forked from phoenix/litellm-mirror
(feat) use @google-cloud/vertexai
js sdk with litellm (#6873)
* stash gemini JS test * add vertex js sdj example * handle vertex pass through separately * tes vertex JS sdk * fix vertex_proxy_route * use PassThroughStreamingHandler * fix PassThroughStreamingHandler * use common _create_vertex_response_logging_payload_for_generate_content * test vertex js * add working vertex jest tests * move basic bass through test * use good name for test * test vertex * test_chunk_processor_yields_raw_bytes * unit tests for streaming * test_convert_raw_bytes_to_str_lines * run unit tests 1st * simplify local * docs add usage example for js * use get_litellm_virtual_key * add unit tests for vertex pass through
This commit is contained in:
parent
5930c42e74
commit
b2b3e40d13
14 changed files with 680 additions and 89 deletions
|
@ -0,0 +1,38 @@
|
|||
"""
|
||||
This test ensures that the proxy can passthrough anthropic requests
|
||||
"""
|
||||
|
||||
import pytest
|
||||
import anthropic
|
||||
|
||||
client = anthropic.Anthropic(
|
||||
base_url="http://0.0.0.0:4000/anthropic", api_key="sk-1234"
|
||||
)
|
||||
|
||||
|
||||
def test_anthropic_basic_completion():
|
||||
print("making basic completion request to anthropic passthrough")
|
||||
response = client.messages.create(
|
||||
model="claude-3-5-sonnet-20241022",
|
||||
max_tokens=1024,
|
||||
messages=[{"role": "user", "content": "Say 'hello test' and nothing else"}],
|
||||
)
|
||||
print(response)
|
||||
|
||||
|
||||
def test_anthropic_streaming():
|
||||
print("making streaming request to anthropic passthrough")
|
||||
collected_output = []
|
||||
|
||||
with client.messages.stream(
|
||||
max_tokens=10,
|
||||
messages=[
|
||||
{"role": "user", "content": "Say 'hello stream test' and nothing else"}
|
||||
],
|
||||
model="claude-3-5-sonnet-20241022",
|
||||
) as stream:
|
||||
for text in stream.text_stream:
|
||||
collected_output.append(text)
|
||||
|
||||
full_response = "".join(collected_output)
|
||||
print(full_response)
|
23
tests/pass_through_tests/test_gemini.js
Normal file
23
tests/pass_through_tests/test_gemini.js
Normal file
|
@ -0,0 +1,23 @@
|
|||
// const { GoogleGenerativeAI } = require("@google/generative-ai");
|
||||
|
||||
// const genAI = new GoogleGenerativeAI("sk-1234");
|
||||
// const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
|
||||
|
||||
// const prompt = "Explain how AI works in 2 pages";
|
||||
|
||||
// async function run() {
|
||||
// try {
|
||||
// const result = await model.generateContentStream(prompt, { baseUrl: "http://localhost:4000/gemini" });
|
||||
// const response = await result.response;
|
||||
// console.log(response.text());
|
||||
// for await (const chunk of result.stream) {
|
||||
// const chunkText = chunk.text();
|
||||
// console.log(chunkText);
|
||||
// process.stdout.write(chunkText);
|
||||
// }
|
||||
// } catch (error) {
|
||||
// console.error("Error:", error);
|
||||
// }
|
||||
// }
|
||||
|
||||
// run();
|
68
tests/pass_through_tests/test_local_vertex.js
Normal file
68
tests/pass_through_tests/test_local_vertex.js
Normal file
|
@ -0,0 +1,68 @@
|
|||
const { VertexAI, RequestOptions } = require('@google-cloud/vertexai');
|
||||
|
||||
|
||||
// Import fetch if the SDK uses it
|
||||
const originalFetch = global.fetch || require('node-fetch');
|
||||
|
||||
// Monkey-patch the fetch used internally
|
||||
global.fetch = async function patchedFetch(url, options) {
|
||||
// Modify the URL to use HTTP instead of HTTPS
|
||||
if (url.startsWith('https://localhost:4000')) {
|
||||
url = url.replace('https://', 'http://');
|
||||
}
|
||||
console.log('Patched fetch sending request to:', url);
|
||||
return originalFetch(url, options);
|
||||
};
|
||||
|
||||
const vertexAI = new VertexAI({
|
||||
project: 'adroit-crow-413218',
|
||||
location: 'us-central1',
|
||||
apiEndpoint: "localhost:4000/vertex-ai"
|
||||
});
|
||||
|
||||
|
||||
// Use customHeaders in RequestOptions
|
||||
const requestOptions = {
|
||||
customHeaders: new Headers({
|
||||
"x-litellm-api-key": "sk-1234"
|
||||
})
|
||||
};
|
||||
|
||||
const generativeModel = vertexAI.getGenerativeModel(
|
||||
{ model: 'gemini-1.0-pro' },
|
||||
requestOptions
|
||||
);
|
||||
|
||||
async function streamingResponse() {
|
||||
try {
|
||||
const request = {
|
||||
contents: [{role: 'user', parts: [{text: 'How are you doing today tell me your name?'}]}],
|
||||
};
|
||||
const streamingResult = await generativeModel.generateContentStream(request);
|
||||
for await (const item of streamingResult.stream) {
|
||||
console.log('stream chunk: ', JSON.stringify(item));
|
||||
}
|
||||
const aggregatedResponse = await streamingResult.response;
|
||||
console.log('aggregated response: ', JSON.stringify(aggregatedResponse));
|
||||
} catch (error) {
|
||||
console.error('Error:', error);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
async function nonStreamingResponse() {
|
||||
try {
|
||||
const request = {
|
||||
contents: [{role: 'user', parts: [{text: 'How are you doing today tell me your name?'}]}],
|
||||
};
|
||||
const response = await generativeModel.generateContent(request);
|
||||
console.log('non streaming response: ', JSON.stringify(response));
|
||||
} catch (error) {
|
||||
console.error('Error:', error);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
streamingResponse();
|
||||
nonStreamingResponse();
|
114
tests/pass_through_tests/test_vertex.test.js
Normal file
114
tests/pass_through_tests/test_vertex.test.js
Normal file
|
@ -0,0 +1,114 @@
|
|||
const { VertexAI, RequestOptions } = require('@google-cloud/vertexai');
|
||||
const fs = require('fs');
|
||||
const path = require('path');
|
||||
const os = require('os');
|
||||
const { writeFileSync } = require('fs');
|
||||
|
||||
|
||||
// Import fetch if the SDK uses it
|
||||
const originalFetch = global.fetch || require('node-fetch');
|
||||
|
||||
// Monkey-patch the fetch used internally
|
||||
global.fetch = async function patchedFetch(url, options) {
|
||||
// Modify the URL to use HTTP instead of HTTPS
|
||||
if (url.startsWith('https://localhost:4000')) {
|
||||
url = url.replace('https://', 'http://');
|
||||
}
|
||||
console.log('Patched fetch sending request to:', url);
|
||||
return originalFetch(url, options);
|
||||
};
|
||||
|
||||
function loadVertexAiCredentials() {
|
||||
console.log("loading vertex ai credentials");
|
||||
const filepath = path.dirname(__filename);
|
||||
const vertexKeyPath = path.join(filepath, "vertex_key.json");
|
||||
|
||||
// Initialize default empty service account data
|
||||
let serviceAccountKeyData = {};
|
||||
|
||||
// Try to read existing vertex_key.json
|
||||
try {
|
||||
const content = fs.readFileSync(vertexKeyPath, 'utf8');
|
||||
if (content && content.trim()) {
|
||||
serviceAccountKeyData = JSON.parse(content);
|
||||
}
|
||||
} catch (error) {
|
||||
// File doesn't exist or is invalid, continue with empty object
|
||||
}
|
||||
|
||||
// Update with environment variables
|
||||
const privateKeyId = process.env.VERTEX_AI_PRIVATE_KEY_ID || "";
|
||||
const privateKey = (process.env.VERTEX_AI_PRIVATE_KEY || "").replace(/\\n/g, "\n");
|
||||
|
||||
serviceAccountKeyData.private_key_id = privateKeyId;
|
||||
serviceAccountKeyData.private_key = privateKey;
|
||||
|
||||
// Create temporary file
|
||||
const tempFilePath = path.join(os.tmpdir(), `vertex-credentials-${Date.now()}.json`);
|
||||
writeFileSync(tempFilePath, JSON.stringify(serviceAccountKeyData, null, 2));
|
||||
|
||||
// Set environment variable
|
||||
process.env.GOOGLE_APPLICATION_CREDENTIALS = tempFilePath;
|
||||
}
|
||||
|
||||
// Run credential loading before tests
|
||||
beforeAll(() => {
|
||||
loadVertexAiCredentials();
|
||||
});
|
||||
|
||||
|
||||
|
||||
describe('Vertex AI Tests', () => {
|
||||
test('should successfully generate content from Vertex AI', async () => {
|
||||
const vertexAI = new VertexAI({
|
||||
project: 'adroit-crow-413218',
|
||||
location: 'us-central1',
|
||||
apiEndpoint: "localhost:4000/vertex-ai"
|
||||
});
|
||||
|
||||
const customHeaders = new Headers({
|
||||
"x-litellm-api-key": "sk-1234"
|
||||
});
|
||||
|
||||
const requestOptions = {
|
||||
customHeaders: customHeaders
|
||||
};
|
||||
|
||||
const generativeModel = vertexAI.getGenerativeModel(
|
||||
{ model: 'gemini-1.0-pro' },
|
||||
requestOptions
|
||||
);
|
||||
|
||||
const request = {
|
||||
contents: [{role: 'user', parts: [{text: 'How are you doing today tell me your name?'}]}],
|
||||
};
|
||||
|
||||
const streamingResult = await generativeModel.generateContentStream(request);
|
||||
|
||||
// Add some assertions
|
||||
expect(streamingResult).toBeDefined();
|
||||
|
||||
for await (const item of streamingResult.stream) {
|
||||
console.log('stream chunk:', JSON.stringify(item));
|
||||
expect(item).toBeDefined();
|
||||
}
|
||||
|
||||
const aggregatedResponse = await streamingResult.response;
|
||||
console.log('aggregated response:', JSON.stringify(aggregatedResponse));
|
||||
expect(aggregatedResponse).toBeDefined();
|
||||
});
|
||||
|
||||
|
||||
test('should successfully generate non-streaming content from Vertex AI', async () => {
|
||||
const vertexAI = new VertexAI({project: 'adroit-crow-413218', location: 'us-central1', apiEndpoint: "localhost:4000/vertex-ai"});
|
||||
const customHeaders = new Headers({"x-litellm-api-key": "sk-1234"});
|
||||
const requestOptions = {customHeaders: customHeaders};
|
||||
const generativeModel = vertexAI.getGenerativeModel({model: 'gemini-1.0-pro'}, requestOptions);
|
||||
const request = {contents: [{role: 'user', parts: [{text: 'What is 2+2?'}]}]};
|
||||
|
||||
const result = await generativeModel.generateContent(request);
|
||||
expect(result).toBeDefined();
|
||||
expect(result.response).toBeDefined();
|
||||
console.log('non-streaming response:', JSON.stringify(result.response));
|
||||
});
|
||||
});
|
Loading…
Add table
Add a link
Reference in a new issue