forked from phoenix/litellm-mirror
(docs) add function calling examples and function_to_dict
This commit is contained in:
parent
7848f1b5b7
commit
b6aa9cb82d
2 changed files with 108 additions and 1 deletions
106
docs/my-website/docs/completion/function_call.md
Normal file
106
docs/my-website/docs/completion/function_call.md
Normal file
|
@ -0,0 +1,106 @@
|
|||
# Function Calling
|
||||
LiteLLM only supports: OpenAI gpt-4-0613 and gpt-3.5-turbo-0613 for function calling
|
||||
## Quick Start
|
||||
```python
|
||||
import os, litellm
|
||||
from litellm import completion
|
||||
|
||||
os.environ['OPENAI_API_KEY'] = ""
|
||||
|
||||
messages = [
|
||||
{"role": "user", "content": "What is the weather like in Boston?"}
|
||||
]
|
||||
|
||||
def get_current_weather(location):
|
||||
if location == "Boston, MA":
|
||||
return "The weather is 12F"
|
||||
|
||||
functions = [
|
||||
{
|
||||
"name": "get_current_weather",
|
||||
"description": "Get the current weather in a given location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state, e.g. San Francisco, CA"
|
||||
},
|
||||
"unit": {
|
||||
"type": "string",
|
||||
"enum": ["celsius", "fahrenheit"]
|
||||
}
|
||||
},
|
||||
"required": ["location"]
|
||||
}
|
||||
}
|
||||
]
|
||||
|
||||
response = completion(model="gpt-3.5-turbo-0613", messages=messages, functions=functions)
|
||||
print(response)
|
||||
```
|
||||
|
||||
## Using - litellm.utils.function_to_dict
|
||||
`function_to_dict` allows you to pass a function docstring and produce a dictionary usable for OpenAI function calling
|
||||
|
||||
### Usage
|
||||
Define your function, use `litellm.utils.function_to_dict` to convert your function to a dictionary usable for OpenAI
|
||||
|
||||
```python
|
||||
def get_current_weather(location: str, unit: str):
|
||||
"""Get the current weather in a given location
|
||||
|
||||
Parameters
|
||||
----------
|
||||
location : str
|
||||
The city and state, e.g. San Francisco, CA
|
||||
unit : {'celsius', 'fahrenheit'}
|
||||
Temperature unit
|
||||
|
||||
Returns
|
||||
-------
|
||||
str
|
||||
a sentence indicating the weather
|
||||
"""
|
||||
if location == "Boston, MA":
|
||||
return "The weather is 12F"
|
||||
function_json = litellm.utils.function_to_dict(get_current_weather)
|
||||
print(function_json)
|
||||
```
|
||||
|
||||
#### Output
|
||||
```json
|
||||
{
|
||||
'name': 'get_current_weather',
|
||||
'description': 'Get the current weather in a given location',
|
||||
'parameters': {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
'location': {'type': 'string', 'description': 'The city and state, e.g. San Francisco, CA'},
|
||||
'unit': {'type': 'string', 'description': 'Temperature unit', 'enum': "['fahrenheit', 'celsius']"}
|
||||
},
|
||||
'required': ['location', 'unit']
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Using function_to_dict with Function calling
|
||||
```python
|
||||
import os, litellm
|
||||
from litellm import completion
|
||||
|
||||
os.environ['OPENAI_API_KEY'] = ""
|
||||
|
||||
messages = [
|
||||
{"role": "user", "content": "What is the weather like in Boston?"}
|
||||
]
|
||||
|
||||
def get_current_weather(location):
|
||||
if location == "Boston, MA":
|
||||
return "The weather is 12F"
|
||||
|
||||
functions = litellm.utils.function_to_dict(get_current_weather)
|
||||
|
||||
response = completion(model="gpt-3.5-turbo-0613", messages=messages, functions=functions)
|
||||
print(response)
|
||||
```
|
|
@ -31,14 +31,15 @@ const sidebars = {
|
|||
"completion/input",
|
||||
"completion/prompt_formatting",
|
||||
"completion/output",
|
||||
"exception_mapping",
|
||||
"completion/stream",
|
||||
"completion/message_trimming",
|
||||
"completion/function_call",
|
||||
"completion/model_alias",
|
||||
"completion/reliable_completions",
|
||||
"completion/config",
|
||||
"completion/batching",
|
||||
"completion/mock_requests",
|
||||
"exception_mapping",
|
||||
],
|
||||
},
|
||||
{
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue