forked from phoenix/litellm-mirror
fix(openai.py): supporting openai client sdk for handling sync + async calls (incl. for openai-compatible apis)
This commit is contained in:
parent
b8c64f16cd
commit
bb51216846
5 changed files with 80 additions and 95 deletions
|
@ -154,18 +154,36 @@ class OpenAITextCompletionConfig():
|
|||
and v is not None}
|
||||
|
||||
class OpenAIChatCompletion(BaseLLM):
|
||||
_client_session: Optional[httpx.Client] = None
|
||||
_aclient_session: Optional[httpx.AsyncClient] = None
|
||||
openai_client: Optional[openai.Client] = None
|
||||
openai_aclient: Optional[openai.AsyncClient] = None
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.openai_client = openai.OpenAI()
|
||||
self.openai_aclient = openai.AsyncOpenAI()
|
||||
|
||||
def validate_environment(self, api_key):
|
||||
def validate_environment(self, api_key, api_base, headers):
|
||||
if headers is None:
|
||||
headers = {
|
||||
"content-type": "application/json",
|
||||
}
|
||||
if api_key:
|
||||
headers["Authorization"] = f"Bearer {api_key}"
|
||||
|
||||
self.openai_client.api_key = api_key
|
||||
self.openai_aclient.api_key = api_key
|
||||
if api_base:
|
||||
if self.openai_client.base_url is None or self.openai_client.base_url != api_base:
|
||||
if api_base.endswith("/"):
|
||||
self.openai_client._base_url = httpx.URL(url=api_base)
|
||||
else:
|
||||
self.openai_client._base_url = httpx.URL(url=api_base+"/")
|
||||
if self.openai_aclient.base_url is None or self.openai_aclient.base_url != api_base:
|
||||
if api_base.endswith("/"):
|
||||
self.openai_aclient._base_url = httpx.URL(url=api_base)
|
||||
else:
|
||||
self.openai_aclient._base_url = httpx.URL(url=api_base+"/")
|
||||
|
||||
return headers
|
||||
|
||||
def _retry_request(self, *args, **kwargs):
|
||||
|
@ -191,13 +209,9 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
logger_fn=None,
|
||||
headers: Optional[dict]=None):
|
||||
super().completion()
|
||||
if self._client_session is None:
|
||||
self._client_session = self.create_client_session()
|
||||
exception_mapping_worked = False
|
||||
try:
|
||||
if headers is None:
|
||||
headers = self.validate_environment(api_key=api_key)
|
||||
api_base = f"{api_base}/chat/completions"
|
||||
headers = self.validate_environment(api_key=api_key, api_base=api_base, headers=headers)
|
||||
if model is None or messages is None:
|
||||
raise OpenAIError(status_code=422, message=f"Missing model or messages")
|
||||
|
||||
|
@ -224,23 +238,8 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
elif optional_params.get("stream", False):
|
||||
return self.streaming(logging_obj=logging_obj, api_base=api_base, data=data, headers=headers, model_response=model_response, model=model)
|
||||
else:
|
||||
if model in litellm.models_by_provider["openai"]:
|
||||
if api_key:
|
||||
openai.api_key = api_key
|
||||
response = openai.chat.completions.create(**data)
|
||||
response = self.openai_client.chat.completions.create(**data)
|
||||
return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response)
|
||||
else:
|
||||
response = requests.post(
|
||||
url=api_base,
|
||||
json=data,
|
||||
headers=headers,
|
||||
timeout=600 # Set a 10-minute timeout for both connection and read
|
||||
)
|
||||
if response.status_code != 200:
|
||||
raise OpenAIError(status_code=response.status_code, message=response.text)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
return convert_to_model_response_object(response_object=response.json(), model_response_object=model_response)
|
||||
except Exception as e:
|
||||
if "Conversation roles must alternate user/assistant" in str(e) or "user and assistant roles should be alternating" in str(e):
|
||||
# reformat messages to ensure user/assistant are alternating, if there's either 2 consecutive 'user' messages or 2 consecutive 'assistant' message, add a blank 'user' or 'assistant' message to ensure compatibility
|
||||
|
@ -270,19 +269,11 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
api_base: str,
|
||||
data: dict, headers: dict,
|
||||
model_response: ModelResponse):
|
||||
kwargs = locals()
|
||||
response = None
|
||||
try:
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.post(api_base, json=data, headers=headers, timeout=litellm.request_timeout)
|
||||
response_json = response.json()
|
||||
if response.status_code != 200:
|
||||
raise OpenAIError(status_code=response.status_code, message=response.text, request=response.request, response=response)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
return convert_to_model_response_object(response_object=response_json, model_response_object=model_response)
|
||||
response = await self.openai_aclient.chat.completions.create(**data)
|
||||
return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response)
|
||||
except Exception as e:
|
||||
if isinstance(e, httpx.TimeoutException):
|
||||
raise OpenAIError(status_code=500, message="Request Timeout Error")
|
||||
if response and hasattr(response, "text"):
|
||||
raise OpenAIError(status_code=500, message=f"{str(e)}\n\nOriginal Response: {response.text}")
|
||||
else:
|
||||
|
@ -296,18 +287,8 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
model_response: ModelResponse,
|
||||
model: str
|
||||
):
|
||||
with httpx.stream(
|
||||
url=f"{api_base}", # type: ignore
|
||||
json=data,
|
||||
headers=headers,
|
||||
method="POST",
|
||||
timeout=litellm.request_timeout
|
||||
) as response:
|
||||
if response.status_code != 200:
|
||||
raise OpenAIError(status_code=response.status_code, message=response.text()) # type: ignore
|
||||
|
||||
completion_stream = response.iter_lines()
|
||||
streamwrapper = CustomStreamWrapper(completion_stream=completion_stream, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
|
||||
response = self.openai_client.chat.completions.create(**data)
|
||||
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
|
||||
for transformed_chunk in streamwrapper:
|
||||
yield transformed_chunk
|
||||
|
||||
|
@ -318,21 +299,12 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
headers: dict,
|
||||
model_response: ModelResponse,
|
||||
model: str):
|
||||
client = httpx.AsyncClient()
|
||||
async with client.stream(
|
||||
url=f"{api_base}",
|
||||
json=data,
|
||||
headers=headers,
|
||||
method="POST",
|
||||
timeout=litellm.request_timeout
|
||||
) as response:
|
||||
if response.status_code != 200:
|
||||
raise OpenAIError(status_code=response.status_code, message=response.text()) # type: ignore
|
||||
|
||||
streamwrapper = CustomStreamWrapper(completion_stream=response.aiter_lines(), model=model, custom_llm_provider="openai",logging_obj=logging_obj)
|
||||
response = await self.openai_aclient.chat.completions.create(**data)
|
||||
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
|
||||
async for transformed_chunk in streamwrapper:
|
||||
yield transformed_chunk
|
||||
|
||||
|
||||
def embedding(self,
|
||||
model: str,
|
||||
input: list,
|
||||
|
|
|
@ -12,7 +12,7 @@ class VertexAIError(Exception):
|
|||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
self.request = httpx.Request(method="POST", url="https://api.ai21.com/studio/v1/")
|
||||
self.request = httpx.Request(method="POST", url=" https://cloud.google.com/vertex-ai/")
|
||||
self.response = httpx.Response(status_code=status_code, request=self.request)
|
||||
super().__init__(
|
||||
self.message
|
||||
|
|
|
@ -23,7 +23,18 @@ def test_sync_response():
|
|||
response = completion(model="gpt-3.5-turbo", messages=messages, api_key=os.environ["OPENAI_API_KEY"])
|
||||
except Exception as e:
|
||||
pytest.fail(f"An exception occurred: {e}")
|
||||
# test_sync_response()
|
||||
|
||||
def test_sync_response_anyscale():
|
||||
litellm.set_verbose = True
|
||||
user_message = "Hello, how are you?"
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
try:
|
||||
response = completion(model="anyscale/mistralai/Mistral-7B-Instruct-v0.1", messages=messages)
|
||||
except Exception as e:
|
||||
pytest.fail(f"An exception occurred: {e}")
|
||||
|
||||
# test_sync_response_anyscale()
|
||||
|
||||
def test_async_response():
|
||||
import asyncio
|
||||
|
@ -32,13 +43,28 @@ def test_async_response():
|
|||
user_message = "Hello, how are you?"
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
try:
|
||||
response = await acompletion(model="huggingface/HuggingFaceH4/zephyr-7b-beta", messages=messages)
|
||||
response = await acompletion(model="gpt-3.5-turbo", messages=messages)
|
||||
# response = await response
|
||||
print(f"response: {response}")
|
||||
except Exception as e:
|
||||
pytest.fail(f"An exception occurred: {e}")
|
||||
|
||||
asyncio.run(test_get_response())
|
||||
|
||||
def test_async_anyscale_response():
|
||||
import asyncio
|
||||
litellm.set_verbose = True
|
||||
async def test_get_response():
|
||||
user_message = "Hello, how are you?"
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
try:
|
||||
response = await acompletion(model="anyscale/mistralai/Mistral-7B-Instruct-v0.1", messages=messages)
|
||||
# response = await response
|
||||
print(f"response: {response}")
|
||||
except Exception as e:
|
||||
pytest.fail(f"An exception occurred: {e}")
|
||||
|
||||
asyncio.run(test_get_response())
|
||||
# test_async_response()
|
||||
|
||||
def test_get_response_streaming():
|
||||
import asyncio
|
||||
|
@ -70,7 +96,7 @@ def test_get_response_streaming():
|
|||
asyncio.run(test_async_call())
|
||||
|
||||
|
||||
# test_get_response_streaming()
|
||||
test_get_response_streaming()
|
||||
|
||||
def test_get_response_non_openai_streaming():
|
||||
import asyncio
|
||||
|
@ -79,7 +105,7 @@ def test_get_response_non_openai_streaming():
|
|||
user_message = "Hello, how are you?"
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
try:
|
||||
response = await acompletion(model="huggingface/HuggingFaceH4/zephyr-7b-beta", messages=messages, stream=True)
|
||||
response = await acompletion(model="anyscale/mistralai/Mistral-7B-Instruct-v0.1", messages=messages, stream=True)
|
||||
print(type(response))
|
||||
|
||||
import inspect
|
||||
|
|
|
@ -374,7 +374,7 @@ def test_completion_azure_stream():
|
|||
print(f"completion_response: {complete_response}")
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
test_completion_azure_stream()
|
||||
# test_completion_azure_stream()
|
||||
|
||||
def test_completion_claude_stream():
|
||||
try:
|
||||
|
@ -829,6 +829,7 @@ def ai21_completion_call_bad_key():
|
|||
def test_openai_chat_completion_call():
|
||||
try:
|
||||
litellm.set_verbose = False
|
||||
print(f"making openai chat completion call")
|
||||
response = completion(
|
||||
model="gpt-3.5-turbo", messages=messages, stream=True
|
||||
)
|
||||
|
@ -848,7 +849,7 @@ def test_openai_chat_completion_call():
|
|||
print(f"error occurred: {traceback.format_exc()}")
|
||||
pass
|
||||
|
||||
# test_openai_chat_completion_call()
|
||||
test_openai_chat_completion_call()
|
||||
|
||||
def test_openai_chat_completion_complete_response_call():
|
||||
try:
|
||||
|
|
|
@ -4496,26 +4496,12 @@ class CustomStreamWrapper:
|
|||
text = ""
|
||||
is_finished = False
|
||||
finish_reason = None
|
||||
if "data: [DONE]" in str_line:
|
||||
# anyscale returns a [DONE] special char for streaming, this cannot be json loaded. This is the end of stream
|
||||
text = ""
|
||||
if str_line.choices[0].delta.content is not None:
|
||||
text = str_line.choices[0].delta.content
|
||||
if str_line.choices[0].finish_reason:
|
||||
is_finished = True
|
||||
finish_reason = "stop"
|
||||
finish_reason = str_line.choices[0].finish_reason
|
||||
return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason}
|
||||
elif str_line.startswith("data:") and len(str_line[5:]) > 0:
|
||||
str_line = str_line[5:]
|
||||
data_json = json.loads(str_line)
|
||||
print_verbose(f"delta content: {data_json['choices'][0]['delta']}")
|
||||
text = data_json["choices"][0]["delta"].get("content", "")
|
||||
if data_json["choices"][0].get("finish_reason", None):
|
||||
is_finished = True
|
||||
finish_reason = data_json["choices"][0]["finish_reason"]
|
||||
return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason}
|
||||
elif "error" in str_line:
|
||||
raise ValueError(f"Unable to parse response. Original response: {str_line}")
|
||||
else:
|
||||
return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason}
|
||||
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
raise e
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue