tes vertex JS sdk

This commit is contained in:
Ishaan Jaff 2024-11-22 13:18:23 -08:00
parent e829b228b2
commit bbb2e029b5

View file

@ -1,43 +1,40 @@
const { VertexAI, RequestOptions } = require('@google-cloud/vertexai');
const { const vertexAI = new VertexAI({
FunctionDeclarationSchemaType, project: 'adroit-crow-413218',
HarmBlockThreshold, location: 'us-central1',
HarmCategory, apiEndpoint: "localhost:4000/vertex-ai"
VertexAI, });
RequestOptions
} = require('@google-cloud/vertexai');
const project = 'adroit-crow-413218';
const location = 'us-central1';
const textModel = 'gemini-1.0-pro';
const visionModel = 'gemini-1.0-pro-vision';
// Create customHeaders using Headers
const vertexAI = new VertexAI({project: project, location: location, apiEndpoint: "localhost:4000/vertex-ai"}); const customHeaders = new Headers({
"X-Litellm-Api-Key": "sk-1234"
// Instantiate Gemini models });
const generativeModel = vertexAI.getGenerativeModel({
model: textModel,
// The following parameters are optional
// They can also be passed to individual content generation requests
safetySettings: [{category: HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT, threshold: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE}],
generationConfig: {maxOutputTokens: 256},
systemInstruction: {
role: 'system',
parts: [{"text": `For example, you are a helpful customer service agent. tell me your name. in 5 pages`}]
},
})
async function streamGenerateContent() { // Use customHeaders in RequestOptions
const request = { const requestOptions = {
contents: [{role: 'user', parts: [{text: 'How are you doing today?'}]}], customHeaders: customHeaders
}; };
const streamingResult = await generativeModel.generateContentStream(request);
for await (const item of streamingResult.stream) { const generativeModel = vertexAI.getGenerativeModel(
console.log('stream chunk: ', JSON.stringify(item)); { model: 'gemini-1.0-pro' },
requestOptions
);
async function testModel() {
try {
const request = {
contents: [{role: 'user', parts: [{text: 'How are you doing today tell me your name?'}]}],
};
const streamingResult = await generativeModel.generateContentStream(request);
for await (const item of streamingResult.stream) {
console.log('stream chunk: ', JSON.stringify(item));
}
const aggregatedResponse = await streamingResult.response;
console.log('aggregated response: ', JSON.stringify(aggregatedResponse));
} catch (error) {
console.error('Error:', error);
} }
const aggregatedResponse = await streamingResult.response; }
console.log('aggregated response: ', JSON.stringify(aggregatedResponse));
}; testModel();
streamGenerateContent();