forked from phoenix/litellm-mirror
Merge pull request #5037 from BerriAI/litellm_support_native_vertex_endpoint
[Feat] support all native vertex ai endpoints - Gemini API, Embeddings API, Imagen API, Batch prediction API, Tuning API, CountTokens API
This commit is contained in:
commit
bbd11e61bf
8 changed files with 495 additions and 3 deletions
|
@ -124,7 +124,7 @@ ft_job = await client.fine_tuning.jobs.create(
|
|||
```
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="curl" label="curl">
|
||||
<TabItem value="curl" label="curl (Unified API)">
|
||||
|
||||
```shell
|
||||
curl http://localhost:4000/v1/fine_tuning/jobs \
|
||||
|
@ -136,6 +136,28 @@ curl http://localhost:4000/v1/fine_tuning/jobs \
|
|||
"training_file": "gs://cloud-samples-data/ai-platform/generative_ai/sft_train_data.jsonl"
|
||||
}'
|
||||
```
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="curl-vtx" label="curl (VertexAI API)">
|
||||
|
||||
:::info
|
||||
|
||||
Use this to create Fine tuning Jobs in [the Vertex AI API Format](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/tuning#create-tuning)
|
||||
|
||||
:::
|
||||
|
||||
```shell
|
||||
curl http://localhost:4000/v1/projects/tuningJobs \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-d '{
|
||||
"baseModel": "gemini-1.0-pro-002",
|
||||
"supervisedTuningSpec" : {
|
||||
"training_dataset_uri": "gs://cloud-samples-data/ai-platform/generative_ai/sft_train_data.jsonl"
|
||||
}
|
||||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
|
|
@ -23,6 +23,9 @@ LiteLLM Proxy is **Azure OpenAI-compatible**:
|
|||
LiteLLM Proxy is **Anthropic-compatible**:
|
||||
* /messages
|
||||
|
||||
LiteLLM Proxy is **Vertex AI compatible**:
|
||||
- [Supports ALL Vertex Endpoints](../vertex_ai)
|
||||
|
||||
This doc covers:
|
||||
|
||||
* /chat/completion
|
||||
|
|
93
docs/my-website/docs/vertex_ai.md
Normal file
93
docs/my-website/docs/vertex_ai.md
Normal file
|
@ -0,0 +1,93 @@
|
|||
# [BETA] Vertex AI Endpoints
|
||||
|
||||
## Supported API Endpoints
|
||||
|
||||
- Gemini API
|
||||
- Embeddings API
|
||||
- Imagen API
|
||||
- Code Completion API
|
||||
- Batch prediction API
|
||||
- Tuning API
|
||||
- CountTokens API
|
||||
|
||||
## Quick Start Usage
|
||||
|
||||
#### 1. Set `default_vertex_config` on your `config.yaml`
|
||||
|
||||
|
||||
Add the following credentials to your litellm config.yaml to use the Vertex AI endpoints.
|
||||
|
||||
```yaml
|
||||
default_vertex_config:
|
||||
vertex_project: "adroit-crow-413218"
|
||||
vertex_location: "us-central1"
|
||||
vertex_credentials: "/Users/ishaanjaffer/Downloads/adroit-crow-413218-a956eef1a2a8.json" # Add path to service account.json
|
||||
```
|
||||
|
||||
#### 2. Start litellm proxy
|
||||
|
||||
```shell
|
||||
litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
#### 3. Test it
|
||||
|
||||
```shell
|
||||
curl http://localhost:4000/vertex-ai/publishers/google/models/textembedding-gecko@001:countTokens \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-d '{"instances":[{"content": "gm"}]}'
|
||||
```
|
||||
## Usage Examples
|
||||
|
||||
### Gemini API (Generate Content)
|
||||
|
||||
```shell
|
||||
curl http://localhost:4000/vertex-ai/publishers/google/models/gemini-1.5-flash-001:generateContent \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-d '{"contents":[{"role": "user", "parts":[{"text": "hi"}]}]}'
|
||||
```
|
||||
|
||||
### Embeddings API
|
||||
|
||||
```shell
|
||||
curl http://localhost:4000/vertex-ai/publishers/google/models/textembedding-gecko@001:predict \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-d '{"instances":[{"content": "gm"}]}'
|
||||
```
|
||||
|
||||
### Imagen API
|
||||
|
||||
```shell
|
||||
curl http://localhost:4000/vertex-ai/publishers/google/models/imagen-3.0-generate-001:predict \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-d '{"instances":[{"prompt": "make an otter"}], "parameters": {"sampleCount": 1}}'
|
||||
```
|
||||
|
||||
### Count Tokens API
|
||||
|
||||
```shell
|
||||
curl http://localhost:4000/vertex-ai/publishers/google/models/gemini-1.5-flash-001:countTokens \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-d '{"contents":[{"role": "user", "parts":[{"text": "hi"}]}]}'
|
||||
```
|
||||
|
||||
### Tuning API
|
||||
|
||||
Create Fine Tuning Job
|
||||
|
||||
```shell
|
||||
curl http://localhost:4000/vertex-ai/tuningJobs \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-d '{
|
||||
"baseModel": "gemini-1.0-pro-002",
|
||||
"supervisedTuningSpec" : {
|
||||
"training_dataset_uri": "gs://cloud-samples-data/ai-platform/generative_ai/sft_train_data.jsonl"
|
||||
}
|
||||
}'
|
||||
```
|
|
@ -178,7 +178,7 @@ const sidebars = {
|
|||
},
|
||||
{
|
||||
type: "category",
|
||||
label: "Embedding(), Image Generation(), Assistants(), Moderation(), Audio Transcriptions(), TTS(), Batches(), Fine-Tuning()",
|
||||
label: "Supported Endpoints - /images, /audio/speech, /assistants etc",
|
||||
items: [
|
||||
"embedding/supported_embedding",
|
||||
"embedding/async_embedding",
|
||||
|
@ -189,7 +189,8 @@ const sidebars = {
|
|||
"assistants",
|
||||
"batches",
|
||||
"fine_tuning",
|
||||
"anthropic_completion"
|
||||
"anthropic_completion",
|
||||
"vertex_ai"
|
||||
],
|
||||
},
|
||||
{
|
||||
|
|
|
@ -240,3 +240,59 @@ class VertexFineTuningAPI(VertexLLM):
|
|||
vertex_response
|
||||
)
|
||||
return open_ai_response
|
||||
|
||||
async def pass_through_vertex_ai_POST_request(
|
||||
self,
|
||||
request_data: dict,
|
||||
vertex_project: str,
|
||||
vertex_location: str,
|
||||
vertex_credentials: str,
|
||||
request_route: str,
|
||||
):
|
||||
auth_header, _ = self._get_token_and_url(
|
||||
model="",
|
||||
gemini_api_key=None,
|
||||
vertex_credentials=vertex_credentials,
|
||||
vertex_project=vertex_project,
|
||||
vertex_location=vertex_location,
|
||||
stream=False,
|
||||
custom_llm_provider="vertex_ai_beta",
|
||||
api_base="",
|
||||
)
|
||||
|
||||
headers = {
|
||||
"Authorization": f"Bearer {auth_header}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
url = None
|
||||
if request_route == "/tuningJobs":
|
||||
url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}/tuningJobs"
|
||||
elif "/tuningJobs/" in request_route and "cancel" in request_route:
|
||||
url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}/tuningJobs{request_route}"
|
||||
elif "generateContent" in request_route:
|
||||
url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}{request_route}"
|
||||
elif "predict" in request_route:
|
||||
url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}{request_route}"
|
||||
elif "/batchPredictionJobs" in request_route:
|
||||
url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}{request_route}"
|
||||
elif "countTokens" in request_route:
|
||||
url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}{request_route}"
|
||||
else:
|
||||
raise ValueError(f"Unsupported Vertex AI request route: {request_route}")
|
||||
if self.async_handler is None:
|
||||
raise ValueError("VertexAI Fine Tuning - async_handler is not initialized")
|
||||
|
||||
response = await self.async_handler.post(
|
||||
headers=headers,
|
||||
url=url,
|
||||
json=request_data, # type: ignore
|
||||
)
|
||||
|
||||
if response.status_code != 200:
|
||||
raise Exception(
|
||||
f"Error creating fine tuning job. Status code: {response.status_code}. Response: {response.text}"
|
||||
)
|
||||
|
||||
response_json = response.json()
|
||||
return response_json
|
||||
|
|
|
@ -48,6 +48,11 @@ files_settings:
|
|||
- custom_llm_provider: openai
|
||||
api_key: os.environ/OPENAI_API_KEY
|
||||
|
||||
default_vertex_config:
|
||||
vertex_project: "adroit-crow-413218"
|
||||
vertex_location: "us-central1"
|
||||
vertex_credentials: "/Users/ishaanjaffer/Downloads/adroit-crow-413218-a956eef1a2a8.json"
|
||||
|
||||
|
||||
|
||||
general_settings:
|
||||
|
|
|
@ -213,6 +213,8 @@ from litellm.proxy.utils import (
|
|||
send_email,
|
||||
update_spend,
|
||||
)
|
||||
from litellm.proxy.vertex_ai_endpoints.vertex_endpoints import router as vertex_router
|
||||
from litellm.proxy.vertex_ai_endpoints.vertex_endpoints import set_default_vertex_config
|
||||
from litellm.router import (
|
||||
AssistantsTypedDict,
|
||||
Deployment,
|
||||
|
@ -1818,6 +1820,10 @@ class ProxyConfig:
|
|||
files_config = config.get("files_settings", None)
|
||||
set_files_config(config=files_config)
|
||||
|
||||
## default config for vertex ai routes
|
||||
default_vertex_config = config.get("default_vertex_config", None)
|
||||
set_default_vertex_config(config=default_vertex_config)
|
||||
|
||||
## ROUTER SETTINGS (e.g. routing_strategy, ...)
|
||||
router_settings = config.get("router_settings", None)
|
||||
if router_settings and isinstance(router_settings, dict):
|
||||
|
@ -9631,6 +9637,7 @@ def cleanup_router_config_variables():
|
|||
|
||||
app.include_router(router)
|
||||
app.include_router(fine_tuning_router)
|
||||
app.include_router(vertex_router)
|
||||
app.include_router(health_router)
|
||||
app.include_router(key_management_router)
|
||||
app.include_router(internal_user_router)
|
||||
|
|
305
litellm/proxy/vertex_ai_endpoints/vertex_endpoints.py
Normal file
305
litellm/proxy/vertex_ai_endpoints/vertex_endpoints.py
Normal file
|
@ -0,0 +1,305 @@
|
|||
import ast
|
||||
import asyncio
|
||||
import traceback
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import List, Optional
|
||||
|
||||
import fastapi
|
||||
import httpx
|
||||
from fastapi import (
|
||||
APIRouter,
|
||||
Depends,
|
||||
File,
|
||||
Form,
|
||||
Header,
|
||||
HTTPException,
|
||||
Request,
|
||||
Response,
|
||||
UploadFile,
|
||||
status,
|
||||
)
|
||||
|
||||
import litellm
|
||||
from litellm._logging import verbose_proxy_logger
|
||||
from litellm.batches.main import FileObject
|
||||
from litellm.fine_tuning.main import vertex_fine_tuning_apis_instance
|
||||
from litellm.proxy._types import *
|
||||
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
|
||||
|
||||
router = APIRouter()
|
||||
default_vertex_config = None
|
||||
|
||||
|
||||
def set_default_vertex_config(config):
|
||||
global default_vertex_config
|
||||
if config is None:
|
||||
return
|
||||
|
||||
if not isinstance(config, dict):
|
||||
raise ValueError("invalid config, vertex default config must be a dictionary")
|
||||
|
||||
if isinstance(config, dict):
|
||||
for key, value in config.items():
|
||||
if isinstance(value, str) and value.startswith("os.environ/"):
|
||||
config[key] = litellm.get_secret(value)
|
||||
|
||||
default_vertex_config = config
|
||||
|
||||
|
||||
def exception_handler(e: Exception):
|
||||
verbose_proxy_logger.error(
|
||||
"litellm.proxy.proxy_server.v1/projects/tuningJobs(): Exception occurred - {}".format(
|
||||
str(e)
|
||||
)
|
||||
)
|
||||
verbose_proxy_logger.debug(traceback.format_exc())
|
||||
if isinstance(e, HTTPException):
|
||||
return ProxyException(
|
||||
message=getattr(e, "message", str(e.detail)),
|
||||
type=getattr(e, "type", "None"),
|
||||
param=getattr(e, "param", "None"),
|
||||
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
|
||||
)
|
||||
else:
|
||||
error_msg = f"{str(e)}"
|
||||
return ProxyException(
|
||||
message=getattr(e, "message", error_msg),
|
||||
type=getattr(e, "type", "None"),
|
||||
param=getattr(e, "param", "None"),
|
||||
code=getattr(e, "status_code", 500),
|
||||
)
|
||||
|
||||
|
||||
async def execute_post_vertex_ai_request(
|
||||
request: Request,
|
||||
route: str,
|
||||
):
|
||||
from litellm.fine_tuning.main import vertex_fine_tuning_apis_instance
|
||||
|
||||
if default_vertex_config is None:
|
||||
raise ValueError(
|
||||
"Vertex credentials not added on litellm proxy, please add `default_vertex_config` on your config.yaml"
|
||||
)
|
||||
vertex_project = default_vertex_config.get("vertex_project", None)
|
||||
vertex_location = default_vertex_config.get("vertex_location", None)
|
||||
vertex_credentials = default_vertex_config.get("vertex_credentials", None)
|
||||
|
||||
request_data_json = {}
|
||||
body = await request.body()
|
||||
body_str = body.decode()
|
||||
if len(body_str) > 0:
|
||||
try:
|
||||
request_data_json = ast.literal_eval(body_str)
|
||||
except:
|
||||
request_data_json = json.loads(body_str)
|
||||
|
||||
verbose_proxy_logger.debug(
|
||||
"Request received by LiteLLM:\n{}".format(
|
||||
json.dumps(request_data_json, indent=4)
|
||||
),
|
||||
)
|
||||
|
||||
response = (
|
||||
await vertex_fine_tuning_apis_instance.pass_through_vertex_ai_POST_request(
|
||||
request_data=request_data_json,
|
||||
vertex_project=vertex_project,
|
||||
vertex_location=vertex_location,
|
||||
vertex_credentials=vertex_credentials,
|
||||
request_route=route,
|
||||
)
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
|
||||
@router.post(
|
||||
"/vertex-ai/publishers/google/models/{model_id:path}:generateContent",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["Vertex AI endpoints"],
|
||||
)
|
||||
async def vertex_generate_content(
|
||||
request: Request,
|
||||
fastapi_response: Response,
|
||||
model_id: str,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
this is a pass through endpoint for the Vertex AI API. /generateContent endpoint
|
||||
|
||||
Example Curl:
|
||||
```
|
||||
curl http://localhost:4000/vertex-ai/publishers/google/models/gemini-1.5-flash-001:generateContent \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-d '{"contents":[{"role": "user", "parts":[{"text": "hi"}]}]}'
|
||||
```
|
||||
|
||||
Vertex API Reference: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#rest
|
||||
it uses the vertex ai credentials on the proxy and forwards to vertex ai api
|
||||
"""
|
||||
try:
|
||||
response = await execute_post_vertex_ai_request(
|
||||
request=request,
|
||||
route=f"/publishers/google/models/{model_id}:generateContent",
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
raise exception_handler(e) from e
|
||||
|
||||
|
||||
@router.post(
|
||||
"/vertex-ai/publishers/google/models/{model_id:path}:predict",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["Vertex AI endpoints"],
|
||||
)
|
||||
async def vertex_predict_endpoint(
|
||||
request: Request,
|
||||
fastapi_response: Response,
|
||||
model_id: str,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
this is a pass through endpoint for the Vertex AI API. /predict endpoint
|
||||
Use this for:
|
||||
- Embeddings API - Text Embedding, Multi Modal Embedding
|
||||
- Imagen API
|
||||
- Code Completion API
|
||||
|
||||
Example Curl:
|
||||
```
|
||||
curl http://localhost:4000/vertex-ai/publishers/google/models/textembedding-gecko@001:predict \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-d '{"instances":[{"content": "gm"}]}'
|
||||
```
|
||||
|
||||
Vertex API Reference: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api#generative-ai-get-text-embedding-drest
|
||||
it uses the vertex ai credentials on the proxy and forwards to vertex ai api
|
||||
"""
|
||||
try:
|
||||
response = await execute_post_vertex_ai_request(
|
||||
request=request,
|
||||
route=f"/publishers/google/models/{model_id}:predict",
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
raise exception_handler(e) from e
|
||||
|
||||
|
||||
@router.post(
|
||||
"/vertex-ai/publishers/google/models/{model_id:path}:countTokens",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["Vertex AI endpoints"],
|
||||
)
|
||||
async def vertex_countTokens_endpoint(
|
||||
request: Request,
|
||||
fastapi_response: Response,
|
||||
model_id: str,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
this is a pass through endpoint for the Vertex AI API. /countTokens endpoint
|
||||
https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/count-tokens#curl
|
||||
|
||||
|
||||
Example Curl:
|
||||
```
|
||||
curl http://localhost:4000/vertex-ai/publishers/google/models/gemini-1.5-flash-001:countTokens \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-d '{"contents":[{"role": "user", "parts":[{"text": "hi"}]}]}'
|
||||
```
|
||||
|
||||
it uses the vertex ai credentials on the proxy and forwards to vertex ai api
|
||||
"""
|
||||
try:
|
||||
response = await execute_post_vertex_ai_request(
|
||||
request=request,
|
||||
route=f"/publishers/google/models/{model_id}:countTokens",
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
raise exception_handler(e) from e
|
||||
|
||||
|
||||
@router.post(
|
||||
"/vertex-ai/batchPredictionJobs",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["Vertex AI endpoints"],
|
||||
)
|
||||
async def vertex_create_batch_prediction_job(
|
||||
request: Request,
|
||||
fastapi_response: Response,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
this is a pass through endpoint for the Vertex AI API. /batchPredictionJobs endpoint
|
||||
|
||||
Vertex API Reference: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/batch-prediction-api#syntax
|
||||
|
||||
it uses the vertex ai credentials on the proxy and forwards to vertex ai api
|
||||
"""
|
||||
try:
|
||||
response = await execute_post_vertex_ai_request(
|
||||
request=request,
|
||||
route="/batchPredictionJobs",
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
raise exception_handler(e) from e
|
||||
|
||||
|
||||
@router.post(
|
||||
"/vertex-ai/tuningJobs",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["Vertex AI endpoints"],
|
||||
)
|
||||
async def vertex_create_fine_tuning_job(
|
||||
request: Request,
|
||||
fastapi_response: Response,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
this is a pass through endpoint for the Vertex AI API. /tuningJobs endpoint
|
||||
|
||||
Vertex API Reference: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/tuning
|
||||
|
||||
it uses the vertex ai credentials on the proxy and forwards to vertex ai api
|
||||
"""
|
||||
try:
|
||||
response = await execute_post_vertex_ai_request(
|
||||
request=request,
|
||||
route="/tuningJobs",
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
raise exception_handler(e) from e
|
||||
|
||||
|
||||
@router.post(
|
||||
"/vertex-ai/tuningJobs/{job_id:path}:cancel",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["Vertex AI endpoints"],
|
||||
)
|
||||
async def vertex_cancel_fine_tuning_job(
|
||||
request: Request,
|
||||
job_id: str,
|
||||
fastapi_response: Response,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
this is a pass through endpoint for the Vertex AI API. tuningJobs/{job_id:path}:cancel
|
||||
|
||||
Vertex API Reference: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/tuning#cancel_a_tuning_job
|
||||
|
||||
it uses the vertex ai credentials on the proxy and forwards to vertex ai api
|
||||
"""
|
||||
try:
|
||||
|
||||
response = await execute_post_vertex_ai_request(
|
||||
request=request,
|
||||
route=f"/tuningJobs/{job_id}:cancel",
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
raise exception_handler(e) from e
|
Loading…
Add table
Add a link
Reference in a new issue