(feat) use @google-cloud/vertexai js sdk with litellm (#6873)

* stash gemini JS test

* add vertex js sdj example

* handle vertex pass through separately

* tes vertex JS sdk

* fix vertex_proxy_route

* use PassThroughStreamingHandler

* fix PassThroughStreamingHandler

* use common _create_vertex_response_logging_payload_for_generate_content

* test vertex js

* add working vertex jest tests

* move basic bass through test

* use good name for test

* test vertex

* test_chunk_processor_yields_raw_bytes

* unit tests for streaming

* test_convert_raw_bytes_to_str_lines

* run unit tests 1st

* simplify local

* docs add usage example for js

* use get_litellm_virtual_key

* add unit tests for vertex pass through
This commit is contained in:
Ishaan Jaff 2024-11-22 16:50:10 -08:00 committed by GitHub
parent 5930c42e74
commit b2b3e40d13
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
14 changed files with 680 additions and 89 deletions

View file

@ -100,7 +100,7 @@ class AnthropicPassthroughLoggingHandler:
kwargs["response_cost"] = response_cost
kwargs["model"] = model
# Make standard logging object for Vertex AI
# Make standard logging object for Anthropic
standard_logging_object = get_standard_logging_object_payload(
kwargs=kwargs,
init_response_obj=litellm_model_response,

View file

@ -56,8 +56,14 @@ class VertexPassthroughLoggingHandler:
encoding=None,
)
)
logging_obj.model = litellm_model_response.model or model
logging_obj.model_call_details["model"] = logging_obj.model
kwargs = VertexPassthroughLoggingHandler._create_vertex_response_logging_payload_for_generate_content(
litellm_model_response=litellm_model_response,
model=model,
kwargs=kwargs,
start_time=start_time,
end_time=end_time,
logging_obj=logging_obj,
)
await logging_obj.async_success_handler(
result=litellm_model_response,
@ -147,6 +153,14 @@ class VertexPassthroughLoggingHandler:
"Unable to build complete streaming response for Vertex passthrough endpoint, not logging..."
)
return
kwargs = VertexPassthroughLoggingHandler._create_vertex_response_logging_payload_for_generate_content(
litellm_model_response=complete_streaming_response,
model=model,
kwargs=kwargs,
start_time=start_time,
end_time=end_time,
logging_obj=litellm_logging_obj,
)
await litellm_logging_obj.async_success_handler(
result=complete_streaming_response,
start_time=start_time,
@ -193,3 +207,47 @@ class VertexPassthroughLoggingHandler:
if match:
return match.group(1)
return "unknown"
@staticmethod
def _create_vertex_response_logging_payload_for_generate_content(
litellm_model_response: Union[
litellm.ModelResponse, litellm.TextCompletionResponse
],
model: str,
kwargs: dict,
start_time: datetime,
end_time: datetime,
logging_obj: LiteLLMLoggingObj,
):
"""
Create the standard logging object for Vertex passthrough generateContent (streaming and non-streaming)
"""
response_cost = litellm.completion_cost(
completion_response=litellm_model_response,
model=model,
)
kwargs["response_cost"] = response_cost
kwargs["model"] = model
# Make standard logging object for Vertex AI
standard_logging_object = get_standard_logging_object_payload(
kwargs=kwargs,
init_response_obj=litellm_model_response,
start_time=start_time,
end_time=end_time,
logging_obj=logging_obj,
status="success",
)
# pretty print standard logging object
verbose_proxy_logger.debug(
"standard_logging_object= %s", json.dumps(standard_logging_object, indent=4)
)
kwargs["standard_logging_object"] = standard_logging_object
# set litellm_call_id to logging response object
litellm_model_response.id = logging_obj.litellm_call_id
logging_obj.model = litellm_model_response.model or model
logging_obj.model_call_details["model"] = logging_obj.model
return kwargs

View file

@ -36,7 +36,7 @@ from litellm.proxy._types import (
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
from litellm.secret_managers.main import get_secret_str
from .streaming_handler import chunk_processor
from .streaming_handler import PassThroughStreamingHandler
from .success_handler import PassThroughEndpointLogging
from .types import EndpointType, PassthroughStandardLoggingPayload
@ -448,7 +448,7 @@ async def pass_through_request( # noqa: PLR0915
)
return StreamingResponse(
chunk_processor(
PassThroughStreamingHandler.chunk_processor(
response=response,
request_body=_parsed_body,
litellm_logging_obj=logging_obj,
@ -491,7 +491,7 @@ async def pass_through_request( # noqa: PLR0915
)
return StreamingResponse(
chunk_processor(
PassThroughStreamingHandler.chunk_processor(
response=response,
request_body=_parsed_body,
litellm_logging_obj=logging_obj,

View file

@ -27,93 +27,107 @@ from .success_handler import PassThroughEndpointLogging
from .types import EndpointType
async def chunk_processor(
response: httpx.Response,
request_body: Optional[dict],
litellm_logging_obj: LiteLLMLoggingObj,
endpoint_type: EndpointType,
start_time: datetime,
passthrough_success_handler_obj: PassThroughEndpointLogging,
url_route: str,
):
"""
- Yields chunks from the response
- Collect non-empty chunks for post-processing (logging)
"""
collected_chunks: List[str] = [] # List to store all chunks
try:
async for chunk in response.aiter_lines():
verbose_proxy_logger.debug(f"Processing chunk: {chunk}")
if not chunk:
continue
class PassThroughStreamingHandler:
# Handle SSE format - pass through the raw SSE format
if isinstance(chunk, bytes):
chunk = chunk.decode("utf-8")
@staticmethod
async def chunk_processor(
response: httpx.Response,
request_body: Optional[dict],
litellm_logging_obj: LiteLLMLoggingObj,
endpoint_type: EndpointType,
start_time: datetime,
passthrough_success_handler_obj: PassThroughEndpointLogging,
url_route: str,
):
"""
- Yields chunks from the response
- Collect non-empty chunks for post-processing (logging)
"""
try:
raw_bytes: List[bytes] = []
async for chunk in response.aiter_bytes():
raw_bytes.append(chunk)
yield chunk
# Store the chunk for post-processing
if chunk.strip(): # Only store non-empty chunks
collected_chunks.append(chunk)
yield f"{chunk}\n"
# After all chunks are processed, handle post-processing
end_time = datetime.now()
# After all chunks are processed, handle post-processing
end_time = datetime.now()
await PassThroughStreamingHandler._route_streaming_logging_to_handler(
litellm_logging_obj=litellm_logging_obj,
passthrough_success_handler_obj=passthrough_success_handler_obj,
url_route=url_route,
request_body=request_body or {},
endpoint_type=endpoint_type,
start_time=start_time,
raw_bytes=raw_bytes,
end_time=end_time,
)
except Exception as e:
verbose_proxy_logger.error(f"Error in chunk_processor: {str(e)}")
raise
await _route_streaming_logging_to_handler(
litellm_logging_obj=litellm_logging_obj,
passthrough_success_handler_obj=passthrough_success_handler_obj,
url_route=url_route,
request_body=request_body or {},
endpoint_type=endpoint_type,
start_time=start_time,
all_chunks=collected_chunks,
end_time=end_time,
@staticmethod
async def _route_streaming_logging_to_handler(
litellm_logging_obj: LiteLLMLoggingObj,
passthrough_success_handler_obj: PassThroughEndpointLogging,
url_route: str,
request_body: dict,
endpoint_type: EndpointType,
start_time: datetime,
raw_bytes: List[bytes],
end_time: datetime,
):
"""
Route the logging for the collected chunks to the appropriate handler
Supported endpoint types:
- Anthropic
- Vertex AI
"""
all_chunks = PassThroughStreamingHandler._convert_raw_bytes_to_str_lines(
raw_bytes
)
if endpoint_type == EndpointType.ANTHROPIC:
await AnthropicPassthroughLoggingHandler._handle_logging_anthropic_collected_chunks(
litellm_logging_obj=litellm_logging_obj,
passthrough_success_handler_obj=passthrough_success_handler_obj,
url_route=url_route,
request_body=request_body,
endpoint_type=endpoint_type,
start_time=start_time,
all_chunks=all_chunks,
end_time=end_time,
)
elif endpoint_type == EndpointType.VERTEX_AI:
await VertexPassthroughLoggingHandler._handle_logging_vertex_collected_chunks(
litellm_logging_obj=litellm_logging_obj,
passthrough_success_handler_obj=passthrough_success_handler_obj,
url_route=url_route,
request_body=request_body,
endpoint_type=endpoint_type,
start_time=start_time,
all_chunks=all_chunks,
end_time=end_time,
)
elif endpoint_type == EndpointType.GENERIC:
# No logging is supported for generic streaming endpoints
pass
except Exception as e:
verbose_proxy_logger.error(f"Error in chunk_processor: {str(e)}")
raise
@staticmethod
def _convert_raw_bytes_to_str_lines(raw_bytes: List[bytes]) -> List[str]:
"""
Converts a list of raw bytes into a list of string lines, similar to aiter_lines()
Args:
raw_bytes: List of bytes chunks from aiter.bytes()
async def _route_streaming_logging_to_handler(
litellm_logging_obj: LiteLLMLoggingObj,
passthrough_success_handler_obj: PassThroughEndpointLogging,
url_route: str,
request_body: dict,
endpoint_type: EndpointType,
start_time: datetime,
all_chunks: List[str],
end_time: datetime,
):
"""
Route the logging for the collected chunks to the appropriate handler
Returns:
List of string lines, with each line being a complete data: {} chunk
"""
# Combine all bytes and decode to string
combined_str = b"".join(raw_bytes).decode("utf-8")
Supported endpoint types:
- Anthropic
- Vertex AI
"""
if endpoint_type == EndpointType.ANTHROPIC:
await AnthropicPassthroughLoggingHandler._handle_logging_anthropic_collected_chunks(
litellm_logging_obj=litellm_logging_obj,
passthrough_success_handler_obj=passthrough_success_handler_obj,
url_route=url_route,
request_body=request_body,
endpoint_type=endpoint_type,
start_time=start_time,
all_chunks=all_chunks,
end_time=end_time,
)
elif endpoint_type == EndpointType.VERTEX_AI:
await VertexPassthroughLoggingHandler._handle_logging_vertex_collected_chunks(
litellm_logging_obj=litellm_logging_obj,
passthrough_success_handler_obj=passthrough_success_handler_obj,
url_route=url_route,
request_body=request_body,
endpoint_type=endpoint_type,
start_time=start_time,
all_chunks=all_chunks,
end_time=end_time,
)
elif endpoint_type == EndpointType.GENERIC:
# No logging is supported for generic streaming endpoints
pass
# Split by newlines and filter out empty lines
lines = [line.strip() for line in combined_str.split("\n") if line.strip()]
return lines

View file

@ -119,7 +119,6 @@ async def vertex_proxy_route(
endpoint: str,
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
encoded_endpoint = httpx.URL(endpoint).path
@ -127,6 +126,11 @@ async def vertex_proxy_route(
verbose_proxy_logger.debug("requested endpoint %s", endpoint)
headers: dict = {}
api_key_to_use = get_litellm_virtual_key(request=request)
user_api_key_dict = await user_api_key_auth(
request=request,
api_key=api_key_to_use,
)
vertex_project = None
vertex_location = None
@ -214,3 +218,18 @@ async def vertex_proxy_route(
)
return received_value
def get_litellm_virtual_key(request: Request) -> str:
"""
Extract and format API key from request headers.
Prioritizes x-litellm-api-key over Authorization header.
Vertex JS SDK uses `Authorization` header, we use `x-litellm-api-key` to pass litellm virtual key
"""
litellm_api_key = request.headers.get("x-litellm-api-key")
if litellm_api_key:
return f"Bearer {litellm_api_key}"
return request.headers.get("Authorization", "")