Merge pull request #3808 from BerriAI/litellm_databricks_api

feat(databricks.py): adds databricks support - completion, async, streaming
This commit is contained in:
Krish Dholakia 2024-05-23 19:23:19 -07:00 committed by GitHub
commit c14584722e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
15 changed files with 1197 additions and 15 deletions

View file

@ -59,6 +59,7 @@ Use `litellm.get_supported_openai_params()` for an updated list of params for ea
|NLP Cloud| ✅ | ✅ | ✅ | ✅ | ✅ | | | | | |
|Petals| ✅ | ✅ | | ✅ | | | | | | |
|Ollama| ✅ | ✅ | ✅ | ✅ | ✅ | | | ✅ | | | | | ✅ | | |
|Databricks| ✅ | ✅ | ✅ | ✅ | ✅ | | | | | | | | | | |
:::note

View file

@ -0,0 +1,202 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# 🆕 Databricks
LiteLLM supports all models on Databricks
## Usage
<Tabs>
<TabItem value="sdk" label="SDK">
### ENV VAR
```python
import os
os.environ["DATABRICKS_API_KEY"] = ""
os.environ["DATABRICKS_API_BASE"] = ""
```
### Example Call
```python
from litellm import completion
import os
## set ENV variables
os.environ["DATABRICKS_API_KEY"] = "databricks key"
os.environ["DATABRICKS_API_BASE"] = "databricks base url" # e.g.: https://adb-3064715882934586.6.azuredatabricks.net/serving-endpoints
# predibase llama-3 call
response = completion(
model="databricks/databricks-dbrx-instruct",
messages = [{ "content": "Hello, how are you?","role": "user"}]
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Add models to your config.yaml
```yaml
model_list:
- model_name: dbrx-instruct
litellm_params:
model: databricks/databricks-dbrx-instruct
api_key: os.environ/DATABRICKS_API_KEY
api_base: os.environ/DATABRICKS_API_BASE
```
2. Start the proxy
```bash
$ litellm --config /path/to/config.yaml --debug
```
3. Send Request to LiteLLM Proxy Server
<Tabs>
<TabItem value="openai" label="OpenAI Python v1.0.0+">
```python
import openai
client = openai.OpenAI(
api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
base_url="http://0.0.0.0:4000" # litellm-proxy-base url
)
response = client.chat.completions.create(
model="dbrx-instruct",
messages = [
{
"role": "system",
"content": "Be a good human!"
},
{
"role": "user",
"content": "What do you know about earth?"
}
]
)
print(response)
```
</TabItem>
<TabItem value="curl" label="curl">
```shell
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"model": "dbrx-instruct",
"messages": [
{
"role": "system",
"content": "Be a good human!"
},
{
"role": "user",
"content": "What do you know about earth?"
}
],
}'
```
</TabItem>
</Tabs>
</TabItem>
</Tabs>
## Passing additional params - max_tokens, temperature
See all litellm.completion supported params [here](../completion/input.md#translated-openai-params)
```python
# !pip install litellm
from litellm import completion
import os
## set ENV variables
os.environ["PREDIBASE_API_KEY"] = "predibase key"
# predibae llama-3 call
response = completion(
model="predibase/llama3-8b-instruct",
messages = [{ "content": "Hello, how are you?","role": "user"}],
max_tokens=20,
temperature=0.5
)
```
**proxy**
```yaml
model_list:
- model_name: llama-3
litellm_params:
model: predibase/llama-3-8b-instruct
api_key: os.environ/PREDIBASE_API_KEY
max_tokens: 20
temperature: 0.5
```
## Passings Database specific params - 'instruction'
For embedding models, databricks lets you pass in an additional param 'instruction'. [Full Spec](https://github.com/BerriAI/litellm/blob/43353c28b341df0d9992b45c6ce464222ebd7984/litellm/llms/databricks.py#L164)
```python
# !pip install litellm
from litellm import embedding
import os
## set ENV variables
os.environ["DATABRICKS_API_KEY"] = "databricks key"
os.environ["DATABRICKS_API_BASE"] = "databricks url"
# predibase llama3 call
response = litellm.embedding(
model="databricks/databricks-bge-large-en",
input=["good morning from litellm"],
instruction="Represent this sentence for searching relevant passages:",
)
```
**proxy**
```yaml
model_list:
- model_name: bge-large
litellm_params:
model: databricks/databricks-bge-large-en
api_key: os.environ/DATABRICKS_API_KEY
api_base: os.environ/DATABRICKS_API_BASE
instruction: "Represent this sentence for searching relevant passages:"
```
## Supported Databricks Chat Completion Models
Here's an example of using a Databricks models with LiteLLM
| Model Name | Command |
|----------------------------|------------------------------------------------------------------|
| databricks-dbrx-instruct | `completion(model='databricks/databricks-dbrx-instruct', messages=messages)` |
| databricks-meta-llama-3-70b-instruct | `completion(model='databricks/databricks-meta-llama-3-70b-instruct', messages=messages)` |
| databricks-llama-2-70b-chat | `completion(model='databricks/databricks-llama-2-70b-chat', messages=messages)` |
| databricks-mixtral-8x7b-instruct | `completion(model='databricks/databricks-mixtral-8x7b-instruct', messages=messages)` |
| databricks-mpt-30b-instruct | `completion(model='databricks/databricks-mpt-30b-instruct', messages=messages)` |
| databricks-mpt-7b-instruct | `completion(model='databricks/databricks-mpt-7b-instruct', messages=messages)` |
## Supported Databricks Embedding Models
Here's an example of using a databricks models with LiteLLM
| Model Name | Command |
|----------------------------|------------------------------------------------------------------|
| databricks-bge-large-en | `completion(model='databricks/databricks-bge-large-en', messages=messages)` |

View file

@ -1,7 +1,7 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# 🆕 Predibase
# Predibase
LiteLLM supports all models on Predibase

View file

@ -133,6 +133,7 @@ const sidebars = {
"providers/cohere",
"providers/anyscale",
"providers/huggingface",
"providers/databricks",
"providers/watsonx",
"providers/predibase",
"providers/triton-inference-server",

View file

@ -69,6 +69,7 @@ retry = True
### AUTH ###
api_key: Optional[str] = None
openai_key: Optional[str] = None
databricks_key: Optional[str] = None
azure_key: Optional[str] = None
anthropic_key: Optional[str] = None
replicate_key: Optional[str] = None
@ -616,6 +617,7 @@ provider_list: List = [
"watsonx",
"triton",
"predibase",
"databricks",
"custom", # custom apis
]
@ -731,6 +733,7 @@ from .utils import (
)
from .llms.huggingface_restapi import HuggingfaceConfig
from .llms.anthropic import AnthropicConfig
from .llms.databricks import DatabricksConfig, DatabricksEmbeddingConfig
from .llms.predibase import PredibaseConfig
from .llms.anthropic_text import AnthropicTextConfig
from .llms.replicate import ReplicateConfig

View file

@ -7,8 +7,12 @@ _DEFAULT_TIMEOUT = httpx.Timeout(timeout=5.0, connect=5.0)
class AsyncHTTPHandler:
def __init__(
self, timeout: httpx.Timeout = _DEFAULT_TIMEOUT, concurrent_limit=1000
self,
timeout: Optional[Union[float, httpx.Timeout]] = None,
concurrent_limit=1000,
):
if timeout is None:
timeout = _DEFAULT_TIMEOUT
# Create a client with a connection pool
self.client = httpx.AsyncClient(
timeout=timeout,
@ -59,7 +63,7 @@ class AsyncHTTPHandler:
class HTTPHandler:
def __init__(
self,
timeout: Optional[httpx.Timeout] = None,
timeout: Optional[Union[float, httpx.Timeout]] = None,
concurrent_limit=1000,
client: Optional[httpx.Client] = None,
):

678
litellm/llms/databricks.py Normal file
View file

@ -0,0 +1,678 @@
# What is this?
## Handler file for databricks API https://docs.databricks.com/en/machine-learning/foundation-models/api-reference.html#chat-request
import os, types
import json
from enum import Enum
import requests, copy # type: ignore
import time
from typing import Callable, Optional, List, Union, Tuple, Literal
from litellm.utils import (
ModelResponse,
Usage,
map_finish_reason,
CustomStreamWrapper,
EmbeddingResponse,
)
import litellm
from .prompt_templates.factory import prompt_factory, custom_prompt
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from .base import BaseLLM
import httpx # type: ignore
from litellm.types.llms.databricks import GenericStreamingChunk
class DatabricksError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(method="POST", url="https://docs.databricks.com/")
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class DatabricksConfig:
"""
Reference: https://docs.databricks.com/en/machine-learning/foundation-models/api-reference.html#chat-request
"""
max_tokens: Optional[int] = None
temperature: Optional[int] = None
top_p: Optional[int] = None
top_k: Optional[int] = None
stop: Optional[Union[List[str], str]] = None
n: Optional[int] = None
def __init__(
self,
max_tokens: Optional[int] = None,
temperature: Optional[int] = None,
top_p: Optional[int] = None,
top_k: Optional[int] = None,
stop: Optional[Union[List[str], str]] = None,
n: Optional[int] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_supported_openai_params(self):
return ["stream", "stop", "temperature", "top_p", "max_tokens", "n"]
def map_openai_params(self, non_default_params: dict, optional_params: dict):
for param, value in non_default_params.items():
if param == "max_tokens":
optional_params["max_tokens"] = value
if param == "n":
optional_params["n"] = value
if param == "stream" and value == True:
optional_params["stream"] = value
if param == "temperature":
optional_params["temperature"] = value
if param == "top_p":
optional_params["top_p"] = value
if param == "stop":
optional_params["stop"] = value
return optional_params
def _chunk_parser(self, chunk_data: str) -> GenericStreamingChunk:
try:
text = ""
is_finished = False
finish_reason = None
logprobs = None
usage = None
original_chunk = None # this is used for function/tool calling
chunk_data = chunk_data.replace("data:", "")
chunk_data = chunk_data.strip()
if len(chunk_data) == 0:
return {
"text": "",
"is_finished": is_finished,
"finish_reason": finish_reason,
}
chunk_data_dict = json.loads(chunk_data)
str_line = litellm.ModelResponse(**chunk_data_dict, stream=True)
if len(str_line.choices) > 0:
if (
str_line.choices[0].delta is not None # type: ignore
and str_line.choices[0].delta.content is not None # type: ignore
):
text = str_line.choices[0].delta.content # type: ignore
else: # function/tool calling chunk - when content is None. in this case we just return the original chunk from openai
original_chunk = str_line
if str_line.choices[0].finish_reason:
is_finished = True
finish_reason = str_line.choices[0].finish_reason
if finish_reason == "content_filter":
if hasattr(str_line.choices[0], "content_filter_result"):
error_message = json.dumps(
str_line.choices[0].content_filter_result # type: ignore
)
else:
error_message = "Azure Response={}".format(
str(dict(str_line))
)
raise litellm.AzureOpenAIError(
status_code=400, message=error_message
)
# checking for logprobs
if (
hasattr(str_line.choices[0], "logprobs")
and str_line.choices[0].logprobs is not None
):
logprobs = str_line.choices[0].logprobs
else:
logprobs = None
usage = getattr(str_line, "usage", None)
return GenericStreamingChunk(
text=text,
is_finished=is_finished,
finish_reason=finish_reason,
logprobs=logprobs,
original_chunk=original_chunk,
usage=usage,
)
except Exception as e:
raise e
class DatabricksEmbeddingConfig:
"""
Reference: https://learn.microsoft.com/en-us/azure/databricks/machine-learning/foundation-models/api-reference#--embedding-task
"""
instruction: Optional[str] = (
None # An optional instruction to pass to the embedding model. BGE Authors recommend 'Represent this sentence for searching relevant passages:' for retrieval queries
)
def __init__(self, instruction: Optional[str] = None) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_supported_openai_params(
self,
): # no optional openai embedding params supported
return []
def map_openai_params(self, non_default_params: dict, optional_params: dict):
return optional_params
class DatabricksChatCompletion(BaseLLM):
def __init__(self) -> None:
super().__init__()
# makes headers for API call
def _validate_environment(
self,
api_key: Optional[str],
api_base: Optional[str],
endpoint_type: Literal["chat_completions", "embeddings"],
) -> Tuple[str, dict]:
if api_key is None:
raise DatabricksError(
status_code=400,
message="Missing Databricks API Key - A call is being made to Databricks but no key is set either in the environment variables (DATABRICKS_API_KEY) or via params",
)
if api_base is None:
raise DatabricksError(
status_code=400,
message="Missing Databricks API Base - A call is being made to Databricks but no api base is set either in the environment variables (DATABRICKS_API_BASE) or via params",
)
headers = {
"Authorization": "Bearer {}".format(api_key),
"Content-Type": "application/json",
}
if endpoint_type == "chat_completions":
api_base = "{}/chat/completions".format(api_base)
elif endpoint_type == "embeddings":
api_base = "{}/embeddings".format(api_base)
return api_base, headers
def process_response(
self,
model: str,
response: Union[requests.Response, httpx.Response],
model_response: ModelResponse,
stream: bool,
logging_obj: litellm.utils.Logging,
optional_params: dict,
api_key: str,
data: Union[dict, str],
messages: List,
print_verbose,
encoding,
) -> ModelResponse:
## LOGGING
logging_obj.post_call(
input=messages,
api_key=api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
try:
completion_response = response.json()
except:
raise DatabricksError(
message=response.text, status_code=response.status_code
)
if "error" in completion_response:
raise DatabricksError(
message=str(completion_response["error"]),
status_code=response.status_code,
)
else:
text_content = ""
tool_calls = []
for content in completion_response["content"]:
if content["type"] == "text":
text_content += content["text"]
## TOOL CALLING
elif content["type"] == "tool_use":
tool_calls.append(
{
"id": content["id"],
"type": "function",
"function": {
"name": content["name"],
"arguments": json.dumps(content["input"]),
},
}
)
_message = litellm.Message(
tool_calls=tool_calls,
content=text_content or None,
)
model_response.choices[0].message = _message # type: ignore
model_response._hidden_params["original_response"] = completion_response[
"content"
] # allow user to access raw anthropic tool calling response
model_response.choices[0].finish_reason = map_finish_reason(
completion_response["stop_reason"]
)
## CALCULATING USAGE
prompt_tokens = completion_response["usage"]["input_tokens"]
completion_tokens = completion_response["usage"]["output_tokens"]
total_tokens = prompt_tokens + completion_tokens
model_response["created"] = int(time.time())
model_response["model"] = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=total_tokens,
)
setattr(model_response, "usage", usage) # type: ignore
return model_response
async def acompletion_stream_function(
self,
model: str,
messages: list,
api_base: str,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
stream,
data: dict,
optional_params=None,
litellm_params=None,
logger_fn=None,
headers={},
):
self.async_handler = AsyncHTTPHandler(
timeout=httpx.Timeout(timeout=600.0, connect=5.0)
)
data["stream"] = True
try:
response = await self.async_handler.post(
api_base, headers=headers, data=json.dumps(data), stream=True
)
response.raise_for_status()
completion_stream = response.aiter_lines()
except httpx.HTTPStatusError as e:
raise DatabricksError(
status_code=e.response.status_code, message=response.text
)
except httpx.TimeoutException as e:
raise DatabricksError(status_code=408, message="Timeout error occurred.")
except Exception as e:
raise DatabricksError(status_code=500, message=str(e))
streamwrapper = CustomStreamWrapper(
completion_stream=completion_stream,
model=model,
custom_llm_provider="databricks",
logging_obj=logging_obj,
)
return streamwrapper
async def acompletion_function(
self,
model: str,
messages: list,
api_base: str,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
stream,
data: dict,
optional_params: dict,
litellm_params=None,
logger_fn=None,
headers={},
timeout: Optional[Union[float, httpx.Timeout]] = None,
) -> ModelResponse:
if timeout is None:
timeout = httpx.Timeout(timeout=600.0, connect=5.0)
self.async_handler = AsyncHTTPHandler(timeout=timeout)
try:
response = await self.async_handler.post(
api_base, headers=headers, data=json.dumps(data)
)
response.raise_for_status()
response_json = response.json()
except httpx.HTTPStatusError as e:
raise DatabricksError(
status_code=e.response.status_code,
message=response.text if response else str(e),
)
except httpx.TimeoutException as e:
raise DatabricksError(status_code=408, message="Timeout error occurred.")
except Exception as e:
raise DatabricksError(status_code=500, message=str(e))
return ModelResponse(**response_json)
def completion(
self,
model: str,
messages: list,
api_base: str,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
optional_params: dict,
acompletion=None,
litellm_params=None,
logger_fn=None,
headers={},
timeout: Optional[Union[float, httpx.Timeout]] = None,
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
):
api_base, headers = self._validate_environment(
api_base=api_base, api_key=api_key, endpoint_type="chat_completions"
)
## Load Config
config = litellm.DatabricksConfig().get_config()
for k, v in config.items():
if (
k not in optional_params
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
optional_params[k] = v
stream = optional_params.pop("stream", None)
data = {
"model": model,
"messages": messages,
**optional_params,
}
## LOGGING
logging_obj.pre_call(
input=messages,
api_key=api_key,
additional_args={
"complete_input_dict": data,
"api_base": api_base,
"headers": headers,
},
)
if acompletion == True:
if (
stream is not None and stream == True
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
print_verbose("makes async anthropic streaming POST request")
data["stream"] = stream
return self.acompletion_stream_function(
model=model,
messages=messages,
data=data,
api_base=api_base,
custom_prompt_dict=custom_prompt_dict,
model_response=model_response,
print_verbose=print_verbose,
encoding=encoding,
api_key=api_key,
logging_obj=logging_obj,
optional_params=optional_params,
stream=stream,
litellm_params=litellm_params,
logger_fn=logger_fn,
headers=headers,
)
else:
return self.acompletion_function(
model=model,
messages=messages,
data=data,
api_base=api_base,
custom_prompt_dict=custom_prompt_dict,
model_response=model_response,
print_verbose=print_verbose,
encoding=encoding,
api_key=api_key,
logging_obj=logging_obj,
optional_params=optional_params,
stream=stream,
litellm_params=litellm_params,
logger_fn=logger_fn,
headers=headers,
timeout=timeout,
)
else:
if client is None or isinstance(client, AsyncHTTPHandler):
self.client = HTTPHandler(timeout=timeout) # type: ignore
else:
self.client = client
## COMPLETION CALL
if (
stream is not None and stream == True
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
print_verbose("makes dbrx streaming POST request")
data["stream"] = stream
try:
response = self.client.post(
api_base, headers=headers, data=json.dumps(data), stream=stream
)
response.raise_for_status()
completion_stream = response.iter_lines()
except httpx.HTTPStatusError as e:
raise DatabricksError(
status_code=e.response.status_code, message=response.text
)
except httpx.TimeoutException as e:
raise DatabricksError(
status_code=408, message="Timeout error occurred."
)
except Exception as e:
raise DatabricksError(status_code=408, message=str(e))
streaming_response = CustomStreamWrapper(
completion_stream=completion_stream,
model=model,
custom_llm_provider="databricks",
logging_obj=logging_obj,
)
return streaming_response
else:
try:
response = self.client.post(
api_base, headers=headers, data=json.dumps(data)
)
response.raise_for_status()
response_json = response.json()
except httpx.HTTPStatusError as e:
raise DatabricksError(
status_code=e.response.status_code, message=response.text
)
except httpx.TimeoutException as e:
raise DatabricksError(
status_code=408, message="Timeout error occurred."
)
except Exception as e:
raise DatabricksError(status_code=500, message=str(e))
return ModelResponse(**response_json)
async def aembedding(
self,
input: list,
data: dict,
model_response: ModelResponse,
timeout: float,
api_key: str,
api_base: str,
logging_obj,
headers: dict,
client=None,
) -> EmbeddingResponse:
response = None
try:
if client is None or isinstance(client, AsyncHTTPHandler):
self.async_client = AsyncHTTPHandler(timeout=timeout) # type: ignore
else:
self.async_client = client
try:
response = await self.async_client.post(
api_base,
headers=headers,
data=json.dumps(data),
) # type: ignore
response.raise_for_status()
response_json = response.json()
except httpx.HTTPStatusError as e:
raise DatabricksError(
status_code=e.response.status_code,
message=response.text if response else str(e),
)
except httpx.TimeoutException as e:
raise DatabricksError(
status_code=408, message="Timeout error occurred."
)
except Exception as e:
raise DatabricksError(status_code=500, message=str(e))
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=response_json,
)
return EmbeddingResponse(**response_json)
except Exception as e:
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
original_response=str(e),
)
raise e
def embedding(
self,
model: str,
input: list,
timeout: float,
logging_obj,
api_key: Optional[str],
api_base: Optional[str],
optional_params: dict,
model_response: Optional[litellm.utils.EmbeddingResponse] = None,
client=None,
aembedding=None,
) -> EmbeddingResponse:
api_base, headers = self._validate_environment(
api_base=api_base, api_key=api_key, endpoint_type="embeddings"
)
model = model
data = {"model": model, "input": input, **optional_params}
## LOGGING
logging_obj.pre_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data, "api_base": api_base},
)
if aembedding == True:
return self.aembedding(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, headers=headers) # type: ignore
if client is None or isinstance(client, AsyncHTTPHandler):
self.client = HTTPHandler(timeout=timeout) # type: ignore
else:
self.client = client
## EMBEDDING CALL
try:
response = self.client.post(
api_base,
headers=headers,
data=json.dumps(data),
) # type: ignore
response.raise_for_status() # type: ignore
response_json = response.json() # type: ignore
except httpx.HTTPStatusError as e:
raise DatabricksError(
status_code=e.response.status_code,
message=response.text if response else str(e),
)
except httpx.TimeoutException as e:
raise DatabricksError(status_code=408, message="Timeout error occurred.")
except Exception as e:
raise DatabricksError(status_code=500, message=str(e))
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=response_json,
)
return litellm.EmbeddingResponse(**response_json)

View file

@ -404,6 +404,7 @@ class OpenAIChatCompletion(BaseLLM):
self,
model_response: ModelResponse,
timeout: Union[float, httpx.Timeout],
optional_params: dict,
model: Optional[str] = None,
messages: Optional[list] = None,
print_verbose: Optional[Callable] = None,
@ -411,7 +412,6 @@ class OpenAIChatCompletion(BaseLLM):
api_base: Optional[str] = None,
acompletion: bool = False,
logging_obj=None,
optional_params=None,
litellm_params=None,
logger_fn=None,
headers: Optional[dict] = None,
@ -795,10 +795,10 @@ class OpenAIChatCompletion(BaseLLM):
model: str,
input: list,
timeout: float,
logging_obj,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
model_response: Optional[litellm.utils.EmbeddingResponse] = None,
logging_obj=None,
optional_params=None,
client=None,
aembedding=None,

View file

@ -73,6 +73,7 @@ from .llms import (
)
from .llms.openai import OpenAIChatCompletion, OpenAITextCompletion
from .llms.azure import AzureChatCompletion
from .llms.databricks import DatabricksChatCompletion
from .llms.azure_text import AzureTextCompletion
from .llms.anthropic import AnthropicChatCompletion
from .llms.anthropic_text import AnthropicTextCompletion
@ -111,6 +112,7 @@ from litellm.utils import (
####### ENVIRONMENT VARIABLES ###################
openai_chat_completions = OpenAIChatCompletion()
openai_text_completions = OpenAITextCompletion()
databricks_chat_completions = DatabricksChatCompletion()
anthropic_chat_completions = AnthropicChatCompletion()
anthropic_text_completions = AnthropicTextCompletion()
azure_chat_completions = AzureChatCompletion()
@ -329,6 +331,7 @@ async def acompletion(
or custom_llm_provider == "anthropic"
or custom_llm_provider == "predibase"
or custom_llm_provider == "bedrock"
or custom_llm_provider == "databricks"
or custom_llm_provider in litellm.openai_compatible_providers
): # currently implemented aiohttp calls for just azure, openai, hf, ollama, vertex ai soon all.
init_response = await loop.run_in_executor(None, func_with_context)
@ -1615,6 +1618,61 @@ def completion(
)
return response
response = model_response
elif custom_llm_provider == "databricks":
api_base = (
api_base # for databricks we check in get_llm_provider and pass in the api base from there
or litellm.api_base
or os.getenv("DATABRICKS_API_BASE")
)
# set API KEY
api_key = (
api_key
or litellm.api_key # for databricks we check in get_llm_provider and pass in the api key from there
or litellm.databricks_key
or get_secret("DATABRICKS_API_KEY")
)
headers = headers or litellm.headers
## COMPLETION CALL
try:
response = databricks_chat_completions.completion(
model=model,
messages=messages,
headers=headers,
model_response=model_response,
print_verbose=print_verbose,
api_key=api_key,
api_base=api_base,
acompletion=acompletion,
logging_obj=logging,
optional_params=optional_params,
litellm_params=litellm_params,
logger_fn=logger_fn,
timeout=timeout, # type: ignore
custom_prompt_dict=custom_prompt_dict,
client=client, # pass AsyncOpenAI, OpenAI client
encoding=encoding,
)
except Exception as e:
## LOGGING - log the original exception returned
logging.post_call(
input=messages,
api_key=api_key,
original_response=str(e),
additional_args={"headers": headers},
)
raise e
if optional_params.get("stream", False):
## LOGGING
logging.post_call(
input=messages,
api_key=api_key,
original_response=response,
additional_args={"headers": headers},
)
elif custom_llm_provider == "openrouter":
api_base = api_base or litellm.api_base or "https://openrouter.ai/api/v1"
@ -2669,7 +2727,7 @@ def batch_completion_models_all_responses(*args, **kwargs):
### EMBEDDING ENDPOINTS ####################
@client
async def aembedding(*args, **kwargs):
async def aembedding(*args, **kwargs) -> EmbeddingResponse:
"""
Asynchronously calls the `embedding` function with the given arguments and keyword arguments.
@ -2714,12 +2772,13 @@ async def aembedding(*args, **kwargs):
or custom_llm_provider == "fireworks_ai"
or custom_llm_provider == "ollama"
or custom_llm_provider == "vertex_ai"
or custom_llm_provider == "databricks"
): # currently implemented aiohttp calls for just azure and openai, soon all.
# Await normally
init_response = await loop.run_in_executor(None, func_with_context)
if isinstance(init_response, dict) or isinstance(
init_response, ModelResponse
): ## CACHING SCENARIO
if isinstance(init_response, dict):
response = EmbeddingResponse(**init_response)
elif isinstance(init_response, EmbeddingResponse): ## CACHING SCENARIO
response = init_response
elif asyncio.iscoroutine(init_response):
response = await init_response
@ -2759,7 +2818,7 @@ def embedding(
litellm_logging_obj=None,
logger_fn=None,
**kwargs,
):
) -> EmbeddingResponse:
"""
Embedding function that calls an API to generate embeddings for the given input.
@ -2907,7 +2966,7 @@ def embedding(
)
try:
response = None
logging = litellm_logging_obj
logging: Logging = litellm_logging_obj # type: ignore
logging.update_environment_variables(
model=model,
user=user,
@ -2997,6 +3056,32 @@ def embedding(
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "databricks":
api_base = (
api_base or litellm.api_base or get_secret("DATABRICKS_API_BASE")
) # type: ignore
# set API KEY
api_key = (
api_key
or litellm.api_key
or litellm.databricks_key
or get_secret("DATABRICKS_API_KEY")
) # type: ignore
## EMBEDDING CALL
response = databricks_chat_completions.embedding(
model=model,
input=input,
api_base=api_base,
api_key=api_key,
logging_obj=logging,
timeout=timeout,
model_response=EmbeddingResponse(),
optional_params=optional_params,
client=client,
aembedding=aembedding,
)
elif custom_llm_provider == "cohere":
cohere_key = (
api_key

View file

@ -131,6 +131,27 @@ def test_completion_azure_command_r():
pytest.fail(f"Error occurred: {e}")
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio
async def test_completion_databricks(sync_mode):
litellm.set_verbose = True
if sync_mode:
response: litellm.ModelResponse = completion(
model="databricks/databricks-dbrx-instruct",
messages=[{"role": "user", "content": "Hey, how's it going?"}],
) # type: ignore
else:
response: litellm.ModelResponse = await litellm.acompletion(
model="databricks/databricks-dbrx-instruct",
messages=[{"role": "user", "content": "Hey, how's it going?"}],
) # type: ignore
print(f"response: {response}")
response_format_tests(response=response)
# @pytest.mark.skip(reason="local test")
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio

View file

@ -535,6 +535,37 @@ async def test_triton_embeddings():
pytest.fail(f"Error occurred: {e}")
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio
async def test_databricks_embeddings(sync_mode):
try:
litellm.set_verbose = True
litellm.drop_params = True
if sync_mode:
response = litellm.embedding(
model="databricks/databricks-bge-large-en",
input=["good morning from litellm"],
instruction="Represent this sentence for searching relevant passages:",
)
else:
response = await litellm.aembedding(
model="databricks/databricks-bge-large-en",
input=["good morning from litellm"],
instruction="Represent this sentence for searching relevant passages:",
)
print(f"response: {response}")
openai.types.CreateEmbeddingResponse.model_validate(
response.model_dump(), strict=True
)
# stubbed endpoint is setup to return this
# assert response.data[0]["embedding"] == [0.1, 0.2, 0.3]
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_voyage_embeddings()
# def test_xinference_embeddings():
# try:

View file

@ -83,6 +83,20 @@ def test_azure_optional_params_embeddings():
assert optional_params["user"] == "John"
def test_databricks_optional_params():
litellm.drop_params = True
optional_params = get_optional_params(
model="",
user="John",
custom_llm_provider="databricks",
max_tokens=10,
temperature=0.2,
)
print(f"optional_params: {optional_params}")
assert len(optional_params) == 2
assert "user" not in optional_params
def test_azure_gpt_optional_params_gpt_vision():
# for OpenAI, Azure all extra params need to get passed as extra_body to OpenAI python. We assert we actually set extra_body here
optional_params = litellm.utils.get_optional_params(

View file

@ -951,6 +951,62 @@ def test_vertex_ai_stream():
# test_completion_vertexai_stream_bad_key()
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio
async def test_completion_databricks_streaming(sync_mode):
litellm.set_verbose = True
model_name = "databricks/databricks-dbrx-instruct"
try:
if sync_mode:
final_chunk: Optional[litellm.ModelResponse] = None
response: litellm.CustomStreamWrapper = completion( # type: ignore
model=model_name,
messages=messages,
max_tokens=10, # type: ignore
stream=True,
)
complete_response = ""
# Add any assertions here to check the response
has_finish_reason = False
for idx, chunk in enumerate(response):
final_chunk = chunk
chunk, finished = streaming_format_tests(idx, chunk)
if finished:
has_finish_reason = True
break
complete_response += chunk
if has_finish_reason == False:
raise Exception("finish reason not set")
if complete_response.strip() == "":
raise Exception("Empty response received")
else:
response: litellm.CustomStreamWrapper = await litellm.acompletion( # type: ignore
model=model_name,
messages=messages,
max_tokens=100, # type: ignore
stream=True,
)
complete_response = ""
# Add any assertions here to check the response
has_finish_reason = False
idx = 0
final_chunk: Optional[litellm.ModelResponse] = None
async for chunk in response:
final_chunk = chunk
chunk, finished = streaming_format_tests(idx, chunk)
if finished:
has_finish_reason = True
break
complete_response += chunk
idx += 1
if has_finish_reason == False:
raise Exception("finish reason not set")
if complete_response.strip() == "":
raise Exception("Empty response received")
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.parametrize("sync_mode", [False, True])
@pytest.mark.asyncio
async def test_completion_replicate_llama3_streaming(sync_mode):

View file

@ -0,0 +1,21 @@
from typing import TypedDict, Any, Union, Optional
import json
from typing_extensions import (
Self,
Protocol,
TypeGuard,
override,
get_origin,
runtime_checkable,
Required,
)
from pydantic import BaseModel
class GenericStreamingChunk(TypedDict, total=False):
text: Required[str]
is_finished: Required[bool]
finish_reason: Required[Optional[str]]
logprobs: Optional[BaseModel]
original_chunk: Optional[BaseModel]
usage: Optional[BaseModel]

View file

@ -568,7 +568,7 @@ class StreamingChoices(OpenAIObject):
if delta is not None:
if isinstance(delta, Delta):
self.delta = delta
if isinstance(delta, dict):
elif isinstance(delta, dict):
self.delta = Delta(**delta)
else:
self.delta = Delta()
@ -676,7 +676,10 @@ class ModelResponse(OpenAIObject):
created = created
model = model
if usage is not None:
usage = usage
if isinstance(usage, dict):
usage = Usage(**usage)
else:
usage = usage
elif stream is None or stream == False:
usage = Usage()
elif (
@ -763,7 +766,13 @@ class EmbeddingResponse(OpenAIObject):
_hidden_params: dict = {}
def __init__(
self, model=None, usage=None, stream=False, response_ms=None, data=None
self,
model=None,
usage=None,
stream=False,
response_ms=None,
data=None,
**params,
):
object = "list"
if response_ms:
@ -5035,6 +5044,19 @@ def get_optional_params_embeddings(
default_params = {"user": None, "encoding_format": None, "dimensions": None}
def _check_valid_arg(supported_params: Optional[list]):
if supported_params is None:
return
unsupported_params = {}
for k in non_default_params.keys():
if k not in supported_params:
unsupported_params[k] = non_default_params[k]
if unsupported_params and not litellm.drop_params:
raise UnsupportedParamsError(
status_code=500,
message=f"{custom_llm_provider} does not support parameters: {unsupported_params}, for model={model}. To drop these, set `litellm.drop_params=True` or for proxy:\n\n`litellm_settings:\n drop_params: true`\n",
)
non_default_params = {
k: v
for k, v in passed_params.items()
@ -5060,6 +5082,18 @@ def get_optional_params_embeddings(
non_default_params.pop(k, None)
final_params = {**non_default_params, **kwargs}
return final_params
if custom_llm_provider == "databricks":
supported_params = get_supported_openai_params(
model=model or "",
custom_llm_provider="databricks",
request_type="embeddings",
)
_check_valid_arg(supported_params=supported_params)
optional_params = litellm.DatabricksEmbeddingConfig().map_openai_params(
non_default_params=non_default_params, optional_params={}
)
final_params = {**optional_params, **kwargs}
return final_params
if custom_llm_provider == "vertex_ai":
if len(non_default_params.keys()) > 0:
if litellm.drop_params is True: # drop the unsupported non-default values
@ -5846,6 +5880,14 @@ def get_optional_params(
optional_params = litellm.MistralConfig().map_openai_params(
non_default_params=non_default_params, optional_params=optional_params
)
elif custom_llm_provider == "databricks":
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_check_valid_arg(supported_params=supported_params)
optional_params = litellm.DatabricksConfig().map_openai_params(
non_default_params=non_default_params, optional_params=optional_params
)
elif custom_llm_provider == "groq":
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
@ -6333,7 +6375,11 @@ def get_first_chars_messages(kwargs: dict) -> str:
return ""
def get_supported_openai_params(model: str, custom_llm_provider: str) -> Optional[list]:
def get_supported_openai_params(
model: str,
custom_llm_provider: str,
request_type: Literal["chat_completion", "embeddings"] = "chat_completion",
) -> Optional[list]:
"""
Returns the supported openai params for a given model + provider
@ -6506,6 +6552,11 @@ def get_supported_openai_params(model: str, custom_llm_provider: str) -> Optiona
"frequency_penalty",
"presence_penalty",
]
elif custom_llm_provider == "databricks":
if request_type == "chat_completion":
return litellm.DatabricksConfig().get_supported_openai_params()
elif request_type == "embeddings":
return litellm.DatabricksEmbeddingConfig().get_supported_openai_params()
elif custom_llm_provider == "palm" or custom_llm_provider == "gemini":
return ["temperature", "top_p", "stream", "n", "stop", "max_tokens"]
elif custom_llm_provider == "vertex_ai":
@ -11017,6 +11068,8 @@ class CustomStreamWrapper:
elif self.custom_llm_provider and self.custom_llm_provider == "clarifai":
response_obj = self.handle_clarifai_completion_chunk(chunk)
completion_obj["content"] = response_obj["text"]
if response_obj["is_finished"]:
self.received_finish_reason = response_obj["finish_reason"]
elif self.model == "replicate" or self.custom_llm_provider == "replicate":
response_obj = self.handle_replicate_chunk(chunk)
completion_obj["content"] = response_obj["text"]
@ -11268,6 +11321,17 @@ class CustomStreamWrapper:
and self.stream_options.get("include_usage", False) == True
):
model_response.usage = response_obj["usage"]
elif self.custom_llm_provider == "databricks":
response_obj = litellm.DatabricksConfig()._chunk_parser(chunk)
completion_obj["content"] = response_obj["text"]
print_verbose(f"completion obj content: {completion_obj['content']}")
if response_obj["is_finished"]:
self.received_finish_reason = response_obj["finish_reason"]
if (
self.stream_options
and self.stream_options.get("include_usage", False) == True
):
model_response.usage = response_obj["usage"]
elif self.custom_llm_provider == "azure_text":
response_obj = self.handle_azure_text_completion_chunk(chunk)
completion_obj["content"] = response_obj["text"]
@ -11677,6 +11741,7 @@ class CustomStreamWrapper:
or self.custom_llm_provider == "replicate"
or self.custom_llm_provider == "cached_response"
or self.custom_llm_provider == "predibase"
or self.custom_llm_provider == "databricks"
or self.custom_llm_provider == "bedrock"
or self.custom_llm_provider in litellm.openai_compatible_endpoints
):