forked from phoenix/litellm-mirror
feat(utils.py): support sync streaming for custom llm provider
This commit is contained in:
parent
9f97436308
commit
b4e3a77ad0
5 changed files with 139 additions and 10 deletions
|
@ -913,6 +913,7 @@ adapters: List[AdapterItem] = []
|
|||
|
||||
### CUSTOM LLMs ###
|
||||
from .types.llms.custom_llm import CustomLLMItem
|
||||
from .types.utils import GenericStreamingChunk
|
||||
|
||||
custom_provider_map: List[CustomLLMItem] = []
|
||||
_custom_providers: List[str] = (
|
||||
|
|
|
@ -15,7 +15,17 @@ import time
|
|||
import types
|
||||
from enum import Enum
|
||||
from functools import partial
|
||||
from typing import Callable, List, Literal, Optional, Tuple, Union
|
||||
from typing import (
|
||||
Any,
|
||||
AsyncIterator,
|
||||
Callable,
|
||||
Iterator,
|
||||
List,
|
||||
Literal,
|
||||
Optional,
|
||||
Tuple,
|
||||
Union,
|
||||
)
|
||||
|
||||
import httpx # type: ignore
|
||||
import requests # type: ignore
|
||||
|
@ -23,8 +33,7 @@ import requests # type: ignore
|
|||
import litellm
|
||||
from litellm.litellm_core_utils.core_helpers import map_finish_reason
|
||||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
||||
from litellm.types.llms.databricks import GenericStreamingChunk
|
||||
from litellm.types.utils import ProviderField
|
||||
from litellm.types.utils import GenericStreamingChunk, ProviderField
|
||||
from litellm.utils import CustomStreamWrapper, EmbeddingResponse, ModelResponse, Usage
|
||||
|
||||
from .base import BaseLLM
|
||||
|
@ -51,13 +60,13 @@ class CustomLLM(BaseLLM):
|
|||
def completion(self, *args, **kwargs) -> ModelResponse:
|
||||
raise CustomLLMError(status_code=500, message="Not implemented yet!")
|
||||
|
||||
def streaming(self, *args, **kwargs):
|
||||
def streaming(self, *args, **kwargs) -> Iterator[GenericStreamingChunk]:
|
||||
raise CustomLLMError(status_code=500, message="Not implemented yet!")
|
||||
|
||||
async def acompletion(self, *args, **kwargs) -> ModelResponse:
|
||||
raise CustomLLMError(status_code=500, message="Not implemented yet!")
|
||||
|
||||
async def astreaming(self, *args, **kwargs):
|
||||
async def astreaming(self, *args, **kwargs) -> AsyncIterator[GenericStreamingChunk]:
|
||||
raise CustomLLMError(status_code=500, message="Not implemented yet!")
|
||||
|
||||
|
||||
|
|
|
@ -2713,6 +2713,14 @@ def completion(
|
|||
|
||||
## CALL FUNCTION
|
||||
response = handler_fn()
|
||||
if stream is True:
|
||||
return CustomStreamWrapper(
|
||||
completion_stream=response,
|
||||
model=model,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
logging_obj=logging,
|
||||
)
|
||||
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unable to map your input to a model. Check your input - {args}"
|
||||
|
|
|
@ -17,13 +17,80 @@ sys.path.insert(
|
|||
import os
|
||||
from collections import defaultdict
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import Any, AsyncIterator, Iterator, Union
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import httpx
|
||||
from dotenv import load_dotenv
|
||||
|
||||
import litellm
|
||||
from litellm import CustomLLM, acompletion, completion, get_llm_provider
|
||||
from litellm import (
|
||||
ChatCompletionDeltaChunk,
|
||||
ChatCompletionUsageBlock,
|
||||
CustomLLM,
|
||||
GenericStreamingChunk,
|
||||
ModelResponse,
|
||||
acompletion,
|
||||
completion,
|
||||
get_llm_provider,
|
||||
)
|
||||
from litellm.utils import ModelResponseIterator
|
||||
|
||||
|
||||
class CustomModelResponseIterator:
|
||||
def __init__(self, streaming_response: Union[Iterator, AsyncIterator]):
|
||||
self.streaming_response = streaming_response
|
||||
|
||||
def chunk_parser(self, chunk: Any) -> GenericStreamingChunk:
|
||||
return GenericStreamingChunk(
|
||||
text="hello world",
|
||||
tool_use=None,
|
||||
is_finished=True,
|
||||
finish_reason="stop",
|
||||
usage=ChatCompletionUsageBlock(
|
||||
prompt_tokens=10, completion_tokens=20, total_tokens=30
|
||||
),
|
||||
index=0,
|
||||
)
|
||||
|
||||
# Sync iterator
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __next__(self) -> GenericStreamingChunk:
|
||||
try:
|
||||
chunk: Any = self.streaming_response.__next__() # type: ignore
|
||||
except StopIteration:
|
||||
raise StopIteration
|
||||
except ValueError as e:
|
||||
raise RuntimeError(f"Error receiving chunk from stream: {e}")
|
||||
|
||||
try:
|
||||
return self.chunk_parser(chunk=chunk)
|
||||
except StopIteration:
|
||||
raise StopIteration
|
||||
except ValueError as e:
|
||||
raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")
|
||||
|
||||
# Async iterator
|
||||
def __aiter__(self):
|
||||
self.async_response_iterator = self.streaming_response.__aiter__() # type: ignore
|
||||
return self
|
||||
|
||||
async def __anext__(self) -> GenericStreamingChunk:
|
||||
try:
|
||||
chunk = await self.async_response_iterator.__anext__()
|
||||
except StopAsyncIteration:
|
||||
raise StopAsyncIteration
|
||||
except ValueError as e:
|
||||
raise RuntimeError(f"Error receiving chunk from stream: {e}")
|
||||
|
||||
try:
|
||||
return self.chunk_parser(chunk=chunk)
|
||||
except StopIteration:
|
||||
raise StopIteration
|
||||
except ValueError as e:
|
||||
raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")
|
||||
|
||||
|
||||
class MyCustomLLM(CustomLLM):
|
||||
|
@ -34,8 +101,6 @@ class MyCustomLLM(CustomLLM):
|
|||
mock_response="Hi!",
|
||||
) # type: ignore
|
||||
|
||||
|
||||
class MyCustomAsyncLLM(CustomLLM):
|
||||
async def acompletion(self, *args, **kwargs) -> litellm.ModelResponse:
|
||||
return litellm.completion(
|
||||
model="gpt-3.5-turbo",
|
||||
|
@ -43,8 +108,27 @@ class MyCustomAsyncLLM(CustomLLM):
|
|||
mock_response="Hi!",
|
||||
) # type: ignore
|
||||
|
||||
def streaming(self, *args, **kwargs) -> Iterator[GenericStreamingChunk]:
|
||||
generic_streaming_chunk: GenericStreamingChunk = {
|
||||
"finish_reason": "stop",
|
||||
"index": 0,
|
||||
"is_finished": True,
|
||||
"text": "Hello world",
|
||||
"tool_use": None,
|
||||
"usage": {"completion_tokens": 10, "prompt_tokens": 20, "total_tokens": 30},
|
||||
}
|
||||
|
||||
completion_stream = ModelResponseIterator(
|
||||
model_response=generic_streaming_chunk # type: ignore
|
||||
)
|
||||
custom_iterator = CustomModelResponseIterator(
|
||||
streaming_response=completion_stream
|
||||
)
|
||||
return custom_iterator
|
||||
|
||||
|
||||
def test_get_llm_provider():
|
||||
""""""
|
||||
from litellm.utils import custom_llm_setup
|
||||
|
||||
my_custom_llm = MyCustomLLM()
|
||||
|
@ -74,7 +158,7 @@ def test_simple_completion():
|
|||
|
||||
@pytest.mark.asyncio
|
||||
async def test_simple_acompletion():
|
||||
my_custom_llm = MyCustomAsyncLLM()
|
||||
my_custom_llm = MyCustomLLM()
|
||||
litellm.custom_provider_map = [
|
||||
{"provider": "custom_llm", "custom_handler": my_custom_llm}
|
||||
]
|
||||
|
@ -84,3 +168,22 @@ async def test_simple_acompletion():
|
|||
)
|
||||
|
||||
assert resp.choices[0].message.content == "Hi!"
|
||||
|
||||
|
||||
def test_simple_completion_streaming():
|
||||
my_custom_llm = MyCustomLLM()
|
||||
litellm.custom_provider_map = [
|
||||
{"provider": "custom_llm", "custom_handler": my_custom_llm}
|
||||
]
|
||||
resp = completion(
|
||||
model="custom_llm/my-fake-model",
|
||||
messages=[{"role": "user", "content": "Hello world!"}],
|
||||
stream=True,
|
||||
)
|
||||
|
||||
for chunk in resp:
|
||||
print(chunk)
|
||||
if chunk.choices[0].finish_reason is None:
|
||||
assert isinstance(chunk.choices[0].delta.content, str)
|
||||
else:
|
||||
assert chunk.choices[0].finish_reason == "stop"
|
||||
|
|
|
@ -9262,7 +9262,10 @@ class CustomStreamWrapper:
|
|||
try:
|
||||
# return this for all models
|
||||
completion_obj = {"content": ""}
|
||||
if self.custom_llm_provider and self.custom_llm_provider == "anthropic":
|
||||
if self.custom_llm_provider and (
|
||||
self.custom_llm_provider == "anthropic"
|
||||
or self.custom_llm_provider in litellm._custom_providers
|
||||
):
|
||||
from litellm.types.utils import GenericStreamingChunk as GChunk
|
||||
|
||||
if self.received_finish_reason is not None:
|
||||
|
@ -10981,3 +10984,8 @@ class ModelResponseIterator:
|
|||
raise StopAsyncIteration
|
||||
self.is_done = True
|
||||
return self.model_response
|
||||
|
||||
|
||||
class CustomModelResponseIterator(Iterable):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue