
message=f"VertexAIException - {error_str} {extra_information}",
status_code=500,
model=model,
llm_provider="vertex_ai",
@ -8312,7 +8484,7 @@ def exception_type(
# 503 Getting metadata from plugin failed with error: Reauthentication is needed. Please run `gcloud auth application-default login` to reauthenticate.
exception_mapping_worked = True
raise BadRequestError(
message=f"PalmException - Invalid api key",
message=f"GeminiException - Invalid api key",
model=model,
llm_provider="palm",
response=original_exception.response,
@ -8323,23 +8495,26 @@ def exception_type(
):
exception_mapping_worked = True
raise Timeout(
message=f"PalmException - {original_exception.message}",
message=f"GeminiException - {original_exception.message}",
model=model,
llm_provider="palm",
)
if "400 Request payload size exceeds" in error_str:
exception_mapping_worked = True
raise ContextWindowExceededError(
message=f"PalmException - {error_str}",
message=f"GeminiException - {error_str}",
model=model,
llm_provider="palm",
response=original_exception.response,
)
if "500 An internal error has occurred." in error_str:
if (
"500 An internal error has occurred." in error_str
or "list index out of range" in error_str
):
exception_mapping_worked = True
raise APIError(
status_code=getattr(original_exception, "status_code", 500),
message=f"PalmException - {original_exception.message}",
message=f"GeminiException - {original_exception.message}",
llm_provider="palm",
model=model,
request=original_exception.request,
@ -8348,7 +8523,7 @@ def exception_type(
if original_exception.status_code == 400:
exception_mapping_worked = True
raise BadRequestError(
message=f"PalmException - {error_str}",
message=f"GeminiException - {error_str}",
model=model,
llm_provider="palm",
response=original_exception.response,
@ -8891,10 +9066,19 @@ def exception_type(
request=original_exception.request,
)
elif custom_llm_provider == "azure":
if "This model's maximum context length is" in error_str:
if "Internal server error" in error_str:
exception_mapping_worked = True
raise APIError(
status_code=500,
message=f"AzureException - {original_exception.message} {extra_information}",
llm_provider="azure",
model=model,
request=httpx.Request(method="POST", url="https://openai.com/"),
)
elif "This model's maximum context length is" in error_str:
exception_mapping_worked = True
raise ContextWindowExceededError(
message=f"AzureException - {original_exception.message}",
message=f"AzureException - {original_exception.message} {extra_information}",
llm_provider="azure",
model=model,
response=original_exception.response,
@ -8902,7 +9086,7 @@ def exception_type(
elif "DeploymentNotFound" in error_str:
exception_mapping_worked = True
raise NotFoundError(
message=f"AzureException - {original_exception.message}",
message=f"AzureException - {original_exception.message} {extra_information}",
llm_provider="azure",
model=model,
response=original_exception.response,
@ -8910,10 +9094,13 @@ def exception_type(
elif (
"invalid_request_error" in error_str
and "content_policy_violation" in error_str
) or (
"The response was filtered due to the prompt triggering Azure OpenAI's content management"
in error_str
):
exception_mapping_worked = True
raise ContentPolicyViolationError(
message=f"AzureException - {original_exception.message}",
message=f"AzureException - {original_exception.message} {extra_information}",
llm_provider="azure",
model=model,
response=original_exception.response,
@ -8921,7 +9108,7 @@ def exception_type(
elif "invalid_request_error" in error_str:
exception_mapping_worked = True
raise BadRequestError(
message=f"AzureException - {original_exception.message}",
message=f"AzureException - {original_exception.message} {extra_information}",
llm_provider="azure",
model=model,
response=original_exception.response,
@ -8932,7 +9119,7 @@ def exception_type(
):
exception_mapping_worked = True
raise AuthenticationError(
message=f"{exception_provider} - {original_exception.message}",
message=f"{exception_provider} - {original_exception.message} {extra_information}",
llm_provider=custom_llm_provider,
model=model,
response=original_exception.response,
@ -8942,7 +9129,7 @@ def exception_type(
if original_exception.status_code == 401:
exception_mapping_worked = True
raise AuthenticationError(
message=f"AzureException - {original_exception.message}",
message=f"AzureException - {original_exception.message} {extra_information}",
llm_provider="azure",
model=model,
response=original_exception.response,
@ -8950,14 +9137,14 @@ def exception_type(
elif original_exception.status_code == 408:
exception_mapping_worked = True
raise Timeout(
message=f"AzureException - {original_exception.message}",
message=f"AzureException - {original_exception.message} {extra_information}",
model=model,
llm_provider="azure",
)
if original_exception.status_code == 422:
exception_mapping_worked = True
raise BadRequestError(
message=f"AzureException - {original_exception.message}",
message=f"AzureException - {original_exception.message} {extra_information}",
model=model,
llm_provider="azure",
response=original_exception.response,
@ -8965,7 +9152,7 @@ def exception_type(
elif original_exception.status_code == 429:
exception_mapping_worked = True
raise RateLimitError(
message=f"AzureException - {original_exception.message}",
message=f"AzureException - {original_exception.message} {extra_information}",
model=model,
llm_provider="azure",
response=original_exception.response,
@ -8973,7 +9160,7 @@ def exception_type(
elif original_exception.status_code == 503:
exception_mapping_worked = True
raise ServiceUnavailableError(
message=f"AzureException - {original_exception.message}",
message=f"AzureException - {original_exception.message} {extra_information}",
model=model,
llm_provider="azure",
response=original_exception.response,
@ -8981,7 +9168,7 @@ def exception_type(
elif original_exception.status_code == 504: # gateway timeout error
exception_mapping_worked = True
raise Timeout(
message=f"AzureException - {original_exception.message}",
message=f"AzureException - {original_exception.message} {extra_information}",
model=model,
llm_provider="azure",
)
@ -8989,7 +9176,7 @@ def exception_type(
exception_mapping_worked = True
raise APIError(
status_code=original_exception.status_code,
message=f"AzureException - {original_exception.message}",
message=f"AzureException - {original_exception.message} {extra_information}",
llm_provider="azure",
model=model,
request=httpx.Request(
@ -8999,7 +9186,7 @@ def exception_type(
else:
# if no status code then it is an APIConnectionError: https://github.com/openai/openai-python#handling-errors
raise APIConnectionError(
message=f"{exception_provider} - {message}",
message=f"{exception_provider} - {message} {extra_information}",
llm_provider="azure",
model=model,
request=httpx.Request(method="POST", url="https://openai.com/"),

View file

@ -338,6 +338,18 @@
"output_cost_per_second": 0.0001,
"litellm_provider": "azure"
},
"azure/gpt-4-turbo-2024-04-09": {
"max_tokens": 4096,
"max_input_tokens": 128000,
"max_output_tokens": 4096,
"input_cost_per_token": 0.00001,
"output_cost_per_token": 0.00003,
"litellm_provider": "azure",
"mode": "chat",
"supports_function_calling": true,
"supports_parallel_function_calling": true,
"supports_vision": true
},
"azure/gpt-4-0125-preview": {
"max_tokens": 4096,
"max_input_tokens": 128000,
@ -813,6 +825,7 @@
"litellm_provider": "anthropic",
"mode": "chat",
"supports_function_calling": true,
"supports_vision": true,
"tool_use_system_prompt_tokens": 264
},
"claude-3-opus-20240229": {
@ -824,6 +837,7 @@
"litellm_provider": "anthropic",
"mode": "chat",
"supports_function_calling": true,
"supports_vision": true,
"tool_use_system_prompt_tokens": 395
},
"claude-3-sonnet-20240229": {
@ -835,6 +849,7 @@
"litellm_provider": "anthropic",
"mode": "chat",
"supports_function_calling": true,
"supports_vision": true,
"tool_use_system_prompt_tokens": 159
},
"text-bison": {
@ -1142,7 +1157,8 @@
"output_cost_per_token": 0.000015,
"litellm_provider": "vertex_ai-anthropic_models",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_vision": true
},
"vertex_ai/claude-3-haiku@20240307": {
"max_tokens": 4096,
@ -1152,7 +1168,8 @@
"output_cost_per_token": 0.00000125,
"litellm_provider": "vertex_ai-anthropic_models",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_vision": true
},
"vertex_ai/claude-3-opus@20240229": {
"max_tokens": 4096,
@ -1162,7 +1179,8 @@
"output_cost_per_token": 0.0000075,
"litellm_provider": "vertex_ai-anthropic_models",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_vision": true
},
"textembedding-gecko": {
"max_tokens": 3072,
@ -1581,6 +1599,7 @@
"litellm_provider": "openrouter",
"mode": "chat",
"supports_function_calling": true,
"supports_vision": true,
"tool_use_system_prompt_tokens": 395
},
"openrouter/google/palm-2-chat-bison": {
@ -1813,6 +1832,15 @@
"litellm_provider": "bedrock",
"mode": "embedding"
},
"amazon.titan-embed-text-v2:0": {
"max_tokens": 8192,
"max_input_tokens": 8192,
"output_vector_size": 1024,
"input_cost_per_token": 0.0000002,
"output_cost_per_token": 0.0,
"litellm_provider": "bedrock",
"mode": "embedding"
},
"mistral.mistral-7b-instruct-v0:2": {
"max_tokens": 8191,
"max_input_tokens": 32000,
@ -1929,7 +1957,8 @@
"output_cost_per_token": 0.000015,
"litellm_provider": "bedrock",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_vision": true
},
"anthropic.claude-3-haiku-20240307-v1:0": {
"max_tokens": 4096,
@ -1939,7 +1968,8 @@
"output_cost_per_token": 0.00000125,
"litellm_provider": "bedrock",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_vision": true
},
"anthropic.claude-3-opus-20240229-v1:0": {
"max_tokens": 4096,
@ -1949,7 +1979,8 @@
"output_cost_per_token": 0.000075,
"litellm_provider": "bedrock",
"mode": "chat",
"supports_function_calling": true
"supports_function_calling": true,
"supports_vision": true
},
"anthropic.claude-v1": {
"max_tokens": 8191,

6
poetry.lock generated
View file

@ -1153,13 +1153,13 @@ typing = ["types-PyYAML", "types-requests", "types-simplejson", "types-toml", "t
[[package]]
name = "idna"
version = "3.6"
version = "3.7"
description = "Internationalized Domain Names in Applications (IDNA)"
optional = false
python-versions = ">=3.5"
files = [
{file = "idna-3.6-py3-none-any.whl", hash = "sha256:c05567e9c24a6b9faaa835c4821bad0590fbb9d5779e7caa6e1cc4978e7eb24f"},
{file = "idna-3.6.tar.gz", hash = "sha256:9ecdbbd083b06798ae1e86adcbfe8ab1479cf864e4ee30fe4e46a003d12491ca"},
{file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"},
{file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"},
]
[[package]]

View file

@ -1,6 +1,6 @@
[tool.poetry]
name = "litellm"
version = "1.35.36"
version = "1.36.0"
description = "Library to easily interface with LLM API providers"
authors = ["BerriAI"]
license = "MIT"
@ -80,7 +80,7 @@ requires = ["poetry-core", "wheel"]
build-backend = "poetry.core.masonry.api"
[tool.commitizen]
version = "1.35.36"
version = "1.36.0"
version_files = [
"pyproject.toml:^version"
]

View file

@ -0,0 +1,163 @@
# What this tests ?
## Makes sure the number of callbacks on the proxy don't increase over time
## Num callbacks should be a fixed number at t=0 and t=10, t=20
"""
PROD TEST - DO NOT Delete this Test
"""
import pytest
import asyncio
import aiohttp
import os
import dotenv
from dotenv import load_dotenv
import pytest
load_dotenv()
async def config_update(session, routing_strategy=None):
url = "http://0.0.0.0:4000/config/update"
headers = {"Authorization": "Bearer sk-1234", "Content-Type": "application/json"}
print("routing_strategy: ", routing_strategy)
data = {
"router_settings": {
"routing_strategy": routing_strategy,
},
"general_settings": {
"alert_to_webhook_url": {
"llm_exceptions": "https://hooks.slack.com/services/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"
},
"alert_types": ["llm_exceptions", "db_exceptions"],
},
}
async with session.post(url, headers=headers, json=data) as response:
status = response.status
response_text = await response.text()
print(response_text)
print()
if status != 200:
raise Exception(f"Request did not return a 200 status code: {status}")
return await response.json()
async def get_active_callbacks(session):
url = "http://0.0.0.0:4000/active/callbacks"
headers = {
"Content-Type": "application/json",
"Authorization": "Bearer sk-1234",
}
async with session.get(url, headers=headers) as response:
status = response.status
response_text = await response.text()
print("response from /active/callbacks")
print(response_text)
print()
if status != 200:
raise Exception(f"Request did not return a 200 status code: {status}")
_json_response = await response.json()
_num_callbacks = _json_response["num_callbacks"]
_num_alerts = _json_response["num_alerting"]
print("current number of callbacks: ", _num_callbacks)
print("current number of alerts: ", _num_alerts)
return _num_callbacks, _num_alerts
async def get_current_routing_strategy(session):
url = "http://0.0.0.0:4000/get/config/callbacks"
headers = {
"Content-Type": "application/json",
"Authorization": "Bearer sk-1234",
}
async with session.get(url, headers=headers) as response:
status = response.status
response_text = await response.text()
print(response_text)
print()
if status != 200:
raise Exception(f"Request did not return a 200 status code: {status}")
_json_response = await response.json()
print("JSON response: ", _json_response)
router_settings = _json_response["router_settings"]
print("Router settings: ", router_settings)
routing_strategy = router_settings["routing_strategy"]
return routing_strategy
@pytest.mark.asyncio
async def test_check_num_callbacks():
"""
Test 1: num callbacks should NOT increase over time
-> check current callbacks
-> sleep for 30s
-> check current callbacks
-> sleep for 30s
-> check current callbacks
"""
import uuid
async with aiohttp.ClientSession() as session:
await asyncio.sleep(30)
num_callbacks_1, _ = await get_active_callbacks(session=session)
assert num_callbacks_1 > 0
await asyncio.sleep(30)
num_callbacks_2, _ = await get_active_callbacks(session=session)
assert num_callbacks_1 == num_callbacks_2
await asyncio.sleep(30)
num_callbacks_3, _ = await get_active_callbacks(session=session)
assert num_callbacks_1 == num_callbacks_2 == num_callbacks_3
@pytest.mark.asyncio
async def test_check_num_callbacks_on_lowest_latency():
"""
Test 1: num callbacks should NOT increase over time
-> Update to lowest latency
-> check current callbacks
-> sleep for 30s
-> check current callbacks
-> sleep for 30s
-> check current callbacks
-> update back to original routing-strategy
"""
import uuid
async with aiohttp.ClientSession() as session:
await asyncio.sleep(30)
original_routing_strategy = await get_current_routing_strategy(session=session)
await config_update(session=session, routing_strategy="latency-based-routing")
num_callbacks_1, num_alerts_1 = await get_active_callbacks(session=session)
await asyncio.sleep(30)
num_callbacks_2, num_alerts_2 = await get_active_callbacks(session=session)
assert num_callbacks_1 == num_callbacks_2
await asyncio.sleep(30)
num_callbacks_3, num_alerts_3 = await get_active_callbacks(session=session)
assert num_callbacks_1 == num_callbacks_2 == num_callbacks_3
assert num_alerts_1 == num_alerts_2 == num_alerts_3
await config_update(session=session, routing_strategy=original_routing_strategy)

View file

@ -438,6 +438,7 @@ async def get_spend_logs(session, request_id):
return await response.json()
@pytest.mark.skip(reason="Hanging on ci/cd")
@pytest.mark.asyncio
async def test_key_info_spend_values():
"""

File diff suppressed because one or more lines are too long

View file

@ -1 +0,0 @@
self.__BUILD_MANIFEST={__rewrites:{afterFiles:[],beforeFiles:[],fallback:[]},"/_error":["static/chunks/pages/_error-d6107f1aac0c574c.js"],sortedPages:["/_app","/_error"]},self.__BUILD_MANIFEST_CB&&self.__BUILD_MANIFEST_CB();

View file

@ -1 +0,0 @@
self.__SSG_MANIFEST=new Set([]);self.__SSG_MANIFEST_CB&&self.__SSG_MANIFEST_CB()

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[185],{87421:function(n,e,t){Promise.resolve().then(t.t.bind(t,99646,23)),Promise.resolve().then(t.t.bind(t,63385,23))},63385:function(){},99646:function(n){n.exports={style:{fontFamily:"'__Inter_c23dc8', '__Inter_Fallback_c23dc8'",fontStyle:"normal"},className:"__className_c23dc8"}}},function(n){n.O(0,[971,69,744],function(){return n(n.s=87421)}),_N_E=n.O()}]);

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[744],{32028:function(e,n,t){Promise.resolve().then(t.t.bind(t,47690,23)),Promise.resolve().then(t.t.bind(t,48955,23)),Promise.resolve().then(t.t.bind(t,5613,23)),Promise.resolve().then(t.t.bind(t,11902,23)),Promise.resolve().then(t.t.bind(t,31778,23)),Promise.resolve().then(t.t.bind(t,77831,23))}},function(e){var n=function(n){return e(e.s=n)};e.O(0,[971,69],function(){return n(35317),n(32028)}),_N_E=e.O()}]);

View file

@ -0,0 +1 @@
!function(){"use strict";var e,t,n,r,o,u,i,c,f,a={},l={};function d(e){var t=l[e];if(void 0!==t)return t.exports;var n=l[e]={id:e,loaded:!1,exports:{}},r=!0;try{a[e](n,n.exports,d),r=!1}finally{r&&delete l[e]}return n.loaded=!0,n.exports}d.m=a,e=[],d.O=function(t,n,r,o){if(n){o=o||0;for(var u=e.length;u>0&&e[u-1][2]>o;u--)e[u]=e[u-1];e[u]=[n,r,o];return}for(var i=1/0,u=0;u<e.length;u++){for(var n=e[u][0],r=e[u][1],o=e[u][2],c=!0,f=0;f<n.length;f++)i>=o&&Object.keys(d.O).every(function(e){return d.O[e](n[f])})?n.splice(f--,1):(c=!1,o<i&&(i=o));if(c){e.splice(u--,1);var a=r();void 0!==a&&(t=a)}}return t},d.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return d.d(t,{a:t}),t},n=Object.getPrototypeOf?function(e){return Object.getPrototypeOf(e)}:function(e){return e.__proto__},d.t=function(e,r){if(1&r&&(e=this(e)),8&r||"object"==typeof e&&e&&(4&r&&e.__esModule||16&r&&"function"==typeof e.then))return e;var o=Object.create(null);d.r(o);var u={};t=t||[null,n({}),n([]),n(n)];for(var i=2&r&&e;"object"==typeof i&&!~t.indexOf(i);i=n(i))Object.getOwnPropertyNames(i).forEach(function(t){u[t]=function(){return e[t]}});return u.default=function(){return e},d.d(o,u),o},d.d=function(e,t){for(var n in t)d.o(t,n)&&!d.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:t[n]})},d.f={},d.e=function(e){return Promise.all(Object.keys(d.f).reduce(function(t,n){return d.f[n](e,t),t},[]))},d.u=function(e){},d.miniCssF=function(e){return"static/css/00c2ddbcd01819c0.css"},d.g=function(){if("object"==typeof globalThis)return globalThis;try{return this||Function("return this")()}catch(e){if("object"==typeof window)return window}}(),d.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},r={},o="_N_E:",d.l=function(e,t,n,u){if(r[e]){r[e].push(t);return}if(void 0!==n)for(var i,c,f=document.getElementsByTagName("script"),a=0;a<f.length;a++){var l=f[a];if(l.getAttribute("src")==e||l.getAttribute("data-webpack")==o+n){i=l;break}}i||(c=!0,(i=document.createElement("script")).charset="utf-8",i.timeout=120,d.nc&&i.setAttribute("nonce",d.nc),i.setAttribute("data-webpack",o+n),i.src=d.tu(e)),r[e]=[t];var s=function(t,n){i.onerror=i.onload=null,clearTimeout(p);var o=r[e];if(delete r[e],i.parentNode&&i.parentNode.removeChild(i),o&&o.forEach(function(e){return e(n)}),t)return t(n)},p=setTimeout(s.bind(null,void 0,{type:"timeout",target:i}),12e4);i.onerror=s.bind(null,i.onerror),i.onload=s.bind(null,i.onload),c&&document.head.appendChild(i)},d.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},d.nmd=function(e){return e.paths=[],e.children||(e.children=[]),e},d.tt=function(){return void 0===u&&(u={createScriptURL:function(e){return e}},"undefined"!=typeof trustedTypes&&trustedTypes.createPolicy&&(u=trustedTypes.createPolicy("nextjs#bundler",u))),u},d.tu=function(e){return d.tt().createScriptURL(e)},d.p="/ui/_next/",i={272:0},d.f.j=function(e,t){var n=d.o(i,e)?i[e]:void 0;if(0!==n){if(n)t.push(n[2]);else if(272!=e){var r=new Promise(function(t,r){n=i[e]=[t,r]});t.push(n[2]=r);var o=d.p+d.u(e),u=Error();d.l(o,function(t){if(d.o(i,e)&&(0!==(n=i[e])&&(i[e]=void 0),n)){var r=t&&("load"===t.type?"missing":t.type),o=t&&t.target&&t.target.src;u.message="Loading chunk "+e+" failed.\n("+r+": "+o+")",u.name="ChunkLoadError",u.type=r,u.request=o,n[1](u)}},"chunk-"+e,e)}else i[e]=0}},d.O.j=function(e){return 0===i[e]},c=function(e,t){var n,r,o=t[0],u=t[1],c=t[2],f=0;if(o.some(function(e){return 0!==i[e]})){for(n in u)d.o(u,n)&&(d.m[n]=u[n]);if(c)var a=c(d)}for(e&&e(t);f<o.length;f++)r=o[f],d.o(i,r)&&i[r]&&i[r][0](),i[r]=0;return d.O(a)},(f=self.webpackChunk_N_E=self.webpackChunk_N_E||[]).forEach(c.bind(null,0)),f.push=c.bind(null,f.push.bind(f))}();

File diff suppressed because one or more lines are too long

View file

@ -1,5 +1 @@
<<<<<<< HEAD
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-202e312607f242a1.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-dafd44dfa2da140c.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-e49705773ae41779.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-9b4fb13a7db53edf.js" async="" crossorigin=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-202e312607f242a1.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/00c2ddbcd01819c0.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[46414,[\"761\",\"static/chunks/761-05f8a8451296476c.js\",\"931\",\"static/chunks/app/page-5a4a198eefedc775.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/00c2ddbcd01819c0.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"c5rha8cqAah-saaczjn02\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_c23dc8\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>
=======
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-65a932b4e8bd8abb.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-dafd44dfa2da140c.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-e49705773ae41779.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-096338c8e1915716.js" async="" crossorigin=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-65a932b4e8bd8abb.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/9f51f0573c6b0365.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[46414,[\"386\",\"static/chunks/386-d811195b597a2122.js\",\"931\",\"static/chunks/app/page-e0ee34389254cdf2.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/9f51f0573c6b0365.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"dWGL92c5LzTMn7XX6utn2\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_12bbc4\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>
>>>>>>> 73a7b4f4 (refactor(main.py): trigger new build)
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-202e312607f242a1.js" crossorigin=""/><script src="/ui/_next/static/chunks/fd9d1056-dafd44dfa2da140c.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/69-e49705773ae41779.js" async="" crossorigin=""></script><script src="/ui/_next/static/chunks/main-app-9b4fb13a7db53edf.js" async="" crossorigin=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js" crossorigin="" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-202e312607f242a1.js" crossorigin="" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/c9a5bc6a7c948fb0-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/00c2ddbcd01819c0.css\",\"style\",{\"crossOrigin\":\"\"}]\n0:\"$L3\"\n"])</script><script>self.__next_f.push([1,"4:I[47690,[],\"\"]\n6:I[77831,[],\"\"]\n7:I[58854,[\"936\",\"static/chunks/2f6dbc85-17d29013b8ff3da5.js\",\"142\",\"static/chunks/142-11990a208bf93746.js\",\"931\",\"static/chunks/app/page-d9bdfedbff191985.js\"],\"\"]\n8:I[5613,[],\"\"]\n9:I[31778,[],\"\"]\nb:I[48955,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"3:[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/00c2ddbcd01819c0.css\",\"precedence\":\"next\",\"crossOrigin\":\"\"}]],[\"$\",\"$L4\",null,{\"buildId\":\"e55gTzpa2g2-9SwXgA9Uo\",\"assetPrefix\":\"/ui\",\"initialCanonicalUrl\":\"/\",\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[\"$L5\",[\"$\",\"$L6\",null,{\"propsForComponent\":{\"params\":{}},\"Component\":\"$7\",\"isStaticGeneration\":true}],null]]},[null,[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_c23dc8\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"loading\":\"$undefined\",\"loadingStyles\":\"$undefined\",\"loadingScripts\":\"$undefined\",\"hasLoading\":false,\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[],\"styles\":null}]}]}],null]],\"initialHead\":[false,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script><script>self.__next_f.push([1,""])</script></body></html>

View file

@ -1,14 +1,7 @@
2:I[77831,[],""]
<<<<<<< HEAD
3:I[46414,["761","static/chunks/761-05f8a8451296476c.js","931","static/chunks/app/page-5a4a198eefedc775.js"],""]
3:I[58854,["936","static/chunks/2f6dbc85-17d29013b8ff3da5.js","142","static/chunks/142-11990a208bf93746.js","931","static/chunks/app/page-d9bdfedbff191985.js"],""]
4:I[5613,[],""]
5:I[31778,[],""]
0:["c5rha8cqAah-saaczjn02",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_c23dc8","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/00c2ddbcd01819c0.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
=======
3:I[46414,["386","static/chunks/386-d811195b597a2122.js","931","static/chunks/app/page-e0ee34389254cdf2.js"],""]
4:I[5613,[],""]
5:I[31778,[],""]
0:["dWGL92c5LzTMn7XX6utn2",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_12bbc4","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/9f51f0573c6b0365.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
>>>>>>> 73a7b4f4 (refactor(main.py): trigger new build)
0:["e55gTzpa2g2-9SwXgA9Uo",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},["$L1",["$","$L2",null,{"propsForComponent":{"params":{}},"Component":"$3","isStaticGeneration":true}],null]]},[null,["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_c23dc8","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"loading":"$undefined","loadingStyles":"$undefined","loadingScripts":"$undefined","hasLoading":false,"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[],"styles":null}]}]}],null]],[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/00c2ddbcd01819c0.css","precedence":"next","crossOrigin":""}]],"$L6"]]]]
6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]]
1:null

View file

@ -16,8 +16,8 @@ import {
AccordionHeader,
AccordionBody,
} from "@tremor/react";
import { TabPanel, TabPanels, TabGroup, TabList, Tab, TextInput, Icon } from "@tremor/react";
import { Select, SelectItem, MultiSelect, MultiSelectItem } from "@tremor/react";
import { TabPanel, TabPanels, TabGroup, TabList, Tab, TextInput, Icon, DateRangePicker } from "@tremor/react";
import { Select, SelectItem, MultiSelect, MultiSelectItem, DateRangePickerValue } from "@tremor/react";
import { modelInfoCall, userGetRequesedtModelsCall, modelCreateCall, Model, modelCostMap, modelDeleteCall, healthCheckCall, modelUpdateCall, modelMetricsCall, modelExceptionsCall, modelMetricsSlowResponsesCall } from "./networking";
import { BarChart, AreaChart } from "@tremor/react";
import {
@ -206,6 +206,10 @@ const ModelDashboard: React.FC<ModelDashboardProps> = ({
const [allExceptions, setAllExceptions] = useState<any[]>([]);
const [failureTableData, setFailureTableData] = useState<any[]>([]);
const [slowResponsesData, setSlowResponsesData] = useState<any[]>([]);
const [dateValue, setDateValue] = useState<DateRangePickerValue>({
from: new Date(Date.now() - 7 * 24 * 60 * 60 * 1000),
to: new Date(),
});
const EditModelModal: React.FC<EditModelModalProps> = ({ visible, onCancel, model, onSubmit }) => {
const [form] = Form.useForm();
@ -454,11 +458,25 @@ const handleEditSubmit = async (formValues: Record<string, any>) => {
setAvailableModelGroups(_array_model_groups);
console.log("array_model_groups:", _array_model_groups)
let _initial_model_group = "all"
if (_array_model_groups.length > 0) {
// set selectedModelGroup to the last model group
_initial_model_group = _array_model_groups[_array_model_groups.length - 1];
console.log("_initial_model_group:", _initial_model_group)
setSelectedModelGroup(_initial_model_group);
}
console.log("selectedModelGroup:", selectedModelGroup)
const modelMetricsResponse = await modelMetricsCall(
accessToken,
userID,
userRole,
null
_initial_model_group,
dateValue.from?.toISOString(),
dateValue.to?.toISOString()
);
console.log("Model metrics response:", modelMetricsResponse);
@ -473,7 +491,9 @@ const handleEditSubmit = async (formValues: Record<string, any>) => {
accessToken,
userID,
userRole,
null
_initial_model_group,
dateValue.from?.toISOString(),
dateValue.to?.toISOString()
)
console.log("Model exceptions response:", modelExceptionsResponse);
setModelExceptions(modelExceptionsResponse.data);
@ -484,7 +504,9 @@ const handleEditSubmit = async (formValues: Record<string, any>) => {
accessToken,
userID,
userRole,
null
_initial_model_group,
dateValue.from?.toISOString(),
dateValue.to?.toISOString()
)
console.log("slowResponses:", slowResponses)
@ -492,40 +514,6 @@ const handleEditSubmit = async (formValues: Record<string, any>) => {
setSlowResponsesData(slowResponses);
// let modelMetricsData = modelMetricsResponse.data;
// let successdeploymentToSuccess: Record<string, number> = {};
// for (let i = 0; i < modelMetricsData.length; i++) {
// let element = modelMetricsData[i];
// let _model_name = element.model;
// let _num_requests = element.num_requests;
// successdeploymentToSuccess[_model_name] = _num_requests
// }
// console.log("successdeploymentToSuccess:", successdeploymentToSuccess)
// let failureTableData = [];
// let _failureData = modelExceptionsResponse.data;
// for (let i = 0; i < _failureData.length; i++) {
// const model = _failureData[i];
// let _model_name = model.model;
// let total_exceptions = model.total_exceptions;
// let total_Requests = successdeploymentToSuccess[_model_name];
// if (total_Requests == null) {
// total_Requests = 0
// }
// let _data = {
// model: _model_name,
// total_exceptions: total_exceptions,
// total_Requests: total_Requests,
// failure_rate: total_Requests / total_exceptions
// }
// failureTableData.push(_data);
// // sort failureTableData by failure_rate
// failureTableData.sort((a, b) => b.failure_rate - a.failure_rate);
// setFailureTableData(failureTableData);
// console.log("failureTableData:", failureTableData);
// }
} catch (error) {
console.error("There was an error fetching the model data", error);
}
@ -678,16 +666,17 @@ const handleEditSubmit = async (formValues: Record<string, any>) => {
};
const updateModelMetrics = async (modelGroup: string | null) => {
const updateModelMetrics = async (modelGroup: string | null, startTime: Date | undefined, endTime: Date | undefined) => {
console.log("Updating model metrics for group:", modelGroup);
if (!accessToken || !userID || !userRole) {
if (!accessToken || !userID || !userRole || !startTime || !endTime) {
return
}
console.log("inside updateModelMetrics - startTime:", startTime, "endTime:", endTime)
setSelectedModelGroup(modelGroup); // If you want to store the selected model group in state
try {
const modelMetricsResponse = await modelMetricsCall(accessToken, userID, userRole, modelGroup);
const modelMetricsResponse = await modelMetricsCall(accessToken, userID, userRole, modelGroup, startTime.toISOString(), endTime.toISOString());
console.log("Model metrics response:", modelMetricsResponse);
// Assuming modelMetricsResponse now contains the metric data for the specified model group
@ -698,7 +687,9 @@ const handleEditSubmit = async (formValues: Record<string, any>) => {
accessToken,
userID,
userRole,
modelGroup
modelGroup,
startTime.toISOString(),
endTime.toISOString()
)
console.log("Model exceptions response:", modelExceptionsResponse);
setModelExceptions(modelExceptionsResponse.data);
@ -709,7 +700,9 @@ const handleEditSubmit = async (formValues: Record<string, any>) => {
accessToken,
userID,
userRole,
modelGroup
modelGroup,
startTime.toISOString(),
endTime.toISOString()
)
console.log("slowResponses:", slowResponses)
@ -1118,21 +1111,48 @@ const handleEditSubmit = async (formValues: Record<string, any>) => {
</Card>
</TabPanel>
<TabPanel>
<p style={{fontSize: '0.85rem', color: '#808080'}}>View how requests were load balanced within a model group</p>
{/* <p style={{fontSize: '0.85rem', color: '#808080'}}>View how requests were load balanced within a model group</p> */}
<Grid numItems={2} className="mt-2">
<Col>
<Text>Select Time Range</Text>
<DateRangePicker
enableSelect={true}
value={dateValue}
onValueChange={(value) => {
setDateValue(value);
updateModelMetrics(selectedModelGroup, value.from, value.to); // Call updateModelMetrics with the new date range
}}
/>
</Col>
<Col>
<Text>Select Model Group</Text>
<Select
className="mb-4 mt-2"
defaultValue={selectedModelGroup? selectedModelGroup : availableModelGroups[0]}
value={selectedModelGroup ? selectedModelGroup : availableModelGroups[0]}
>
{availableModelGroups.map((group, idx) => (
<SelectItem
key={idx}
value={group}
onClick={() => updateModelMetrics(group)}
onClick={() => updateModelMetrics(group, dateValue.from, dateValue.to)}
>
{group}
</SelectItem>
))}
</Select>
</Col>
</Grid>
<Grid numItems={2}>
<Col>
<Card className="mr-2 max-h-[400px] min-h-[400px]">

View file

@ -441,6 +441,8 @@ export const modelMetricsCall = async (
userID: String,
userRole: String,
modelGroup: String | null,
startTime: String | undefined,
endTime: String | undefined
) => {
/**
* Get all models on proxy
@ -448,7 +450,7 @@ export const modelMetricsCall = async (
try {
let url = proxyBaseUrl ? `${proxyBaseUrl}/model/metrics` : `/model/metrics`;
if (modelGroup) {
url = `${url}?_selected_model_group=${modelGroup}`
url = `${url}?_selected_model_group=${modelGroup}&startTime=${startTime}&endTime=${endTime}`
}
// message.info("Requesting model data");
const response = await fetch(url, {
@ -481,6 +483,8 @@ export const modelMetricsSlowResponsesCall = async (
userID: String,
userRole: String,
modelGroup: String | null,
startTime: String | undefined,
endTime: String | undefined
) => {
/**
* Get all models on proxy
@ -488,8 +492,9 @@ export const modelMetricsSlowResponsesCall = async (
try {
let url = proxyBaseUrl ? `${proxyBaseUrl}/model/metrics/slow_responses` : `/model/metrics/slow_responses`;
if (modelGroup) {
url = `${url}?_selected_model_group=${modelGroup}`
url = `${url}?_selected_model_group=${modelGroup}&startTime=${startTime}&endTime=${endTime}`
}
// message.info("Requesting model data");
const response = await fetch(url, {
method: "GET",
@ -520,6 +525,8 @@ export const modelExceptionsCall = async (
userID: String,
userRole: String,
modelGroup: String | null,
startTime: String | undefined,
endTime: String | undefined
) => {
/**
* Get all models on proxy
@ -527,6 +534,9 @@ export const modelExceptionsCall = async (
try {
let url = proxyBaseUrl ? `${proxyBaseUrl}/model/metrics/exceptions` : `/model/metrics/exceptions`;
if (modelGroup) {
url = `${url}?_selected_model_group=${modelGroup}&startTime=${startTime}&endTime=${endTime}`
}
const response = await fetch(url, {
method: "GET",
headers: {

View file

@ -106,7 +106,8 @@ const Settings: React.FC<SettingsPageProps> = ({
"llm_exceptions": "LLM Exceptions",
"llm_too_slow": "LLM Responses Too Slow",
"llm_requests_hanging": "LLM Requests Hanging",
"budget_alerts": "Budget Alerts (API Keys, Users)"
"budget_alerts": "Budget Alerts (API Keys, Users)",
"db_exceptions": "Database Exceptions (Read/Write)",
}
useEffect(() => {