forked from phoenix/litellm-mirror
fix liteLLM proxy
This commit is contained in:
parent
ce4ec195a3
commit
bdfcff3078
3 changed files with 149 additions and 100 deletions
|
@ -1,12 +1,20 @@
|
|||
from flask import Flask, request, jsonify, abort
|
||||
from flask import Flask, request, jsonify, abort, Response
|
||||
from flask_cors import CORS
|
||||
import traceback
|
||||
import litellm
|
||||
|
||||
from litellm import completion
|
||||
import openai
|
||||
from utils import handle_error, get_cache, add_cache
|
||||
import os, dotenv
|
||||
import logging
|
||||
import json
|
||||
dotenv.load_dotenv()
|
||||
|
||||
# TODO: set your keys in .env or here:
|
||||
# os.environ["OPENAI_API_KEY"] = "" # set your openai key here
|
||||
# see supported models / keys here: https://litellm.readthedocs.io/en/latest/supported/
|
||||
|
||||
######### LOGGING ###################
|
||||
# log your data to slack, supabase
|
||||
litellm.success_callback=["slack", "supabase"] # set .env SLACK_API_TOKEN, SLACK_API_SECRET, SLACK_API_CHANNEL, SUPABASE
|
||||
|
@ -22,16 +30,25 @@ CORS(app)
|
|||
def index():
|
||||
return 'received!', 200
|
||||
|
||||
def data_generator(response):
|
||||
for chunk in response:
|
||||
yield f"data: {json.dumps(chunk)}\n\n"
|
||||
|
||||
@app.route('/chat/completions', methods=["POST"])
|
||||
def api_completion():
|
||||
data = request.json
|
||||
if data.get('stream') == "True":
|
||||
data['stream'] = True # convert to boolean
|
||||
try:
|
||||
# pass in data to completion function, unpack data
|
||||
response = completion(**data)
|
||||
if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
|
||||
return Response(data_generator(response), mimetype='text/event-stream')
|
||||
except Exception as e:
|
||||
# call handle_error function
|
||||
print(f"got error{e}")
|
||||
return handle_error(data)
|
||||
return response, 200
|
||||
return response, 200 # non streaming responses
|
||||
|
||||
@app.route('/get_models', methods=["POST"])
|
||||
def get_models():
|
||||
|
@ -48,45 +65,11 @@ if __name__ == "__main__":
|
|||
|
||||
############### Advanced ##########################
|
||||
|
||||
################ ERROR HANDLING #####################
|
||||
# implement model fallbacks, cooldowns, and retries
|
||||
# if a model fails assume it was rate limited and let it cooldown for 60s
|
||||
def handle_error(data):
|
||||
import time
|
||||
# retry completion() request with fallback models
|
||||
response = None
|
||||
start_time = time.time()
|
||||
rate_limited_models = set()
|
||||
model_expiration_times = {}
|
||||
fallback_strategy=['gpt-3.5-turbo', 'command-nightly', 'claude-2']
|
||||
while response == None and time.time() - start_time < 45: # retry for 45s
|
||||
for model in fallback_strategy:
|
||||
try:
|
||||
if model in rate_limited_models: # check if model is currently cooling down
|
||||
if model_expiration_times.get(model) and time.time() >= model_expiration_times[model]:
|
||||
rate_limited_models.remove(model) # check if it's been 60s of cool down and remove model
|
||||
else:
|
||||
continue # skip model
|
||||
print(f"calling model {model}")
|
||||
response = completion(**data)
|
||||
if response != None:
|
||||
return response
|
||||
except Exception as e:
|
||||
rate_limited_models.add(model)
|
||||
model_expiration_times[model] = time.time() + 60 # cool down this selected model
|
||||
pass
|
||||
return response
|
||||
|
||||
|
||||
########### Pricing is tracked in Supabase ############
|
||||
|
||||
|
||||
|
||||
############ Caching ###################################
|
||||
# make a new endpoint with caching
|
||||
# This Cache is built using ChromaDB
|
||||
# it has two functions add_cache() and get_cache()
|
||||
@app.route('/chat/completions', methods=["POST"])
|
||||
@app.route('/chat/completions_with_cache', methods=["POST"])
|
||||
def api_completion_with_cache():
|
||||
data = request.json
|
||||
try:
|
||||
|
@ -100,66 +83,4 @@ def api_completion_with_cache():
|
|||
except Exception as e:
|
||||
# call handle_error function
|
||||
return handle_error(data)
|
||||
return response, 200
|
||||
|
||||
import uuid
|
||||
cache_collection = None
|
||||
# Add a response to the cache
|
||||
def add_cache(messages, model_response):
|
||||
global cache_collection
|
||||
if cache_collection is None:
|
||||
make_collection()
|
||||
|
||||
user_question = message_to_user_question(messages)
|
||||
|
||||
# Add the user question and model response to the cache
|
||||
cache_collection.add(
|
||||
documents=[user_question],
|
||||
metadatas=[{"model_response": str(model_response)}],
|
||||
ids=[str(uuid.uuid4())]
|
||||
)
|
||||
return
|
||||
|
||||
# Retrieve a response from the cache if similarity is above the threshold
|
||||
def get_cache(messages, similarity_threshold):
|
||||
try:
|
||||
global cache_collection
|
||||
if cache_collection is None:
|
||||
make_collection()
|
||||
|
||||
user_question = message_to_user_question(messages)
|
||||
|
||||
# Query the cache for the user question
|
||||
results = cache_collection.query(
|
||||
query_texts=[user_question],
|
||||
n_results=1
|
||||
)
|
||||
|
||||
if len(results['distances'][0]) == 0:
|
||||
return None # Cache is empty
|
||||
|
||||
distance = results['distances'][0][0]
|
||||
sim = (1 - distance)
|
||||
|
||||
if sim >= similarity_threshold:
|
||||
return results['metadatas'][0][0]["model_response"] # Return cached response
|
||||
else:
|
||||
return None # No cache hit
|
||||
except Exception as e:
|
||||
print("Error in get cache", e)
|
||||
raise e
|
||||
|
||||
# Initialize the cache collection
|
||||
def make_collection():
|
||||
import chromadb
|
||||
global cache_collection
|
||||
client = chromadb.Client()
|
||||
cache_collection = client.create_collection("llm_responses")
|
||||
|
||||
# HELPER: Extract user's question from messages
|
||||
def message_to_user_question(messages):
|
||||
user_question = ""
|
||||
for message in messages:
|
||||
if message['role'] == 'user':
|
||||
user_question += message["content"]
|
||||
return user_question
|
||||
return response, 200
|
21
cookbook/proxy-server/test_proxy_stream.py
Normal file
21
cookbook/proxy-server/test_proxy_stream.py
Normal file
|
@ -0,0 +1,21 @@
|
|||
import openai
|
||||
import os
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = ""
|
||||
|
||||
openai.api_key = os.environ["OPENAI_API_KEY"]
|
||||
openai.api_base ="http://localhost:5000"
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "write a 1 pg essay in liteLLM"
|
||||
}
|
||||
]
|
||||
|
||||
response = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages, stream=True)
|
||||
print("got response", response)
|
||||
# response is a generator
|
||||
|
||||
for chunk in response:
|
||||
print(chunk)
|
107
cookbook/proxy-server/utils.py
Normal file
107
cookbook/proxy-server/utils.py
Normal file
|
@ -0,0 +1,107 @@
|
|||
|
||||
from litellm import completion
|
||||
import os, dotenv
|
||||
import json
|
||||
dotenv.load_dotenv()
|
||||
############### Advanced ##########################
|
||||
|
||||
########### streaming ############################
|
||||
def generate_responses(response):
|
||||
for chunk in response:
|
||||
yield json.dumps({"response": chunk}) + "\n"
|
||||
|
||||
################ ERROR HANDLING #####################
|
||||
# implement model fallbacks, cooldowns, and retries
|
||||
# if a model fails assume it was rate limited and let it cooldown for 60s
|
||||
def handle_error(data):
|
||||
import time
|
||||
# retry completion() request with fallback models
|
||||
response = None
|
||||
start_time = time.time()
|
||||
rate_limited_models = set()
|
||||
model_expiration_times = {}
|
||||
fallback_strategy=['gpt-3.5-turbo', 'command-nightly', 'claude-2']
|
||||
while response == None and time.time() - start_time < 45: # retry for 45s
|
||||
for model in fallback_strategy:
|
||||
try:
|
||||
if model in rate_limited_models: # check if model is currently cooling down
|
||||
if model_expiration_times.get(model) and time.time() >= model_expiration_times[model]:
|
||||
rate_limited_models.remove(model) # check if it's been 60s of cool down and remove model
|
||||
else:
|
||||
continue # skip model
|
||||
print(f"calling model {model}")
|
||||
response = completion(**data)
|
||||
if response != None:
|
||||
return response
|
||||
except Exception as e:
|
||||
rate_limited_models.add(model)
|
||||
model_expiration_times[model] = time.time() + 60 # cool down this selected model
|
||||
pass
|
||||
return response
|
||||
|
||||
|
||||
########### Pricing is tracked in Supabase ############
|
||||
|
||||
|
||||
|
||||
import uuid
|
||||
cache_collection = None
|
||||
# Add a response to the cache
|
||||
def add_cache(messages, model_response):
|
||||
global cache_collection
|
||||
if cache_collection is None:
|
||||
make_collection()
|
||||
|
||||
user_question = message_to_user_question(messages)
|
||||
|
||||
# Add the user question and model response to the cache
|
||||
cache_collection.add(
|
||||
documents=[user_question],
|
||||
metadatas=[{"model_response": str(model_response)}],
|
||||
ids=[str(uuid.uuid4())]
|
||||
)
|
||||
return
|
||||
|
||||
# Retrieve a response from the cache if similarity is above the threshold
|
||||
def get_cache(messages, similarity_threshold):
|
||||
try:
|
||||
global cache_collection
|
||||
if cache_collection is None:
|
||||
make_collection()
|
||||
|
||||
user_question = message_to_user_question(messages)
|
||||
|
||||
# Query the cache for the user question
|
||||
results = cache_collection.query(
|
||||
query_texts=[user_question],
|
||||
n_results=1
|
||||
)
|
||||
|
||||
if len(results['distances'][0]) == 0:
|
||||
return None # Cache is empty
|
||||
|
||||
distance = results['distances'][0][0]
|
||||
sim = (1 - distance)
|
||||
|
||||
if sim >= similarity_threshold:
|
||||
return results['metadatas'][0][0]["model_response"] # Return cached response
|
||||
else:
|
||||
return None # No cache hit
|
||||
except Exception as e:
|
||||
print("Error in get cache", e)
|
||||
raise e
|
||||
|
||||
# Initialize the cache collection
|
||||
def make_collection():
|
||||
import chromadb
|
||||
global cache_collection
|
||||
client = chromadb.Client()
|
||||
cache_collection = client.create_collection("llm_responses")
|
||||
|
||||
# HELPER: Extract user's question from messages
|
||||
def message_to_user_question(messages):
|
||||
user_question = ""
|
||||
for message in messages:
|
||||
if message['role'] == 'user':
|
||||
user_question += message["content"]
|
||||
return user_question
|
Loading…
Add table
Add a link
Reference in a new issue