forked from phoenix/litellm-mirror
(feat) use @google-cloud/vertexai
js sdk with litellm (#6873)
* stash gemini JS test * add vertex js sdj example * handle vertex pass through separately * tes vertex JS sdk * fix vertex_proxy_route * use PassThroughStreamingHandler * fix PassThroughStreamingHandler * use common _create_vertex_response_logging_payload_for_generate_content * test vertex js * add working vertex jest tests * move basic bass through test * use good name for test * test vertex * test_chunk_processor_yields_raw_bytes * unit tests for streaming * test_convert_raw_bytes_to_str_lines * run unit tests 1st * simplify local * docs add usage example for js * use get_litellm_virtual_key * add unit tests for vertex pass through
This commit is contained in:
parent
5930c42e74
commit
b2b3e40d13
14 changed files with 680 additions and 89 deletions
23
tests/pass_through_tests/test_gemini.js
Normal file
23
tests/pass_through_tests/test_gemini.js
Normal file
|
@ -0,0 +1,23 @@
|
|||
// const { GoogleGenerativeAI } = require("@google/generative-ai");
|
||||
|
||||
// const genAI = new GoogleGenerativeAI("sk-1234");
|
||||
// const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
|
||||
|
||||
// const prompt = "Explain how AI works in 2 pages";
|
||||
|
||||
// async function run() {
|
||||
// try {
|
||||
// const result = await model.generateContentStream(prompt, { baseUrl: "http://localhost:4000/gemini" });
|
||||
// const response = await result.response;
|
||||
// console.log(response.text());
|
||||
// for await (const chunk of result.stream) {
|
||||
// const chunkText = chunk.text();
|
||||
// console.log(chunkText);
|
||||
// process.stdout.write(chunkText);
|
||||
// }
|
||||
// } catch (error) {
|
||||
// console.error("Error:", error);
|
||||
// }
|
||||
// }
|
||||
|
||||
// run();
|
68
tests/pass_through_tests/test_local_vertex.js
Normal file
68
tests/pass_through_tests/test_local_vertex.js
Normal file
|
@ -0,0 +1,68 @@
|
|||
const { VertexAI, RequestOptions } = require('@google-cloud/vertexai');
|
||||
|
||||
|
||||
// Import fetch if the SDK uses it
|
||||
const originalFetch = global.fetch || require('node-fetch');
|
||||
|
||||
// Monkey-patch the fetch used internally
|
||||
global.fetch = async function patchedFetch(url, options) {
|
||||
// Modify the URL to use HTTP instead of HTTPS
|
||||
if (url.startsWith('https://localhost:4000')) {
|
||||
url = url.replace('https://', 'http://');
|
||||
}
|
||||
console.log('Patched fetch sending request to:', url);
|
||||
return originalFetch(url, options);
|
||||
};
|
||||
|
||||
const vertexAI = new VertexAI({
|
||||
project: 'adroit-crow-413218',
|
||||
location: 'us-central1',
|
||||
apiEndpoint: "localhost:4000/vertex-ai"
|
||||
});
|
||||
|
||||
|
||||
// Use customHeaders in RequestOptions
|
||||
const requestOptions = {
|
||||
customHeaders: new Headers({
|
||||
"x-litellm-api-key": "sk-1234"
|
||||
})
|
||||
};
|
||||
|
||||
const generativeModel = vertexAI.getGenerativeModel(
|
||||
{ model: 'gemini-1.0-pro' },
|
||||
requestOptions
|
||||
);
|
||||
|
||||
async function streamingResponse() {
|
||||
try {
|
||||
const request = {
|
||||
contents: [{role: 'user', parts: [{text: 'How are you doing today tell me your name?'}]}],
|
||||
};
|
||||
const streamingResult = await generativeModel.generateContentStream(request);
|
||||
for await (const item of streamingResult.stream) {
|
||||
console.log('stream chunk: ', JSON.stringify(item));
|
||||
}
|
||||
const aggregatedResponse = await streamingResult.response;
|
||||
console.log('aggregated response: ', JSON.stringify(aggregatedResponse));
|
||||
} catch (error) {
|
||||
console.error('Error:', error);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
async function nonStreamingResponse() {
|
||||
try {
|
||||
const request = {
|
||||
contents: [{role: 'user', parts: [{text: 'How are you doing today tell me your name?'}]}],
|
||||
};
|
||||
const response = await generativeModel.generateContent(request);
|
||||
console.log('non streaming response: ', JSON.stringify(response));
|
||||
} catch (error) {
|
||||
console.error('Error:', error);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
streamingResponse();
|
||||
nonStreamingResponse();
|
114
tests/pass_through_tests/test_vertex.test.js
Normal file
114
tests/pass_through_tests/test_vertex.test.js
Normal file
|
@ -0,0 +1,114 @@
|
|||
const { VertexAI, RequestOptions } = require('@google-cloud/vertexai');
|
||||
const fs = require('fs');
|
||||
const path = require('path');
|
||||
const os = require('os');
|
||||
const { writeFileSync } = require('fs');
|
||||
|
||||
|
||||
// Import fetch if the SDK uses it
|
||||
const originalFetch = global.fetch || require('node-fetch');
|
||||
|
||||
// Monkey-patch the fetch used internally
|
||||
global.fetch = async function patchedFetch(url, options) {
|
||||
// Modify the URL to use HTTP instead of HTTPS
|
||||
if (url.startsWith('https://localhost:4000')) {
|
||||
url = url.replace('https://', 'http://');
|
||||
}
|
||||
console.log('Patched fetch sending request to:', url);
|
||||
return originalFetch(url, options);
|
||||
};
|
||||
|
||||
function loadVertexAiCredentials() {
|
||||
console.log("loading vertex ai credentials");
|
||||
const filepath = path.dirname(__filename);
|
||||
const vertexKeyPath = path.join(filepath, "vertex_key.json");
|
||||
|
||||
// Initialize default empty service account data
|
||||
let serviceAccountKeyData = {};
|
||||
|
||||
// Try to read existing vertex_key.json
|
||||
try {
|
||||
const content = fs.readFileSync(vertexKeyPath, 'utf8');
|
||||
if (content && content.trim()) {
|
||||
serviceAccountKeyData = JSON.parse(content);
|
||||
}
|
||||
} catch (error) {
|
||||
// File doesn't exist or is invalid, continue with empty object
|
||||
}
|
||||
|
||||
// Update with environment variables
|
||||
const privateKeyId = process.env.VERTEX_AI_PRIVATE_KEY_ID || "";
|
||||
const privateKey = (process.env.VERTEX_AI_PRIVATE_KEY || "").replace(/\\n/g, "\n");
|
||||
|
||||
serviceAccountKeyData.private_key_id = privateKeyId;
|
||||
serviceAccountKeyData.private_key = privateKey;
|
||||
|
||||
// Create temporary file
|
||||
const tempFilePath = path.join(os.tmpdir(), `vertex-credentials-${Date.now()}.json`);
|
||||
writeFileSync(tempFilePath, JSON.stringify(serviceAccountKeyData, null, 2));
|
||||
|
||||
// Set environment variable
|
||||
process.env.GOOGLE_APPLICATION_CREDENTIALS = tempFilePath;
|
||||
}
|
||||
|
||||
// Run credential loading before tests
|
||||
beforeAll(() => {
|
||||
loadVertexAiCredentials();
|
||||
});
|
||||
|
||||
|
||||
|
||||
describe('Vertex AI Tests', () => {
|
||||
test('should successfully generate content from Vertex AI', async () => {
|
||||
const vertexAI = new VertexAI({
|
||||
project: 'adroit-crow-413218',
|
||||
location: 'us-central1',
|
||||
apiEndpoint: "localhost:4000/vertex-ai"
|
||||
});
|
||||
|
||||
const customHeaders = new Headers({
|
||||
"x-litellm-api-key": "sk-1234"
|
||||
});
|
||||
|
||||
const requestOptions = {
|
||||
customHeaders: customHeaders
|
||||
};
|
||||
|
||||
const generativeModel = vertexAI.getGenerativeModel(
|
||||
{ model: 'gemini-1.0-pro' },
|
||||
requestOptions
|
||||
);
|
||||
|
||||
const request = {
|
||||
contents: [{role: 'user', parts: [{text: 'How are you doing today tell me your name?'}]}],
|
||||
};
|
||||
|
||||
const streamingResult = await generativeModel.generateContentStream(request);
|
||||
|
||||
// Add some assertions
|
||||
expect(streamingResult).toBeDefined();
|
||||
|
||||
for await (const item of streamingResult.stream) {
|
||||
console.log('stream chunk:', JSON.stringify(item));
|
||||
expect(item).toBeDefined();
|
||||
}
|
||||
|
||||
const aggregatedResponse = await streamingResult.response;
|
||||
console.log('aggregated response:', JSON.stringify(aggregatedResponse));
|
||||
expect(aggregatedResponse).toBeDefined();
|
||||
});
|
||||
|
||||
|
||||
test('should successfully generate non-streaming content from Vertex AI', async () => {
|
||||
const vertexAI = new VertexAI({project: 'adroit-crow-413218', location: 'us-central1', apiEndpoint: "localhost:4000/vertex-ai"});
|
||||
const customHeaders = new Headers({"x-litellm-api-key": "sk-1234"});
|
||||
const requestOptions = {customHeaders: customHeaders};
|
||||
const generativeModel = vertexAI.getGenerativeModel({model: 'gemini-1.0-pro'}, requestOptions);
|
||||
const request = {contents: [{role: 'user', parts: [{text: 'What is 2+2?'}]}]};
|
||||
|
||||
const result = await generativeModel.generateContent(request);
|
||||
expect(result).toBeDefined();
|
||||
expect(result.response).toBeDefined();
|
||||
console.log('non-streaming response:', JSON.stringify(result.response));
|
||||
});
|
||||
});
|
118
tests/pass_through_unit_tests/test_unit_test_streaming.py
Normal file
118
tests/pass_through_unit_tests/test_unit_test_streaming.py
Normal file
|
@ -0,0 +1,118 @@
|
|||
import json
|
||||
import os
|
||||
import sys
|
||||
from datetime import datetime
|
||||
from unittest.mock import AsyncMock, Mock, patch, MagicMock
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
|
||||
import httpx
|
||||
import pytest
|
||||
import litellm
|
||||
from typing import AsyncGenerator
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
||||
from litellm.proxy.pass_through_endpoints.types import EndpointType
|
||||
from litellm.proxy.pass_through_endpoints.success_handler import (
|
||||
PassThroughEndpointLogging,
|
||||
)
|
||||
from litellm.proxy.pass_through_endpoints.streaming_handler import (
|
||||
PassThroughStreamingHandler,
|
||||
)
|
||||
|
||||
|
||||
# Helper function to mock async iteration
|
||||
async def aiter_mock(iterable):
|
||||
for item in iterable:
|
||||
yield item
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize(
|
||||
"endpoint_type,url_route",
|
||||
[
|
||||
(
|
||||
EndpointType.VERTEX_AI,
|
||||
"v1/projects/adroit-crow-413218/locations/us-central1/publishers/google/models/gemini-1.0-pro:generateContent",
|
||||
),
|
||||
(EndpointType.ANTHROPIC, "/v1/messages"),
|
||||
],
|
||||
)
|
||||
async def test_chunk_processor_yields_raw_bytes(endpoint_type, url_route):
|
||||
"""
|
||||
Test that the chunk_processor yields raw bytes
|
||||
|
||||
This is CRITICAL for pass throughs streaming with Vertex AI and Anthropic
|
||||
"""
|
||||
# Mock inputs
|
||||
response = AsyncMock(spec=httpx.Response)
|
||||
raw_chunks = [
|
||||
b'{"id": "1", "content": "Hello"}',
|
||||
b'{"id": "2", "content": "World"}',
|
||||
b'\n\ndata: {"id": "3"}', # Testing different byte formats
|
||||
]
|
||||
|
||||
# Mock aiter_bytes to return an async generator
|
||||
async def mock_aiter_bytes():
|
||||
for chunk in raw_chunks:
|
||||
yield chunk
|
||||
|
||||
response.aiter_bytes = mock_aiter_bytes
|
||||
|
||||
request_body = {"key": "value"}
|
||||
litellm_logging_obj = MagicMock()
|
||||
start_time = datetime.now()
|
||||
passthrough_success_handler_obj = MagicMock()
|
||||
|
||||
# Capture yielded chunks and perform detailed assertions
|
||||
received_chunks = []
|
||||
async for chunk in PassThroughStreamingHandler.chunk_processor(
|
||||
response=response,
|
||||
request_body=request_body,
|
||||
litellm_logging_obj=litellm_logging_obj,
|
||||
endpoint_type=endpoint_type,
|
||||
start_time=start_time,
|
||||
passthrough_success_handler_obj=passthrough_success_handler_obj,
|
||||
url_route=url_route,
|
||||
):
|
||||
# Assert each chunk is bytes
|
||||
assert isinstance(chunk, bytes), f"Chunk should be bytes, got {type(chunk)}"
|
||||
# Assert no decoding/encoding occurred (chunk should be exactly as input)
|
||||
assert (
|
||||
chunk in raw_chunks
|
||||
), f"Chunk {chunk} was modified during processing. For pass throughs streaming, chunks should be raw bytes"
|
||||
received_chunks.append(chunk)
|
||||
|
||||
# Assert all chunks were processed
|
||||
assert len(received_chunks) == len(raw_chunks), "Not all chunks were processed"
|
||||
|
||||
# collected chunks all together
|
||||
assert b"".join(received_chunks) == b"".join(
|
||||
raw_chunks
|
||||
), "Collected chunks do not match raw chunks"
|
||||
|
||||
|
||||
def test_convert_raw_bytes_to_str_lines():
|
||||
"""
|
||||
Test that the _convert_raw_bytes_to_str_lines method correctly converts raw bytes to a list of strings
|
||||
"""
|
||||
# Test case 1: Single chunk
|
||||
raw_bytes = [b'data: {"content": "Hello"}\n']
|
||||
result = PassThroughStreamingHandler._convert_raw_bytes_to_str_lines(raw_bytes)
|
||||
assert result == ['data: {"content": "Hello"}']
|
||||
|
||||
# Test case 2: Multiple chunks
|
||||
raw_bytes = [b'data: {"content": "Hello"}\n', b'data: {"content": "World"}\n']
|
||||
result = PassThroughStreamingHandler._convert_raw_bytes_to_str_lines(raw_bytes)
|
||||
assert result == ['data: {"content": "Hello"}', 'data: {"content": "World"}']
|
||||
|
||||
# Test case 3: Empty input
|
||||
raw_bytes = []
|
||||
result = PassThroughStreamingHandler._convert_raw_bytes_to_str_lines(raw_bytes)
|
||||
assert result == []
|
||||
|
||||
# Test case 4: Chunks with empty lines
|
||||
raw_bytes = [b'data: {"content": "Hello"}\n\n', b'\ndata: {"content": "World"}\n']
|
||||
result = PassThroughStreamingHandler._convert_raw_bytes_to_str_lines(raw_bytes)
|
||||
assert result == ['data: {"content": "Hello"}', 'data: {"content": "World"}']
|
|
@ -0,0 +1,84 @@
|
|||
import json
|
||||
import os
|
||||
import sys
|
||||
from datetime import datetime
|
||||
from unittest.mock import AsyncMock, Mock, patch
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
|
||||
|
||||
import httpx
|
||||
import pytest
|
||||
import litellm
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
||||
|
||||
|
||||
from litellm.proxy.vertex_ai_endpoints.vertex_endpoints import (
|
||||
get_litellm_virtual_key,
|
||||
vertex_proxy_route,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_get_litellm_virtual_key():
|
||||
"""
|
||||
Test that the get_litellm_virtual_key function correctly handles the API key authentication
|
||||
"""
|
||||
# Test with x-litellm-api-key
|
||||
mock_request = Mock()
|
||||
mock_request.headers = {"x-litellm-api-key": "test-key-123"}
|
||||
result = get_litellm_virtual_key(mock_request)
|
||||
assert result == "Bearer test-key-123"
|
||||
|
||||
# Test with Authorization header
|
||||
mock_request.headers = {"Authorization": "Bearer auth-key-456"}
|
||||
result = get_litellm_virtual_key(mock_request)
|
||||
assert result == "Bearer auth-key-456"
|
||||
|
||||
# Test with both headers (x-litellm-api-key should take precedence)
|
||||
mock_request.headers = {
|
||||
"x-litellm-api-key": "test-key-123",
|
||||
"Authorization": "Bearer auth-key-456",
|
||||
}
|
||||
result = get_litellm_virtual_key(mock_request)
|
||||
assert result == "Bearer test-key-123"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_vertex_proxy_route_api_key_auth():
|
||||
"""
|
||||
Critical
|
||||
|
||||
This is how Vertex AI JS SDK will Auth to Litellm Proxy
|
||||
"""
|
||||
# Mock dependencies
|
||||
mock_request = Mock()
|
||||
mock_request.headers = {"x-litellm-api-key": "test-key-123"}
|
||||
mock_request.method = "POST"
|
||||
mock_response = Mock()
|
||||
|
||||
with patch(
|
||||
"litellm.proxy.vertex_ai_endpoints.vertex_endpoints.user_api_key_auth"
|
||||
) as mock_auth:
|
||||
mock_auth.return_value = {"api_key": "test-key-123"}
|
||||
|
||||
with patch(
|
||||
"litellm.proxy.vertex_ai_endpoints.vertex_endpoints.create_pass_through_route"
|
||||
) as mock_pass_through:
|
||||
mock_pass_through.return_value = AsyncMock(
|
||||
return_value={"status": "success"}
|
||||
)
|
||||
|
||||
# Call the function
|
||||
result = await vertex_proxy_route(
|
||||
endpoint="v1/projects/test-project/locations/us-central1/publishers/google/models/gemini-1.5-pro:generateContent",
|
||||
request=mock_request,
|
||||
fastapi_response=mock_response,
|
||||
)
|
||||
|
||||
# Verify user_api_key_auth was called with the correct Bearer token
|
||||
mock_auth.assert_called_once()
|
||||
call_args = mock_auth.call_args[1]
|
||||
assert call_args["api_key"] == "Bearer test-key-123"
|
Loading…
Add table
Add a link
Reference in a new issue