docs(enterprise.md): add logging spend with custom metadata

This commit is contained in:
Krrish Dholakia 2024-06-12 08:54:58 -07:00
parent 2c0493f753
commit c059352908
2 changed files with 160 additions and 1 deletions

View file

@ -427,4 +427,23 @@ model_list:
## Custom Input/Output Pricing
👉 Head to [Custom Input/Output Pricing](https://docs.litellm.ai/docs/proxy/custom_pricing) to setup custom pricing or your models
👉 Head to [Custom Input/Output Pricing](https://docs.litellm.ai/docs/proxy/custom_pricing) to setup custom pricing or your models
## ✨ Custom k,v pairs
Log specific key,value pairs as part of the metadata for a spend log
:::info
Logging specific key,value pairs in spend logs metadata is an enterprise feature. [See here](./enterprise.md#tracking-spend-with-custom-metadata)
:::
## ✨ Custom Tags
:::info
Tracking spend with Custom tags is an enterprise feature. [See here](./enterprise.md#tracking-spend-for-custom-tags)
:::

View file

@ -205,6 +205,146 @@ curl -X GET "http://0.0.0.0:4000/spend/tags" \
```
## Tracking Spend with custom metadata
Requirements:
- Virtual Keys & a database should be set up, see [virtual keys](https://docs.litellm.ai/docs/proxy/virtual_keys)
#### Usage - /chat/completions requests with special spend logs metadata
<Tabs>
<TabItem value="openai" label="OpenAI Python v1.0.0+">
Set `extra_body={"metadata": { }}` to `metadata` you want to pass
```python
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
extra_body={
"metadata": {
"spend_logs_metadata": {
"hello": "world"
}
}
}
)
print(response)
```
</TabItem>
<TabItem value="Curl" label="Curl Request">
Pass `metadata` as part of the request body
```shell
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
"metadata": {
"spend_logs_metadata": {
"hello": "world"
}
}
}'
```
</TabItem>
<TabItem value="langchain" label="Langchain">
```python
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:4000",
model = "gpt-3.5-turbo",
temperature=0.1,
extra_body={
"metadata": {
"spend_logs_metadata": {
"hello": "world"
}
}
}
)
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
response = chat(messages)
print(response)
```
</TabItem>
</Tabs>
#### Viewing Spend w/ custom metadata
#### `/spend/logs` Request Format
```bash
curl -X GET "http://0.0.0.0:4000/spend/logs?request_id=<your-call-id" \ # e.g.: chatcmpl-9ZKMURhVYSi9D6r6PJ9vLcayIK0Vm
-H "Authorization: Bearer sk-1234"
```
#### `/spend/logs` Response Format
```bash
[
{
"request_id": "chatcmpl-9ZKMURhVYSi9D6r6PJ9vLcayIK0Vm",
"call_type": "acompletion",
"metadata": {
"user_api_key": "88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",
"user_api_key_alias": null,
"spend_logs_metadata": { # 👈 LOGGED CUSTOM METADATA
"hello": "world"
},
"user_api_key_team_id": null,
"user_api_key_user_id": "116544810872468347480",
"user_api_key_team_alias": null
},
}
]
```
## Enforce Required Params for LLM Requests
Use this when you want to enforce all requests to include certain params. Example you need all requests to include the `user` and `["metadata]["generation_name"]` params.