build(openai_proxy/main.py): adding support for routing between multiple azure deployments

This commit is contained in:
Krrish Dholakia 2023-10-25 11:15:53 -07:00
parent f208a1231b
commit b9a4bfc054
15 changed files with 159 additions and 1 deletions

2
openai_proxy/__init__.py Normal file
View file

@ -0,0 +1,2 @@
from .main import *
from .utils import *

0
openai_proxy/config Normal file
View file

View file

@ -5,7 +5,8 @@ from fastapi.responses import StreamingResponse, FileResponse
from fastapi.middleware.cors import CORSMiddleware
import json
import os
from utils import set_callbacks
from typing import Optional
from openai_proxy.utils import set_callbacks, load_router_config
import dotenv
dotenv.load_dotenv() # load env variables
@ -20,7 +21,11 @@ app.add_middleware(
allow_methods=["*"],
allow_headers=["*"],
)
#### GLOBAL VARIABLES ####
llm_router: Optional[litellm.Router] = None
set_callbacks() # sets litellm callbacks for logging if they exist in the environment
llm_router = load_router_config(router=llm_router)
#### API ENDPOINTS ####
@router.post("/v1/models")
@router.get("/models") # if project requires model list
@ -101,6 +106,48 @@ async def chat_completion(request: Request):
return {"error": error_msg}
# raise HTTPException(status_code=500, detail=error_msg)
@router.post("/router/completions")
async def router_completion(request: Request):
global llm_router
try:
data = await request.json()
if "model_list" in data:
llm_router = litellm.Router(model_list=data["model_list"])
if llm_router is None:
raise Exception("Save model list via config.yaml. Eg.: ` docker build -t myapp --build-arg CONFIG_FILE=myconfig.yaml .` or pass it in as model_list=[..] as part of the request body")
# openai.ChatCompletion.create replacement
response = await llm_router.acompletion(model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey, how's it going?"}])
if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
return StreamingResponse(data_generator(response), media_type='text/event-stream')
return response
except Exception as e:
error_traceback = traceback.format_exc()
error_msg = f"{str(e)}\n\n{error_traceback}"
return {"error": error_msg}
@router.post("/router/embedding")
async def router_embedding(request: Request):
global llm_router
try:
if llm_router is None:
raise Exception("Save model list via config.yaml. Eg.: ` docker build -t myapp --build-arg CONFIG_FILE=myconfig.yaml .`")
data = await request.json()
# openai.ChatCompletion.create replacement
response = await llm_router.aembedding(model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey, how's it going?"}])
if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
return StreamingResponse(data_generator(response), media_type='text/event-stream')
return response
except Exception as e:
error_traceback = traceback.format_exc()
error_msg = f"{str(e)}\n\n{error_traceback}"
return {"error": error_msg}
@router.get("/")
async def home(request: Request):
return "LiteLLM: RUNNING"

View file

@ -0,0 +1,59 @@
#### What this tests ####
# This tests calling batch_completions by running 100 messages together
import sys, os
import traceback, asyncio
import pytest
from fastapi.testclient import TestClient
from fastapi import Request
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
from openai_proxy import app
def test_router_completion():
client = TestClient(app)
data = {
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": "Hey, how's it going?"}],
"model_list": [{ # list of model deployments
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
}, {
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
}, {
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000
}]
}
response = client.post("/router/completions", json=data)
print(f"response: {response.text}")
assert response.status_code == 200
response_data = response.json()
# Perform assertions on the response data
assert isinstance(response_data['choices'][0]['message']['content'], str)
test_router_completion()

View file

@ -1,5 +1,7 @@
import os, litellm
import yaml
import dotenv
from typing import Optional
dotenv.load_dotenv() # load env variables
def set_callbacks():
@ -21,5 +23,25 @@ def set_callbacks():
litellm.cache = Cache(type="redis", host=os.getenv("REDIS_HOST"), port=os.getenv("REDIS_PORT"), password=os.getenv("REDIS_PASSWORD"))
def load_router_config(router: Optional[litellm.Router]):
config = {}
config_file = 'config.yaml'
if os.path.exists(config_file):
with open(config_file, 'r') as file:
config = yaml.safe_load(file)
else:
print(f"Config file '{config_file}' not found.")
## MODEL LIST
model_list = config.get('model_list', None)
if model_list:
router = litellm.Router(model_list=model_list)
## ENVIRONMENT VARIABLES
environment_variables = config.get('environment_variables', None)
if environment_variables:
for key, value in environment_variables.items():
os.environ[key] = value
return router

View file

@ -0,0 +1,28 @@
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/chatgpt-v-2
api_key: your_azure_api_key
api_version: your_azure_api_version
api_base: your_azure_api_base
tpm: 240000 # REPLACE with your azure deployment tpm
rpm: 1800 # REPLACE with your azure deployment rpm
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/chatgpt-functioncalling
api_key: your_azure_api_key
api_version: your_azure_api_version
api_base: your_azure_api_base
tpm: 240000
rpm: 1800
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
api_key: your_openai_api_key
tpm: 1000000 # REPLACE with your openai tpm
rpm: 9000 # REPLACE with your openai rpm
environment_variables:
REDIS_HOST: your_redis_host
REDIS_PASSWORD: your_redis_password
REDIS_PORT: your_redis_port