LiteLLM Minor Fixes & Improvements (09/26/2024) (#5925) (#5937)

* LiteLLM Minor Fixes & Improvements (09/26/2024)  (#5925)

* fix(litellm_logging.py): don't initialize prometheus_logger if non premium user

Prevents bad error messages in logs

Fixes https://github.com/BerriAI/litellm/issues/5897

* Add Support for Custom Providers in Vision and Function Call Utils (#5688)

* Add Support for Custom Providers in Vision and Function Call Utils Lookup

* Remove parallel function call due to missing model info param

* Add Unit Tests for Vision and Function Call Changes

* fix-#5920: set header value to string to fix "'int' object has no att… (#5922)

* LiteLLM Minor Fixes & Improvements (09/24/2024) (#5880)

* LiteLLM Minor Fixes & Improvements (09/23/2024)  (#5842)

* feat(auth_utils.py): enable admin to allow client-side credentials to be passed

Makes it easier for devs to experiment with finetuned fireworks ai models

* feat(router.py): allow setting configurable_clientside_auth_params for a model

Closes https://github.com/BerriAI/litellm/issues/5843

* build(model_prices_and_context_window.json): fix anthropic claude-3-5-sonnet max output token limit

Fixes https://github.com/BerriAI/litellm/issues/5850

* fix(azure_ai/): support content list for azure ai

Fixes https://github.com/BerriAI/litellm/issues/4237

* fix(litellm_logging.py): always set saved_cache_cost

Set to 0 by default

* fix(fireworks_ai/cost_calculator.py): add fireworks ai default pricing

handles calling 405b+ size models

* fix(slack_alerting.py): fix error alerting for failed spend tracking

Fixes regression with slack alerting error monitoring

* fix(vertex_and_google_ai_studio_gemini.py): handle gemini no candidates in streaming chunk error

* docs(bedrock.md): add llama3-1 models

* test: fix tests

* fix(azure_ai/chat): fix transformation for azure ai calls

* feat(azure_ai/embed): Add azure ai embeddings support

Closes https://github.com/BerriAI/litellm/issues/5861

* fix(azure_ai/embed): enable async embedding

* feat(azure_ai/embed): support azure ai multimodal embeddings

* fix(azure_ai/embed): support async multi modal embeddings

* feat(together_ai/embed): support together ai embedding calls

* feat(rerank/main.py): log source documents for rerank endpoints to langfuse

improves rerank endpoint logging

* fix(langfuse.py): support logging `/audio/speech` input to langfuse

* test(test_embedding.py): fix test

* test(test_completion_cost.py): fix helper util

* fix-#5920: set header value to string to fix "'int' object has no attribute 'encode'"

---------

Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com>

* Revert "fix-#5920: set header value to string to fix "'int' object has no att…" (#5926)

This reverts commit a554ae2695.

* build(model_prices_and_context_window.json): add azure ai cohere rerank model pricing

Enables cost tracking for azure ai cohere rerank models

* fix(litellm_logging.py): fix debug log to be clearer

Closes https://github.com/BerriAI/litellm/issues/5909

* test(test_utils.py): fix test name

* fix(azure_ai/cost_calculator.py): support cost tracking for azure ai rerank models

* fix(azure_ai): fix azure ai base model cost tracking for rerank endpoints

* fix(converse_handler.py): support new llama 3-2 models

Fixes https://github.com/BerriAI/litellm/issues/5901

* fix(litellm_logging.py): ensure response is redacted for standard message logging

Fixes https://github.com/BerriAI/litellm/issues/5890#issuecomment-2378242360

* fix(cost_calculator.py): use 'get_model_info' for cohere rerank cost calculation

allows user to set custom cost for model

* fix(config.yml): fix docker hub auht

* build(config.yml): add docker auth to all tests

* fix(db/create_views.py): fix linting error

* fix(main.py): fix circular import

* fix(azure_ai/__init__.py): fix circular import

* fix(main.py): fix import

* fix: fix linting errors

* test: fix test

* fix(proxy_server.py): pass premium user value on startup

used for prometheus init

---------

Co-authored-by: Cole Murray <colemurray.cs@gmail.com>
Co-authored-by: bravomark <62681807+bravomark@users.noreply.github.com>

* handle streaming for azure ai studio error

* [Perf Proxy] parallel request limiter - use one cache update call (#5932)

* fix parallel request limiter - use one cache update call

* ci/cd run again

* run ci/cd again

* use docker username password

* fix config.yml

* fix config

* fix config

* fix config.yml

* ci/cd run again

* use correct typing for batch set cache

* fix async_set_cache_pipeline

* fix only check user id tpm / rpm limits when limits set

* fix test_openai_azure_embedding_with_oidc_and_cf

* test: fix test

* test(test_rerank.py): fix test

---------

Co-authored-by: Cole Murray <colemurray.cs@gmail.com>
Co-authored-by: bravomark <62681807+bravomark@users.noreply.github.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
This commit is contained in:
Krish Dholakia 2024-09-27 17:54:13 -07:00 committed by GitHub
parent 789ce6b747
commit bd17424c4b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
29 changed files with 564 additions and 104 deletions

View file

@ -31,6 +31,7 @@ from litellm.litellm_core_utils.redact_messages import (
redact_message_input_output_from_custom_logger,
redact_message_input_output_from_logging,
)
from litellm.proxy._types import CommonProxyErrors
from litellm.rerank_api.types import RerankResponse
from litellm.types.llms.openai import HttpxBinaryResponseContent
from litellm.types.router import SPECIAL_MODEL_INFO_PARAMS
@ -97,7 +98,9 @@ try:
GenericAPILogger,
)
except Exception as e:
verbose_logger.debug(f"Exception import enterprise features {str(e)}")
verbose_logger.debug(
f"[Non-Blocking] Unable to import GenericAPILogger - LiteLLM Enterprise Feature - {str(e)}"
)
_in_memory_loggers: List[Any] = []
@ -2140,7 +2143,8 @@ def _init_custom_logger_compatible_class(
llm_router: Optional[
Any
], # expect litellm.Router, but typing errors due to circular import
) -> CustomLogger:
premium_user: bool = False,
) -> Optional[CustomLogger]:
if logging_integration == "lago":
for callback in _in_memory_loggers:
if isinstance(callback, LagoLogger):
@ -2174,13 +2178,19 @@ def _init_custom_logger_compatible_class(
_in_memory_loggers.append(_langsmith_logger)
return _langsmith_logger # type: ignore
elif logging_integration == "prometheus":
for callback in _in_memory_loggers:
if isinstance(callback, PrometheusLogger):
return callback # type: ignore
if premium_user:
for callback in _in_memory_loggers:
if isinstance(callback, PrometheusLogger):
return callback # type: ignore
_prometheus_logger = PrometheusLogger()
_in_memory_loggers.append(_prometheus_logger)
return _prometheus_logger # type: ignore
_prometheus_logger = PrometheusLogger()
_in_memory_loggers.append(_prometheus_logger)
return _prometheus_logger # type: ignore
else:
verbose_logger.warning(
f"🚨🚨🚨 Prometheus Metrics is on LiteLLM Enterprise\n🚨 {CommonProxyErrors.not_premium_user.value}"
)
return None
elif logging_integration == "datadog":
for callback in _in_memory_loggers:
if isinstance(callback, DataDogLogger):
@ -2411,6 +2421,7 @@ def get_standard_logging_object_payload(
response_obj = init_response_obj
else:
response_obj = {}
# standardize this function to be used across, s3, dynamoDB, langfuse logging
litellm_params = kwargs.get("litellm_params", {})
proxy_server_request = litellm_params.get("proxy_server_request") or {}
@ -2546,6 +2557,16 @@ def get_standard_logging_object_payload(
response_cost: float = kwargs.get("response_cost", 0) or 0.0
if response_obj is not None:
final_response_obj: Optional[Union[dict, str, list]] = response_obj
elif isinstance(init_response_obj, list) or isinstance(init_response_obj, str):
final_response_obj = init_response_obj
else:
final_response_obj = None
if litellm.turn_off_message_logging:
final_response_obj = "redacted-by-litellm"
payload: StandardLoggingPayload = StandardLoggingPayload(
id=str(id),
call_type=call_type or "",
@ -2569,9 +2590,7 @@ def get_standard_logging_object_payload(
model_id=_model_id,
requester_ip_address=clean_metadata.get("requester_ip_address", None),
messages=kwargs.get("messages"),
response=( # type: ignore
response_obj if len(response_obj.keys()) > 0 else init_response_obj # type: ignore
),
response=final_response_obj,
model_parameters=kwargs.get("optional_params", None),
hidden_params=clean_hidden_params,
model_map_information=model_cost_information,