diff --git a/.circleci/config.yml b/.circleci/config.yml
index 7083be6bd..063aff4c6 100644
--- a/.circleci/config.yml
+++ b/.circleci/config.yml
@@ -47,7 +47,7 @@ jobs:
pip install opentelemetry-api==1.25.0
pip install opentelemetry-sdk==1.25.0
pip install opentelemetry-exporter-otlp==1.25.0
- pip install openai==1.52.0
+ pip install openai==1.54.0
pip install prisma==0.11.0
pip install "detect_secrets==1.5.0"
pip install "httpx==0.24.1"
@@ -520,7 +520,7 @@ jobs:
pip install "aiodynamo==23.10.1"
pip install "asyncio==3.4.3"
pip install "PyGithub==1.59.1"
- pip install "openai==1.52.0"
+ pip install "openai==1.54.0 "
# Run pytest and generate JUnit XML report
- run:
name: Build Docker image
@@ -637,7 +637,7 @@ jobs:
pip install "aiodynamo==23.10.1"
pip install "asyncio==3.4.3"
pip install "PyGithub==1.59.1"
- pip install "openai==1.52.0"
+ pip install "openai==1.54.0 "
- run:
name: Build Docker image
command: docker build -t my-app:latest -f ./docker/Dockerfile.database .
@@ -729,7 +729,7 @@ jobs:
pip install "pytest-asyncio==0.21.1"
pip install "google-cloud-aiplatform==1.43.0"
pip install aiohttp
- pip install "openai==1.52.0"
+ pip install "openai==1.54.0 "
python -m pip install --upgrade pip
pip install "pydantic==2.7.1"
pip install "pytest==7.3.1"
@@ -924,7 +924,7 @@ jobs:
pip install "pytest-retry==1.6.3"
pip install "pytest-asyncio==0.21.1"
pip install aiohttp
- pip install "openai==1.52.0"
+ pip install "openai==1.54.0 "
python -m pip install --upgrade pip
pip install "pydantic==2.7.1"
pip install "pytest==7.3.1"
diff --git a/.circleci/requirements.txt b/.circleci/requirements.txt
index 4912c052c..578bfa572 100644
--- a/.circleci/requirements.txt
+++ b/.circleci/requirements.txt
@@ -1,5 +1,5 @@
# used by CI/CD testing
-openai==1.52.0
+openai==1.54.0
python-dotenv
tiktoken
importlib_metadata
diff --git a/docs/my-website/docs/completion/predict_outputs.md b/docs/my-website/docs/completion/predict_outputs.md
new file mode 100644
index 000000000..a0d832d68
--- /dev/null
+++ b/docs/my-website/docs/completion/predict_outputs.md
@@ -0,0 +1,109 @@
+import Tabs from '@theme/Tabs';
+import TabItem from '@theme/TabItem';
+
+# Predicted Outputs
+
+| Property | Details |
+|-------|-------|
+| Description | Use this when most of the output of the LLM is known ahead of time. For instance, if you are asking the model to rewrite some text or code with only minor changes, you can reduce your latency significantly by using Predicted Outputs, passing in the existing content as your prediction. |
+| Supported providers | `openai` |
+| Link to OpenAI doc on Predicted Outputs | [Predicted Outputs ↗](https://platform.openai.com/docs/guides/latency-optimization#use-predicted-outputs) |
+| Supported from LiteLLM Version | `v1.51.4` |
+
+
+
+## Using Predicted Outputs
+
+
+
+
+In this example we want to refactor a piece of C# code, and convert the Username property to Email instead:
+```python
+import litellm
+os.environ["OPENAI_API_KEY"] = "your-api-key"
+code = """
+///
+/// Represents a user with a first name, last name, and username.
+///
+public class User
+{
+ ///
+ /// Gets or sets the user's first name.
+ ///
+ public string FirstName { get; set; }
+
+ ///
+ /// Gets or sets the user's last name.
+ ///
+ public string LastName { get; set; }
+
+ ///
+ /// Gets or sets the user's username.
+ ///
+ public string Username { get; set; }
+}
+"""
+
+completion = litellm.completion(
+ model="gpt-4o-mini",
+ messages=[
+ {
+ "role": "user",
+ "content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
+ },
+ {"role": "user", "content": code},
+ ],
+ prediction={"type": "content", "content": code},
+)
+
+print(completion)
+```
+
+
+
+
+1. Define models on config.yaml
+
+```yaml
+model_list:
+ - model_name: gpt-4o-mini # OpenAI gpt-4o-mini
+ litellm_params:
+ model: openai/gpt-4o-mini
+ api_key: os.environ/OPENAI_API_KEY
+
+```
+
+2. Run proxy server
+
+```bash
+litellm --config config.yaml
+```
+
+3. Test it using the OpenAI Python SDK
+
+
+```python
+from openai import OpenAI
+
+client = OpenAI(
+ api_key="LITELLM_PROXY_KEY", # sk-1234
+ base_url="LITELLM_PROXY_BASE" # http://0.0.0.0:4000
+)
+
+completion = client.chat.completions.create(
+ model="gpt-4o-mini",
+ messages=[
+ {
+ "role": "user",
+ "content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
+ },
+ {"role": "user", "content": code},
+ ],
+ prediction={"type": "content", "content": code},
+)
+
+print(completion)
+```
+
+
+
diff --git a/docs/my-website/sidebars.js b/docs/my-website/sidebars.js
index d0b46fe1e..18ad940f8 100644
--- a/docs/my-website/sidebars.js
+++ b/docs/my-website/sidebars.js
@@ -205,6 +205,7 @@ const sidebars = {
"completion/prompt_caching",
"completion/audio",
"completion/vision",
+ "completion/predict_outputs",
"completion/prefix",
"completion/drop_params",
"completion/prompt_formatting",
diff --git a/litellm/llms/OpenAI/chat/gpt_transformation.py b/litellm/llms/OpenAI/chat/gpt_transformation.py
index 4eced5b1b..14ebb4a53 100644
--- a/litellm/llms/OpenAI/chat/gpt_transformation.py
+++ b/litellm/llms/OpenAI/chat/gpt_transformation.py
@@ -94,6 +94,7 @@ class OpenAIGPTConfig:
"max_tokens",
"max_completion_tokens",
"modalities",
+ "prediction",
"n",
"presence_penalty",
"seed",
diff --git a/litellm/main.py b/litellm/main.py
index 2f3a2ea2b..ab85be834 100644
--- a/litellm/main.py
+++ b/litellm/main.py
@@ -162,6 +162,7 @@ from .types.llms.openai import (
ChatCompletionAssistantMessage,
ChatCompletionAudioParam,
ChatCompletionModality,
+ ChatCompletionPredictionContentParam,
ChatCompletionUserMessage,
HttpxBinaryResponseContent,
)
@@ -304,6 +305,7 @@ async def acompletion(
max_tokens: Optional[int] = None,
max_completion_tokens: Optional[int] = None,
modalities: Optional[List[ChatCompletionModality]] = None,
+ prediction: Optional[ChatCompletionPredictionContentParam] = None,
audio: Optional[ChatCompletionAudioParam] = None,
presence_penalty: Optional[float] = None,
frequency_penalty: Optional[float] = None,
@@ -346,6 +348,7 @@ async def acompletion(
max_tokens (integer, optional): The maximum number of tokens in the generated completion (default is infinity).
max_completion_tokens (integer, optional): An upper bound for the number of tokens that can be generated for a completion, including visible output tokens and reasoning tokens.
modalities (List[ChatCompletionModality], optional): Output types that you would like the model to generate for this request. You can use `["text", "audio"]`
+ prediction (ChatCompletionPredictionContentParam, optional): Configuration for a Predicted Output, which can greatly improve response times when large parts of the model response are known ahead of time. This is most common when you are regenerating a file with only minor changes to most of the content.
audio (ChatCompletionAudioParam, optional): Parameters for audio output. Required when audio output is requested with modalities: ["audio"]
presence_penalty (float, optional): It is used to penalize new tokens based on their existence in the text so far.
frequency_penalty: It is used to penalize new tokens based on their frequency in the text so far.
@@ -387,6 +390,7 @@ async def acompletion(
"max_tokens": max_tokens,
"max_completion_tokens": max_completion_tokens,
"modalities": modalities,
+ "prediction": prediction,
"audio": audio,
"presence_penalty": presence_penalty,
"frequency_penalty": frequency_penalty,
@@ -693,6 +697,7 @@ def completion( # type: ignore # noqa: PLR0915
max_completion_tokens: Optional[int] = None,
max_tokens: Optional[int] = None,
modalities: Optional[List[ChatCompletionModality]] = None,
+ prediction: Optional[ChatCompletionPredictionContentParam] = None,
audio: Optional[ChatCompletionAudioParam] = None,
presence_penalty: Optional[float] = None,
frequency_penalty: Optional[float] = None,
@@ -737,6 +742,7 @@ def completion( # type: ignore # noqa: PLR0915
max_tokens (integer, optional): The maximum number of tokens in the generated completion (default is infinity).
max_completion_tokens (integer, optional): An upper bound for the number of tokens that can be generated for a completion, including visible output tokens and reasoning tokens.
modalities (List[ChatCompletionModality], optional): Output types that you would like the model to generate for this request.. You can use `["text", "audio"]`
+ prediction (ChatCompletionPredictionContentParam, optional): Configuration for a Predicted Output, which can greatly improve response times when large parts of the model response are known ahead of time. This is most common when you are regenerating a file with only minor changes to most of the content.
audio (ChatCompletionAudioParam, optional): Parameters for audio output. Required when audio output is requested with modalities: ["audio"]
presence_penalty (float, optional): It is used to penalize new tokens based on their existence in the text so far.
frequency_penalty: It is used to penalize new tokens based on their frequency in the text so far.
@@ -843,6 +849,7 @@ def completion( # type: ignore # noqa: PLR0915
"stop",
"max_completion_tokens",
"modalities",
+ "prediction",
"audio",
"max_tokens",
"presence_penalty",
@@ -994,6 +1001,7 @@ def completion( # type: ignore # noqa: PLR0915
max_tokens=max_tokens,
max_completion_tokens=max_completion_tokens,
modalities=modalities,
+ prediction=prediction,
audio=audio,
presence_penalty=presence_penalty,
frequency_penalty=frequency_penalty,
diff --git a/litellm/types/llms/openai.py b/litellm/types/llms/openai.py
index c2a78e349..a457c125c 100644
--- a/litellm/types/llms/openai.py
+++ b/litellm/types/llms/openai.py
@@ -21,6 +21,9 @@ from openai.types.beta.threads.run import Run
from openai.types.chat import ChatCompletionChunk
from openai.types.chat.chat_completion_audio_param import ChatCompletionAudioParam
from openai.types.chat.chat_completion_modality import ChatCompletionModality
+from openai.types.chat.chat_completion_prediction_content_param import (
+ ChatCompletionPredictionContentParam,
+)
from openai.types.embedding import Embedding as OpenAIEmbedding
from pydantic import BaseModel, Field
from typing_extensions import Dict, Required, TypedDict, override
diff --git a/litellm/utils.py b/litellm/utils.py
index 0f7ff50a0..1b37b77a5 100644
--- a/litellm/utils.py
+++ b/litellm/utils.py
@@ -2550,6 +2550,7 @@ def get_optional_params( # noqa: PLR0915
max_tokens=None,
max_completion_tokens=None,
modalities=None,
+ prediction=None,
audio=None,
presence_penalty=None,
frequency_penalty=None,
@@ -2631,6 +2632,7 @@ def get_optional_params( # noqa: PLR0915
"max_tokens": None,
"max_completion_tokens": None,
"modalities": None,
+ "prediction": None,
"audio": None,
"presence_penalty": None,
"frequency_penalty": None,
diff --git a/poetry.lock b/poetry.lock
index 7846ef049..2f94693e6 100644
--- a/poetry.lock
+++ b/poetry.lock
@@ -1823,13 +1823,13 @@ signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"]
[[package]]
name = "openai"
-version = "1.52.0"
+version = "1.54.0"
description = "The official Python library for the openai API"
optional = false
-python-versions = ">=3.7.1"
+python-versions = ">=3.8"
files = [
- {file = "openai-1.52.0-py3-none-any.whl", hash = "sha256:0c249f20920183b0a2ca4f7dba7b0452df3ecd0fa7985eb1d91ad884bc3ced9c"},
- {file = "openai-1.52.0.tar.gz", hash = "sha256:95c65a5f77559641ab8f3e4c3a050804f7b51d278870e2ec1f7444080bfe565a"},
+ {file = "openai-1.54.0-py3-none-any.whl", hash = "sha256:24ed8874b56e919f0fbb80b7136c3fb022dc82ce9f5f21579b7b280ea4bba249"},
+ {file = "openai-1.54.0.tar.gz", hash = "sha256:df2a84384314165b706722a7ac8988dc33eba20dd7fc3b939d138110e608b1ce"},
]
[package.dependencies]
@@ -3519,4 +3519,4 @@ proxy = ["PyJWT", "apscheduler", "backoff", "cryptography", "fastapi", "fastapi-
[metadata]
lock-version = "2.0"
python-versions = ">=3.8.1,<4.0, !=3.9.7"
-content-hash = "491d361cabc637f8f896091b92855040da670bb7b311dcbfe75ad20eab97400c"
+content-hash = "64154f16e1bbea8b77ba3eddf1cbf051af39f019820d92b638c448445fa32c83"
diff --git a/pyproject.toml b/pyproject.toml
index 92998dd28..2257cb679 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -17,7 +17,7 @@ documentation = "https://docs.litellm.ai"
[tool.poetry.dependencies]
python = ">=3.8.1,<4.0, !=3.9.7"
-openai = ">=1.52.0"
+openai = ">=1.54.0"
python-dotenv = ">=0.2.0"
tiktoken = ">=0.7.0"
importlib-metadata = ">=6.8.0"
diff --git a/requirements.txt b/requirements.txt
index a08ca5852..0ac95fc96 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,6 +1,6 @@
# LITELLM PROXY DEPENDENCIES #
anyio==4.4.0 # openai + http req.
-openai==1.52.0 # openai req.
+openai==1.54.0 # openai req.
fastapi==0.111.0 # server dep
backoff==2.2.1 # server dep
pyyaml==6.0.0 # server dep
diff --git a/tests/llm_translation/test_openai_prediction_param.py b/tests/llm_translation/test_openai_prediction_param.py
new file mode 100644
index 000000000..ebfdf061f
--- /dev/null
+++ b/tests/llm_translation/test_openai_prediction_param.py
@@ -0,0 +1,225 @@
+import json
+import os
+import sys
+from datetime import datetime
+from unittest.mock import AsyncMock
+
+sys.path.insert(
+ 0, os.path.abspath("../..")
+) # Adds the parent directory to the system path
+
+
+import httpx
+import pytest
+from respx import MockRouter
+
+import litellm
+from litellm import Choices, Message, ModelResponse
+
+
+def test_openai_prediction_param():
+ litellm.set_verbose = True
+ code = """
+ ///
+ /// Represents a user with a first name, last name, and username.
+ ///
+ public class User
+ {
+ ///
+ /// Gets or sets the user's first name.
+ ///
+ public string FirstName { get; set; }
+
+ ///
+ /// Gets or sets the user's last name.
+ ///
+ public string LastName { get; set; }
+
+ ///
+ /// Gets or sets the user's username.
+ ///
+ public string Username { get; set; }
+ }
+ """
+
+ completion = litellm.completion(
+ model="gpt-4o-mini",
+ messages=[
+ {
+ "role": "user",
+ "content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
+ },
+ {"role": "user", "content": code},
+ ],
+ prediction={"type": "content", "content": code},
+ )
+
+ print(completion)
+
+ assert (
+ completion.usage.completion_tokens_details.accepted_prediction_tokens > 0
+ or completion.usage.completion_tokens_details.rejected_prediction_tokens > 0
+ )
+
+
+@pytest.mark.asyncio
+@pytest.mark.respx
+async def test_openai_prediction_param_mock(respx_mock: MockRouter):
+ """
+ Tests that prediction parameter is correctly passed to the API
+ """
+ litellm.set_verbose = True
+
+ code = """
+ ///
+ /// Represents a user with a first name, last name, and username.
+ ///
+ public class User
+ {
+ ///
+ /// Gets or sets the user's first name.
+ ///
+ public string FirstName { get; set; }
+
+ ///
+ /// Gets or sets the user's last name.
+ ///
+ public string LastName { get; set; }
+
+ ///
+ /// Gets or sets the user's username.
+ ///
+ public string Username { get; set; }
+ }
+ """
+
+ mock_response = ModelResponse(
+ id="chatcmpl-AQ5RmV8GvVSRxEcDxnuXlQnsibiY9",
+ choices=[
+ Choices(
+ message=Message(
+ content=code.replace("Username", "Email").replace(
+ "username", "email"
+ ),
+ role="assistant",
+ )
+ )
+ ],
+ created=int(datetime.now().timestamp()),
+ model="gpt-4o-mini-2024-07-18",
+ usage={
+ "completion_tokens": 207,
+ "prompt_tokens": 175,
+ "total_tokens": 382,
+ "completion_tokens_details": {
+ "accepted_prediction_tokens": 0,
+ "reasoning_tokens": 0,
+ "rejected_prediction_tokens": 80,
+ },
+ },
+ )
+
+ mock_request = respx_mock.post("https://api.openai.com/v1/chat/completions").mock(
+ return_value=httpx.Response(200, json=mock_response.dict())
+ )
+
+ completion = await litellm.acompletion(
+ model="gpt-4o-mini",
+ messages=[
+ {
+ "role": "user",
+ "content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
+ },
+ {"role": "user", "content": code},
+ ],
+ prediction={"type": "content", "content": code},
+ )
+
+ assert mock_request.called
+ request_body = json.loads(mock_request.calls[0].request.content)
+
+ # Verify the request contains the prediction parameter
+ assert "prediction" in request_body
+ # verify prediction is correctly sent to the API
+ assert request_body["prediction"] == {"type": "content", "content": code}
+
+ # Verify the completion tokens details
+ assert completion.usage.completion_tokens_details.accepted_prediction_tokens == 0
+ assert completion.usage.completion_tokens_details.rejected_prediction_tokens == 80
+
+
+@pytest.mark.asyncio
+async def test_openai_prediction_param_with_caching():
+ """
+ Tests using `prediction` parameter with caching
+ """
+ from litellm.caching.caching import LiteLLMCacheType
+ import logging
+ from litellm._logging import verbose_logger
+
+ verbose_logger.setLevel(logging.DEBUG)
+ import time
+
+ litellm.set_verbose = True
+ litellm.cache = litellm.Cache(type=LiteLLMCacheType.LOCAL)
+ code = """
+ ///
+ /// Represents a user with a first name, last name, and username.
+ ///
+ public class User
+ {
+ ///
+ /// Gets or sets the user's first name.
+ ///
+ public string FirstName { get; set; }
+
+ ///
+ /// Gets or sets the user's last name.
+ ///
+ public string LastName { get; set; }
+
+ ///
+ /// Gets or sets the user's username.
+ ///
+ public string Username { get; set; }
+ }
+ """
+
+ completion_response_1 = litellm.completion(
+ model="gpt-4o-mini",
+ messages=[
+ {
+ "role": "user",
+ "content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
+ },
+ {"role": "user", "content": code},
+ ],
+ prediction={"type": "content", "content": code},
+ )
+
+ time.sleep(0.5)
+
+ # cache hit
+ completion_response_2 = litellm.completion(
+ model="gpt-4o-mini",
+ messages=[
+ {
+ "role": "user",
+ "content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
+ },
+ {"role": "user", "content": code},
+ ],
+ prediction={"type": "content", "content": code},
+ )
+
+ assert completion_response_1.id == completion_response_2.id
+
+ completion_response_3 = litellm.completion(
+ model="gpt-4o-mini",
+ messages=[
+ {"role": "user", "content": "What is the first name of the user?"},
+ ],
+ prediction={"type": "content", "content": code + "FirstName"},
+ )
+
+ assert completion_response_3.id != completion_response_1.id