forked from phoenix/litellm-mirror
Merge pull request #4080 from BerriAI/litellm_predibase_exception_mapping
fix(utils.py): improved predibase exception mapping
This commit is contained in:
commit
b4fc4abb76
8 changed files with 215 additions and 38 deletions
|
@ -20,7 +20,7 @@ class AuthenticationError(openai.AuthenticationError): # type: ignore
|
|||
message,
|
||||
llm_provider,
|
||||
model,
|
||||
response: httpx.Response,
|
||||
response: Optional[httpx.Response] = None,
|
||||
litellm_debug_info: Optional[str] = None,
|
||||
max_retries: Optional[int] = None,
|
||||
num_retries: Optional[int] = None,
|
||||
|
@ -32,8 +32,14 @@ class AuthenticationError(openai.AuthenticationError): # type: ignore
|
|||
self.litellm_debug_info = litellm_debug_info
|
||||
self.max_retries = max_retries
|
||||
self.num_retries = num_retries
|
||||
self.response = response or httpx.Response(
|
||||
status_code=self.status_code,
|
||||
request=httpx.Request(
|
||||
method="GET", url="https://litellm.ai"
|
||||
), # mock request object
|
||||
)
|
||||
super().__init__(
|
||||
self.message, response=response, body=None
|
||||
self.message, response=self.response, body=None
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
def __str__(self):
|
||||
|
@ -60,7 +66,7 @@ class NotFoundError(openai.NotFoundError): # type: ignore
|
|||
message,
|
||||
model,
|
||||
llm_provider,
|
||||
response: httpx.Response,
|
||||
response: Optional[httpx.Response] = None,
|
||||
litellm_debug_info: Optional[str] = None,
|
||||
max_retries: Optional[int] = None,
|
||||
num_retries: Optional[int] = None,
|
||||
|
@ -72,8 +78,14 @@ class NotFoundError(openai.NotFoundError): # type: ignore
|
|||
self.litellm_debug_info = litellm_debug_info
|
||||
self.max_retries = max_retries
|
||||
self.num_retries = num_retries
|
||||
self.response = response or httpx.Response(
|
||||
status_code=self.status_code,
|
||||
request=httpx.Request(
|
||||
method="GET", url="https://litellm.ai"
|
||||
), # mock request object
|
||||
)
|
||||
super().__init__(
|
||||
self.message, response=response, body=None
|
||||
self.message, response=self.response, body=None
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
def __str__(self):
|
||||
|
@ -262,7 +274,7 @@ class RateLimitError(openai.RateLimitError): # type: ignore
|
|||
message,
|
||||
llm_provider,
|
||||
model,
|
||||
response: httpx.Response,
|
||||
response: Optional[httpx.Response] = None,
|
||||
litellm_debug_info: Optional[str] = None,
|
||||
max_retries: Optional[int] = None,
|
||||
num_retries: Optional[int] = None,
|
||||
|
@ -274,8 +286,18 @@ class RateLimitError(openai.RateLimitError): # type: ignore
|
|||
self.litellm_debug_info = litellm_debug_info
|
||||
self.max_retries = max_retries
|
||||
self.num_retries = num_retries
|
||||
if response is None:
|
||||
self.response = httpx.Response(
|
||||
status_code=429,
|
||||
request=httpx.Request(
|
||||
method="POST",
|
||||
url=" https://cloud.google.com/vertex-ai/",
|
||||
),
|
||||
)
|
||||
else:
|
||||
self.response = response
|
||||
super().__init__(
|
||||
self.message, response=response, body=None
|
||||
self.message, response=self.response, body=None
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
def __str__(self):
|
||||
|
@ -421,7 +443,7 @@ class ServiceUnavailableError(openai.APIStatusError): # type: ignore
|
|||
message,
|
||||
llm_provider,
|
||||
model,
|
||||
response: httpx.Response,
|
||||
response: Optional[httpx.Response] = None,
|
||||
litellm_debug_info: Optional[str] = None,
|
||||
max_retries: Optional[int] = None,
|
||||
num_retries: Optional[int] = None,
|
||||
|
@ -433,8 +455,18 @@ class ServiceUnavailableError(openai.APIStatusError): # type: ignore
|
|||
self.litellm_debug_info = litellm_debug_info
|
||||
self.max_retries = max_retries
|
||||
self.num_retries = num_retries
|
||||
if response is None:
|
||||
self.response = httpx.Response(
|
||||
status_code=self.status_code,
|
||||
request=httpx.Request(
|
||||
method="POST",
|
||||
url=" https://cloud.google.com/vertex-ai/",
|
||||
),
|
||||
)
|
||||
else:
|
||||
self.response = response
|
||||
super().__init__(
|
||||
self.message, response=response, body=None
|
||||
self.message, response=self.response, body=None
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
def __str__(self):
|
||||
|
@ -460,7 +492,7 @@ class InternalServerError(openai.InternalServerError): # type: ignore
|
|||
message,
|
||||
llm_provider,
|
||||
model,
|
||||
response: httpx.Response,
|
||||
response: Optional[httpx.Response] = None,
|
||||
litellm_debug_info: Optional[str] = None,
|
||||
max_retries: Optional[int] = None,
|
||||
num_retries: Optional[int] = None,
|
||||
|
@ -472,8 +504,18 @@ class InternalServerError(openai.InternalServerError): # type: ignore
|
|||
self.litellm_debug_info = litellm_debug_info
|
||||
self.max_retries = max_retries
|
||||
self.num_retries = num_retries
|
||||
if response is None:
|
||||
self.response = httpx.Response(
|
||||
status_code=self.status_code,
|
||||
request=httpx.Request(
|
||||
method="POST",
|
||||
url=" https://cloud.google.com/vertex-ai/",
|
||||
),
|
||||
)
|
||||
else:
|
||||
self.response = response
|
||||
super().__init__(
|
||||
self.message, response=response, body=None
|
||||
self.message, response=self.response, body=None
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
def __str__(self):
|
||||
|
|
0
litellm/integrations/test_httpx.py
Normal file
0
litellm/integrations/test_httpx.py
Normal file
|
@ -3,6 +3,7 @@
|
|||
|
||||
from functools import partial
|
||||
import os, types
|
||||
import traceback
|
||||
import json
|
||||
from enum import Enum
|
||||
import requests, copy # type: ignore
|
||||
|
@ -242,12 +243,12 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
"details" in completion_response
|
||||
and "tokens" in completion_response["details"]
|
||||
):
|
||||
model_response.choices[0].finish_reason = completion_response[
|
||||
"details"
|
||||
]["finish_reason"]
|
||||
model_response.choices[0].finish_reason = map_finish_reason(
|
||||
completion_response["details"]["finish_reason"]
|
||||
)
|
||||
sum_logprob = 0
|
||||
for token in completion_response["details"]["tokens"]:
|
||||
if token["logprob"] != None:
|
||||
if token["logprob"] is not None:
|
||||
sum_logprob += token["logprob"]
|
||||
model_response["choices"][0][
|
||||
"message"
|
||||
|
@ -265,7 +266,7 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
):
|
||||
sum_logprob = 0
|
||||
for token in item["tokens"]:
|
||||
if token["logprob"] != None:
|
||||
if token["logprob"] is not None:
|
||||
sum_logprob += token["logprob"]
|
||||
if len(item["generated_text"]) > 0:
|
||||
message_obj = Message(
|
||||
|
@ -275,7 +276,7 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
else:
|
||||
message_obj = Message(content=None)
|
||||
choice_obj = Choices(
|
||||
finish_reason=item["finish_reason"],
|
||||
finish_reason=map_finish_reason(item["finish_reason"]),
|
||||
index=idx + 1,
|
||||
message=message_obj,
|
||||
)
|
||||
|
@ -285,10 +286,8 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
## CALCULATING USAGE
|
||||
prompt_tokens = 0
|
||||
try:
|
||||
prompt_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"]["content"])
|
||||
) ##[TODO] use a model-specific tokenizer here
|
||||
except:
|
||||
prompt_tokens = litellm.token_counter(messages=messages)
|
||||
except Exception:
|
||||
# this should remain non blocking we should not block a response returning if calculating usage fails
|
||||
pass
|
||||
output_text = model_response["choices"][0]["message"].get("content", "")
|
||||
|
@ -331,6 +330,7 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
logging_obj,
|
||||
optional_params: dict,
|
||||
tenant_id: str,
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
acompletion=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
|
@ -340,6 +340,7 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
completion_url = ""
|
||||
input_text = ""
|
||||
base_url = "https://serving.app.predibase.com"
|
||||
|
||||
if "https" in model:
|
||||
completion_url = model
|
||||
elif api_base:
|
||||
|
@ -349,7 +350,7 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
|
||||
completion_url = f"{base_url}/{tenant_id}/deployments/v2/llms/{model}"
|
||||
|
||||
if optional_params.get("stream", False) == True:
|
||||
if optional_params.get("stream", False) is True:
|
||||
completion_url += "/generate_stream"
|
||||
else:
|
||||
completion_url += "/generate"
|
||||
|
@ -393,9 +394,9 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
},
|
||||
)
|
||||
## COMPLETION CALL
|
||||
if acompletion == True:
|
||||
if acompletion is True:
|
||||
### ASYNC STREAMING
|
||||
if stream == True:
|
||||
if stream is True:
|
||||
return self.async_streaming(
|
||||
model=model,
|
||||
messages=messages,
|
||||
|
@ -410,6 +411,7 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
headers=headers,
|
||||
timeout=timeout,
|
||||
) # type: ignore
|
||||
else:
|
||||
### ASYNC COMPLETION
|
||||
|
@ -428,10 +430,11 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
headers=headers,
|
||||
timeout=timeout,
|
||||
) # type: ignore
|
||||
|
||||
### SYNC STREAMING
|
||||
if stream == True:
|
||||
if stream is True:
|
||||
response = requests.post(
|
||||
completion_url,
|
||||
headers=headers,
|
||||
|
@ -452,7 +455,6 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
headers=headers,
|
||||
data=json.dumps(data),
|
||||
)
|
||||
|
||||
return self.process_response(
|
||||
model=model,
|
||||
response=response,
|
||||
|
@ -480,23 +482,26 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
stream,
|
||||
data: dict,
|
||||
optional_params: dict,
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
headers={},
|
||||
) -> ModelResponse:
|
||||
self.async_handler = AsyncHTTPHandler(
|
||||
timeout=httpx.Timeout(timeout=600.0, connect=5.0)
|
||||
)
|
||||
|
||||
async_handler = AsyncHTTPHandler(timeout=httpx.Timeout(timeout=timeout))
|
||||
try:
|
||||
response = await self.async_handler.post(
|
||||
response = await async_handler.post(
|
||||
api_base, headers=headers, data=json.dumps(data)
|
||||
)
|
||||
except httpx.HTTPStatusError as e:
|
||||
raise PredibaseError(
|
||||
status_code=e.response.status_code, message=e.response.text
|
||||
status_code=e.response.status_code,
|
||||
message="HTTPStatusError - {}".format(e.response.text),
|
||||
)
|
||||
except Exception as e:
|
||||
raise PredibaseError(status_code=500, message=str(e))
|
||||
raise PredibaseError(
|
||||
status_code=500, message="{}\n{}".format(str(e), traceback.format_exc())
|
||||
)
|
||||
return self.process_response(
|
||||
model=model,
|
||||
response=response,
|
||||
|
@ -522,6 +527,7 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
api_key,
|
||||
logging_obj,
|
||||
data: dict,
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
|
|
|
@ -432,9 +432,9 @@ def mock_completion(
|
|||
if isinstance(mock_response, openai.APIError):
|
||||
raise mock_response
|
||||
raise litellm.APIError(
|
||||
status_code=500, # type: ignore
|
||||
message=str(mock_response),
|
||||
llm_provider="openai", # type: ignore
|
||||
status_code=getattr(mock_response, "status_code", 500), # type: ignore
|
||||
message=getattr(mock_response, "text", str(mock_response)),
|
||||
llm_provider=getattr(mock_response, "llm_provider", "openai"), # type: ignore
|
||||
model=model, # type: ignore
|
||||
request=httpx.Request(method="POST", url="https://api.openai.com/v1/"),
|
||||
)
|
||||
|
@ -1949,7 +1949,8 @@ def completion(
|
|||
)
|
||||
|
||||
api_base = (
|
||||
optional_params.pop("api_base", None)
|
||||
api_base
|
||||
or optional_params.pop("api_base", None)
|
||||
or optional_params.pop("base_url", None)
|
||||
or litellm.api_base
|
||||
or get_secret("PREDIBASE_API_BASE")
|
||||
|
@ -1977,12 +1978,13 @@ def completion(
|
|||
custom_prompt_dict=custom_prompt_dict,
|
||||
api_key=api_key,
|
||||
tenant_id=tenant_id,
|
||||
timeout=timeout,
|
||||
)
|
||||
|
||||
if (
|
||||
"stream" in optional_params
|
||||
and optional_params["stream"] == True
|
||||
and acompletion == False
|
||||
and optional_params["stream"] is True
|
||||
and acompletion is False
|
||||
):
|
||||
return _model_response
|
||||
response = _model_response
|
||||
|
|
|
@ -8,6 +8,17 @@ model_list:
|
|||
- model_name: llama3-70b-8192
|
||||
litellm_params:
|
||||
model: groq/llama3-70b-8192
|
||||
- model_name: fake-openai-endpoint
|
||||
litellm_params:
|
||||
model: predibase/llama-3-8b-instruct
|
||||
api_base: "http://0.0.0.0:8081"
|
||||
api_key: os.environ/PREDIBASE_API_KEY
|
||||
tenant_id: os.environ/PREDIBASE_TENANT_ID
|
||||
max_retries: 0
|
||||
temperature: 0.1
|
||||
max_new_tokens: 256
|
||||
return_full_text: false
|
||||
|
||||
# - litellm_params:
|
||||
# api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
|
||||
# api_key: os.environ/AZURE_EUROPE_API_KEY
|
||||
|
@ -56,6 +67,7 @@ router_settings:
|
|||
|
||||
litellm_settings:
|
||||
success_callback: ["langfuse"]
|
||||
failure_callback: ["langfuse"]
|
||||
|
||||
# general_settings:
|
||||
# alerting: ["email"]
|
||||
|
|
|
@ -3,6 +3,7 @@ import os
|
|||
import sys
|
||||
import traceback
|
||||
import subprocess, asyncio
|
||||
from typing import Any
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
|
@ -19,6 +20,7 @@ from litellm import (
|
|||
)
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
import pytest
|
||||
from unittest.mock import patch, MagicMock
|
||||
|
||||
litellm.vertex_project = "pathrise-convert-1606954137718"
|
||||
litellm.vertex_location = "us-central1"
|
||||
|
@ -655,3 +657,47 @@ def test_litellm_predibase_exception():
|
|||
|
||||
# accuracy_score = counts[True]/(counts[True] + counts[False])
|
||||
# print(f"accuracy_score: {accuracy_score}")
|
||||
|
||||
|
||||
@pytest.mark.parametrize("provider", ["predibase"])
|
||||
def test_exception_mapping(provider):
|
||||
"""
|
||||
For predibase, run through a set of mock exceptions
|
||||
|
||||
assert that they are being mapped correctly
|
||||
"""
|
||||
litellm.set_verbose = True
|
||||
error_map = {
|
||||
400: litellm.BadRequestError,
|
||||
401: litellm.AuthenticationError,
|
||||
404: litellm.NotFoundError,
|
||||
408: litellm.Timeout,
|
||||
429: litellm.RateLimitError,
|
||||
500: litellm.InternalServerError,
|
||||
503: litellm.ServiceUnavailableError,
|
||||
}
|
||||
|
||||
for code, expected_exception in error_map.items():
|
||||
mock_response = Exception()
|
||||
setattr(mock_response, "text", "This is an error message")
|
||||
setattr(mock_response, "llm_provider", provider)
|
||||
setattr(mock_response, "status_code", code)
|
||||
|
||||
response: Any = None
|
||||
try:
|
||||
response = completion(
|
||||
model="{}/test-model".format(provider),
|
||||
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
||||
mock_response=mock_response,
|
||||
)
|
||||
except expected_exception:
|
||||
continue
|
||||
except Exception as e:
|
||||
response = "{}\n{}".format(str(e), traceback.format_exc())
|
||||
pytest.fail(
|
||||
"Did not raise expected exception. Expected={}, Return={},".format(
|
||||
expected_exception, response
|
||||
)
|
||||
)
|
||||
|
||||
pass
|
||||
|
|
|
@ -8725,6 +8725,75 @@ def exception_type(
|
|||
response=original_exception.response,
|
||||
litellm_debug_info=extra_information,
|
||||
)
|
||||
elif hasattr(original_exception, "status_code"):
|
||||
if original_exception.status_code == 500:
|
||||
exception_mapping_worked = True
|
||||
raise litellm.InternalServerError(
|
||||
message=f"PredibaseException - {original_exception.message}",
|
||||
llm_provider="predibase",
|
||||
model=model,
|
||||
)
|
||||
elif original_exception.status_code == 401:
|
||||
exception_mapping_worked = True
|
||||
raise AuthenticationError(
|
||||
message=f"PredibaseException - {original_exception.message}",
|
||||
llm_provider="predibase",
|
||||
model=model,
|
||||
)
|
||||
elif original_exception.status_code == 400:
|
||||
exception_mapping_worked = True
|
||||
raise BadRequestError(
|
||||
message=f"PredibaseException - {original_exception.message}",
|
||||
llm_provider="predibase",
|
||||
model=model,
|
||||
)
|
||||
elif original_exception.status_code == 404:
|
||||
exception_mapping_worked = True
|
||||
raise NotFoundError(
|
||||
message=f"PredibaseException - {original_exception.message}",
|
||||
llm_provider="predibase",
|
||||
model=model,
|
||||
)
|
||||
elif original_exception.status_code == 408:
|
||||
exception_mapping_worked = True
|
||||
raise Timeout(
|
||||
message=f"PredibaseException - {original_exception.message}",
|
||||
model=model,
|
||||
llm_provider=custom_llm_provider,
|
||||
litellm_debug_info=extra_information,
|
||||
)
|
||||
elif original_exception.status_code == 422:
|
||||
exception_mapping_worked = True
|
||||
raise BadRequestError(
|
||||
message=f"PredibaseException - {original_exception.message}",
|
||||
model=model,
|
||||
llm_provider=custom_llm_provider,
|
||||
litellm_debug_info=extra_information,
|
||||
)
|
||||
elif original_exception.status_code == 429:
|
||||
exception_mapping_worked = True
|
||||
raise RateLimitError(
|
||||
message=f"PredibaseException - {original_exception.message}",
|
||||
model=model,
|
||||
llm_provider=custom_llm_provider,
|
||||
litellm_debug_info=extra_information,
|
||||
)
|
||||
elif original_exception.status_code == 503:
|
||||
exception_mapping_worked = True
|
||||
raise ServiceUnavailableError(
|
||||
message=f"PredibaseException - {original_exception.message}",
|
||||
model=model,
|
||||
llm_provider=custom_llm_provider,
|
||||
litellm_debug_info=extra_information,
|
||||
)
|
||||
elif original_exception.status_code == 504: # gateway timeout error
|
||||
exception_mapping_worked = True
|
||||
raise Timeout(
|
||||
message=f"PredibaseException - {original_exception.message}",
|
||||
model=model,
|
||||
llm_provider=custom_llm_provider,
|
||||
litellm_debug_info=extra_information,
|
||||
)
|
||||
elif custom_llm_provider == "bedrock":
|
||||
if (
|
||||
"too many tokens" in error_str
|
||||
|
|
|
@ -1,3 +1,3 @@
|
|||
ignore = ["F405"]
|
||||
ignore = ["F405", "E402"]
|
||||
extend-select = ["E501"]
|
||||
line-length = 120
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue